Эталонная моДель OSI. Что такое модель OSI? Эталонная модель сетевого взаимодействия

23.08.2019

Для согласования работы устройств сети от разных производителей, обеспечения взаимодействия сетей, которые используют различную среду распространения сигнала создана эталонная модель взаимодействия открытых систем (ВОС). Эталонная модель построена по иерархическому принципу. Каждый уровень обеспечивает сервис вышестоящему уровню и пользуется услугами нижестоящего уровня.

Обработка данных начинается с прикладного уровня. После этого, данные проходят через все уровни эталонной модели, и через физический уровень отправляются в канал связи. На приеме происходит обратная обработка данных.

В эталонной модели OSI вводятся два понятия: протокол и интерфейс .

Протокол – это набор правил, на основе которых взаимодействуют уровни различных открытых систем.

Интерфейс – это совокупность средств и методов взаимодействия между элементами открытой системы.

Протокол определяет правила взаимодействия модулей одного уровня в разных узлах, а интерфейс – модулей соседних уровней в одном узле.

Всего существует семь уровней эталонной модели OSI. Стоит отметить, что в реальных стеках используется меньше уровней. Например, в популярном TCP/IP используется всего четыре уровня. Почему так? Объясним чуть позже. А сейчас рассмотрим каждый из семи уровней в отдельности.

Уровни модели OSI:

  • Физический уровень. Определяет вид среды передачи данных, физические и электрические характеристики интерфейсов, вид сигнала. Этот уровень имеет дело с битами информации. Примеры протоколов физического уровня: Ethernet, ISDN, Wi-Fi.
  • Канальный уровень. Отвечает за доступ к среде передачи, исправление ошибок, надежную передачу данных. На приеме полученные с физического уровня данные упаковываются в кадры после чего проверяется их целостность. Если ошибок нет, то данные передаются на сетевой уровень. Если ошибки есть, то кадр отбрасывается и формируется запрос на повторную передачу. Канальный уровень подразделяется на два подуровня: MAC (Media Access Control) и LLC (Locical Link Control). MAC регулирует доступ к разделяемой физической среде. LLC обеспечивает обслуживание сетевого уровня. На канальном уровне работают коммутаторы. Примеры протоколов: Ethernet, PPP.
  • Сетевой уровень. Его основными задачами являются маршрутизация – определение оптимального пути передачи данных, логическая адресация узлов. Кроме того, на этот уровень могут быть возложены задачи по поиску неполадок в сети (протокол ICMP). Сетевой уровень работает с пакетами. Примеры протоколов: IP, ICMP, IGMP, BGP, OSPF).
  • Транспортный уровень. Предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. Выполняет сквозной контроль передачи данных от отправителя до получателя. Примеры протоколов: TCP, UDP.
  • Сеансовый уровень. Управляет созданием/поддержанием/завершением сеанса связи. Примеры протоколов: L2TP, RTCP.
  • Представительский уровень. Осуществляет преобразование данных в нужную форму, шифрование/кодирование, сжатие.
  • Прикладной уровень. Осуществляет взаимодействие между пользователем и сетью. Взаимодействует с приложениями на стороне клиента. Примеры протоколов: HTTP, FTP, Telnet, SSH, SNMP.

После знакомства со эталонной моделью, рассмотрим стек протоколов TCP/IP.

В модели TCP/IP определено четыре уровня. Как видно из рисунка выше – один уровень TCP/IP может соответствовать нескольким уровням модели OSI.

Уровни модели TCP/IP:

  • Уровень сетевых интерфейсов. Соответствует двум нижним уровням модели OSI: канальному и физическому. Исходя из этого, понятно, что данный уровень определяет характеристики среды передачи (витая пара, оптическое волокно, радиоэфир), вид сигнала, способ кодирования, доступ к среде передачи, исправление ошибок, физическую адресацию (MAC-адреса). В модели TCP/IP на этом уровне работает протокол Ethrnet и его производные (Fast Ethernet, Gigabit Ethernet).
  • Уровень межсетевого взаимодействия. Соответствует сетевому уровню модели OSI. Берет на себя все его функции: маршрутизацию, логическую адресация (IP-адреса). На данном уровне работает протокол IP.
  • Транспортный уровень. Соответствует транспортному уровню модели OSI. Отвечает за доставку пакетов от источника до получателя. На данному уровне задействуется два протокола: TCP и UDP. TCP является более надежным, чем UDP за счет создания предварительного соединения, запросов на повторную передачу при возникновении ошибок. Однако, в то же время, TCP более медленный, чем UDP.
  • Прикладной уровень. Его главная задача – взаимодействие с приложениями и процессами на хостах. Примеры протоколов: HTTP, FTP, POP3, SNMP, NTP, DNS, DHCP.

Инкапсуляция – это метод упаковки пакета данных, при котором независимые друг от друга служебные заголовки пакета абстрагируются от заголовков нижестоящих уровней путем их включения в вышестоящие уровни.

Рассмотрим на конкретном примере. Пусть мы хотим попасть с компьютера на сайт. Для этого наш компьютер должен подготовить http-запрос на получение ресурсов веб-сервера, на котором хранится нужная нам страница сайта. На прикладном уровне к данным (Data) браузера добавляется HTTP-заголовок. Далее на транспортном уровне к нашему пакету прибавляется TCP-заголовок, содержащий номера портов отправителя и получателя (80 порт – для HTTP). На сетевом уровне формируется IP-заголовок, содержащий IP-адреса отправителя и получателя. Непосредственно перед передачей, на канальном уровне добавляется Ethrnet-заголовок, который содержит физические (MAC-адреса) отправителя и получателя. После всех этих процедур пакет в виде битов информации передается по сети. На приеме происходит обратная процедура. Web-сервер на каждом уровне будет проверять соответствующий заголовок. Если проверка прошла удачно, то заголовок отбрасывается и пакет переходит на верхний уровень. В противном случае весь пакет отбрасывается.


Подписывайтесь на нашу

Понятие эталонной модели широко используется в связи и информатике.

  • Эталонная модель (Reference model, master model) в системной и программной области — это модель чего-то, что объединяет основная цель или идея, и может рассматриваться в качестве эталона для различных целей [Википедия-англ].
  • Эталонная модель — это абстрактное представление понятий и отношений между ними в некоторой проблемной области. На основе эталонной строятся более конкретные и детально описываемые модели, в итоге воплощенные в реально существующие объекты и механизмы [Википедия-рус].
  • Эталонная модель (Reference Model) — это абстрактная структура (framework) для понимания существенных связей между объектами некоторого окружения, что в дальнейшем позволяет разрабатывать конкретные архитектуры, используя определенные стандарты или спецификации, поддерживаемые этим окружением. Эталонная модель содержит минимальный набор унифицированных концепций, аксиом и связей, относящихся к конкретной области проблем, и независима от определенных стандартов, технологий, реализации или других конкретных деталей .

    Цель введения эталонной модели состоит в определении сущности архитектуры системы и введении терминологии, а также описании общего принципа функционирования системы. Модель определяет связи, которые являются значимыми для функционирования системы, как абстрактной модели, независимой от варианта технической реализации и от постоянно развивающихся технологий, которые могли бы повлиять на внедрение системы. Зачастую архитектура разрабатывается в контексте предопределенной конфигурации, включающей протоколы, профили, спецификации и стандарты.

    Есть много применений эталонной модели. Один из вариантов использования заключается в создании стандартов для объектов, которые содержатся в модели, и их взаимодействия друг с другом. При разработке конкретных прикладных стандартов связи и систем производится сравнение их архитектуры с стандартной моделью. При таком подходе работа специалистов, которым нужно создавать или анализировать объекты систем связи, которые ведут себя в соответствии со стандартом, осуществляется намного проще.

  • В качестве примера стандарта эталонной модели можно назвать сетевую эталонную модель взаимодействия открытых систем (ЭМВОС) OSI (Open Systems Interconnection Basic Reference Model ) Международной организации по стандартизации ISO – основную модель архитектур для систем передачи данных, котора является хорошим средством для анализа и изучения современной стандартов и технологий связи.

Семиуровневая модель OSI


Универсальный характер классической сетевой семиуровневой эталонной модели OSI дает возможность создавать на ее основе модели для конкретных стандартов, которые также называют эталонными. Например, на рис…. приведена эталонная модель DECT, ключевые функции которой структуированы только на трех нижних уровнях модели OSI: сетевом, канальном и физическом.


Эталонная модель DECT

1. Reference Model for Service Oriented. Architecture 1.0. Committee Specification 1, 2 August 2006. http://www.oasis-open.org/

Привет, посетитель сайта сайт! Продолжаем рубрику Сервера и протоколы. Сегодня мы поговорим о том, как происходит взаимодействие в сети Интернет, да вообще в любой компьютерной сети, разобравшись с тем, что такое модель OSI, для чего нужна семиуровневая модель OSI и кто и когда разработал эталонную модель сетевого взаимодействия OSI. Итак, данная статья посвящена семиуровневой модели взаимодействия OSI. Естественно, разбираться с принципами работы модели OSI мы будем на простых примерах, буквально на пальцах . А в тех местах, где будут сложные моменты, я буду стараться давать ссылки на материалы, в которых вы найдете простое объяснение этих моментов.

В данной публикации мы поговорим о том, что такое семиуровневая модель взаимодействия OSI что собой она представляет. Разберемся с тем для чего нужна эталонная сетевая модель OSI и кто и когда ее разработал. Рассмотрим архитектуру семиуровневой модели OSI и поговорим про каждый ее уровень в отдельности. Посмотрим на простые примеры, описывающие принципы работы модели OSI: один пример будет очень простым, а второй пример объясняет принцип работы модели OSI буквально на пальцах. И в завершении публикации мы погорим про недостатки эталонной модели OSI и узнаем почему протоколы модели OSI , в отличии от самой модели, не получили такого широкого распространения .

Что такое эталонная модель OSI?

Если вы так или иначе связаны с сетью Интернет или сферой телекоммуникаций, то наверняка вы неоднократно слышали фразу эталонная модель или модель OSI . Давайте разберемся с тем, что такое модель сетевого взаимодействия OSI простыми словами буквально на пальцах , так как понимание сути гораздо важнее умных и сложных терминов. Если вы разберётесь с тем, «как работает модель сетевого взаимодействия OSI», то вы поймете общие принципы работы любой компьютерной сети, включая и сеть Интернет.

Модель OSI не случайно называют моделью сетевого взаимодействия, а также ее не случайно называют эталонной моделью. Модель OSI описывает то как должны взаимодействовать машины в компьютерной сети. Если говорить в рамках определения, то OSI – это базовая или эталонная модель взаимодействия открытых систем. Как мы знаем, любое взаимодействие происходит по протоколу или определённому набору правил взаимодействия, например, взаимодействие между браузером и (например, ) происходит по .

Браузер посылает специальные , которые имеют свою особую структуру и формат и получили название такие сообщения – . HTTP сервер принимает эти сообщения, анализирует их и понимает, что хотел браузер по , которые есть в запросе. Проанализировав сообщение от браузера, сервер посылает свое собственное сообщение браузеру, которое получили название . Ответы сервера содержат , по которым браузер видит, как сервер понял его запрос.

Стоит заметить, что в основе взаимодействия по протоколу HTTP лежит (впрочем, как и в основе многих других протоколов). Которая нужна, чтобы разделить зону ответственности и производственные ресурсы между и . Обратите внимание: модель клиент-сервер не делит машины на строго клиентские или строго серверные, она лишь распределяет функции: клиент – это заказчик услуг, а сервер – это поставщик услуг. Однако серверные приложения и клиентские приложения могут работать вместе на одной машине (читайте про и ).

Мы немного отвлеклись, но заметим, что протокол HTTP находится на самом высоком – седьмом уровне модели OSI. Про уровни модели OSI и их назначение мы поговорим немного ниже. Сейчас нам нужно понять, что сетевая модель взаимодействия OSI – это довольно абстрактная вещь, которая описывает то, как должны взаимодействовать машины друг с другом в компьютерной сети.

Для чего нужна модель OSI и кто разработал данную модель?

Ответим на вторую часть вопроса данного раздела: кто разработал эталонную модель взаимодействия OSI ? Модель OSI разработала международная организация стандартизации ISO. Отчасти теперь становится понятно, почему модель OSI называют эталонной. Теперь поговорим о том, для чего нужна модель взаимодействия OSI.

Не секрет, что в отрасли IT довольно много различных направлений и даже не направлений, а, скажем так, слоев. Например, возьмем любого интернет провайдера. И посмотрим на общую структуру отделов, отвечающих за предоставление услуги передачи данных. Начнем с того, что в компании есть монтажники, которые прокладывают кабель от точки А до точки Б, среднестатистический монтажник хорошо знает свое дело и умеет работать руками и знает, как проложить кабель, а как прокладывать не нужно, то есть он знает физические свойства кабеля.

Более грамотный монтажник знает не только свойства материала, но и особенности передачи сигнала по тому или иному кабелю. Далее есть отдел, который отвечает за проектирование и строительство сети. В него могут входить инженеры-проектировщики, менеджеры проектов и прочие. Сейчас мы не вдаемся в юридические и бизнес тонкости, поэтому отметим, что эти люди должны разработать проект подключения.

Соответственно, они должны выбрать оборудование, которое будет установлено, определить точку, от которой будет подключено новое оборудование (выбрать ее на самом деле нужно оптимально) и определить маршрут, по которому будут проложены коммуникации. Другими словами – разработать проект. Мы видим уже, что эти люди должны обладать несколько другим и даже несколько более широким спектром знаний, нежели монтажники.

Также есть третий отдел – отдел сетевых администраторов, в задачи которого уже входит настройка и поддержание работоспособности оборудования. Этим людям необязательно знать о том, что при прокладке оптического кабеля следует выдерживать радиус изгиба, им не нужно знать, какой кабель следует использовать для прокладки в грунте, а какой используется для перекида между зданиями более 140 метров и прочее. Но они должны знать, как вообще работают сетевые устройства и как они взаимодействуют между собой, а также должны понимать сетевую архитектуру.

Мы лишь поверхностно коснулись структуры ШПД провайдера, но уже заметили, что есть три группы специалистов с разным набором знаний и разными функциями, теперь нам будет несколько проще разобраться с тем, для чего нужна модель сетевого взаимодействия OSI .

Итак, семиуровневая модель OSI делит процесс передачи данных на несколько уровней. Это деление обусловлено тем, что ни один человек в мире не может знать всего и сразу. Таким образом модель OSI делит зоны ответственности между людьми и, как ни странно, между сетевым оборудованием и приложениями. Например, заметим, что если у вас не работает какой-то сайт в Интернете, то в 99 случаях из 100 – это не повод звонить в тех. поддержку вашего провайдера. Провайдер не виноват в том, что какой-то сайт не работает, он лишь предоставляет вам доступ в общую компьютерную сеть Интернет, но не отвечает за работоспособность того или иного ресурса.

Подытожим наши рассуждения о том, для чего нужна модель OSI. Модель OSI нужна для того, чтобы разделить ответственность между людьми и оборудованием в процессе передачи данных по сети . Но это еще не все, для полного ответа на вопрос: для чего нужна модель сетевого взаимодействия OSI, нам следует обратиться к истории.

Для начала поговорим про мифологию, а именно – про Вавилонскую башню. Ее строительство закончилось плачевно, так как в один момент, неожиданно, люди перестали понимать друг друга и не смогли слаженно взаимодействовать, чтобы успешно завершить строительство. Примерно такая же ситуация произошла в 70-ых годах XX века: к этому моменту в мире накопилось очень много различных фирменных сетевых протоколов, и очень остро встал вопрос взаимодействия между машинами в сети.

Получилась такая ситуация, что машины одной очень крупной корпорации не могли нормально взаимодействовать с машинами другой корпорации, что очень мешало развитию бизнеса и технологий. Проблема сетевого взаимодействия, а точнее проблема заключалась именно в отсутствии сетевого взаимодействия из-за несовместимости различных протоколов, породила необходимость в создании единого принципа взаимодействия компьютеров в сети.

И, как вы уже догадались, в качестве выхода из сложившейся ситуации была разработка эталонной модели сетевого взаимодействия OSI . Естественно, модель OSI – это академический подход и ее разработка заняла около 7 лети. Заметим, что модель OSI лишь описывает принципы взаимодействия устройств в сети, но не говорит о том, как это должно быть реализовано физически.

Ранее мы уже упоминали о том, что HTTP протокол находится на самом верхнем (седьмом) уровне эталонной модели взаимодействия OSI, из чего можно сделать вывод о том, что всего насчитывается семь уровней модели OSI, поэтому иногда модель OSI называют семиуровневой моделью . Заметим, что самый нижний уровень модели взаимодействия OSI называется физический или, как его еще называют, первый уровень модели OSI, самый верхний уровень называют прикладной уровень модели OSI или седьмой уровень.

На рисунке выше вы можете увидеть архитектуру эталонной модели OSI . Давайте перечислим уровни снизу-вверх: физический, канальный, сетевой, транспортный, сеансовый, представления, прикладной. Про взаимодействие соседних уровней говорят так: сетевой уровень оказывает услугу транспортному или же канальный уровень оказывает услугу физическому. Также на каждом уровне модели OSI имеются свои собственные единицы измерения данных .

По задумке разработчиков модели OSI любое компьютерное приложение, взаимодействующее с конечным пользователем, должно обращаться за услугами только к прикладному уровню, а далее процесс идет по цепочки вниз, но это не совсем так, и это является одним из недостатков архитектуры модели OSI , о которых мы поговорим более подробно ниже.

Итак, мы разобрались с архитектурой модели OSI и выяснили, что данная модель состоит из семи уровней. Строгость и иерархичность модели OSI — это также недостаток данной модели, так как в природе нет ничего идеального и строго иерархичного.

Давайте несколько более подробно разберемся с каждым из уровней эталонной модели сетевого взаимодействия, начинать будем снизу и пойдем вверх, хотя это и нарушение классического способа подачи информации о уровнях модели OSI, так как обычно описание дается, начиная с прикладного уровня.

Первый уровень модели OSI. Физический уровень эталонной модели взаимодействия

Физический уровень модели OSI – это самый нижний уровень эталонной модели сетевого взаимодействия, который определяет способ передачи и представления информации между устройствами. Разработкой методов передачи данных в различных средах занимаются различные институты стандартизации и телекоммуникационные институты.

Нам важно понимать, что на физическом уровне определяется среда передачи данных, например, оптическое волокно, радиоэфир, электрический сигнал, который может предаваться по витой паре или, например, по коаксиальному кабелю. Помимо среды, по которой будет предаваться сигнал, на физическом уровне модели OSI определяются различные требования к передаче сигнала :

  • оптимальный уровень сигнала (минимальный и максимальный);
  • какой уровень сигнала считать нулем;
  • какой уровень сигнала считать единицей;
  • какую модуляцию сигнала использовать;
  • и прочее.

Также нам стоит отметить, что единицей измерения на первом уровне модели OSI является бит. На физическом уровне модель OSI помимо самой среды передачи работают медиаконвертеры и SFP модули, преобразующие электрический сигнал в оптический и наоборот; концентраторы, повторители и усилители сигналов.

Как ни странно, но на физическом уровне уже происходит деление на клиент и сервер. Также на физическом уровне есть свои собственные протоколы: различные протоколы Wi-Fi, GSM, Bluetooth и другие.

Второй уровень модели OSI. Канальный уровень эталонной модели взаимодействия

Канальный уровень модели OSI является вторым по счету . На канальном уровне происходит две важных вещи:

  1. Происходит физическая адресация сетевых устройств. Как вы знаете, у любого устройства есть уникальный (хотя это довольно спорно) mac-адрес, по которому можно однозначно идентифицировать устройство и его производителя в любой точке мира.
  2. А также на втором уровне модели OSI происходит контроль и исключение ошибок передачи данных на физическом уровне модели OSI. Это достигается за счет того, что биты упаковываются в кадры, которые можно проверить на целостность и, если устройство видит, что кадр битый, оно его пытается восстановить, либо делает повторный запрос к передающему устройству.

Как мы уже видели, единицей измерения информации на втором уровне модели OSI является кадр, который состоит из нескольких бит полезной информации и служебной информации. Канальный уровень модели OSI делится на два подуровня:

  1. Подуровень MAC. На этом подуровне определяется доступ к физической среде, за счет данного подуровня канальный уровень может взаимодействовать с несколькими физическими уровнями.
  2. Подуровень LLC. Данный подуровень обеспечивает взаимодействие с сетевым уровнем модели OSI.

Самым широко распространённым устройством второго уровня модели OSI является коммутатор доступа , который устанавливается практически в каждом доме провайдером, именно к коммутатору подключаются роутеры, которые стоят в наших квартирах. Если говорить про наши компьютеры, то второй уровень модели OSI представлен в виде драйверов для сетевой платы.

В качестве примера протоколов канального уровня можно привести: wireless LAN, PPPoE, Ethernet.

Третий уровень модели OSI. Сетевой уровень эталонной модели взаимодействия

Сетевой уровень модели OSI является третьим по счету уровнем эталонной модели сетевого взаимодействия . На третьем уровне модели OSI происходит формирование маршрутов и путей передачи данных между устройствами, находящимися в сети. Естественно, маршрут определяется оптимально и при этом учитывается дальность маршрута и нагрузка на узлы сети.

Также на третьем уровне эталонной модели происходит преобразование логических сетевых адресов в физические и наоборот, этот процесс получил название – трансляция. Роутеры, установленные в ваших квартирах – это хороший пример устройств сетевого уровня модели OSI . Самым популярным протоколом третьего уровня модели OSI является протокол IP, на данный момент поддерживается две версии протокола IP: IPv4 и IPv6.

Четвертый уровень модели OSI. Транспортный уровень эталонной модели взаимодействия

Транспортный уровень модели OSI является четвертым по счету уровнем модели сетевого взаимодействия . Транспортный уровень определяет надежность передачи данных по сети, а также устанавливает непосредственную связь между конечными точками цепочки передачи данных.

Четвертый уровень модели OSI насчитывает множество различных протокол передачи данных: есть протоколы, которые только лишь обеспечивают транспортные функции, а есть протоколы, которые гарантируют правильную передачу данных по сети. В зависимости от потребностей и технических условий выбирается тот или иной протокол. Например, потоковое видео в Интернете никто не будет предавать по протоколу, гарантирующему 100% правильность передачи данных, в качестве примера такого протокола можно привести UPD.

Если же говорить о протоколе, который гарантирует правильность передачи данных то в качестве примера можно привести TCP. Протокол TCP является протоколом транспортного уровня модели OSI и гарантирует надёжность и правильность передачи данных по сети , также он исключает потерю данных в процессе их передачи и обеспечивает не нарушения порядка поступления данных, то есть данные по протоколу TCP придут на приемное устройство в том порядке, в котором они передавались.

Пятый уровень модели OSI. Сеансовый уровень эталонной модели взаимодействия

Пятый уровень модели взаимодействия OSI или сеансовый уровень предназначен для управления сеансом связи. Сеансовый уровень позволяет взаимодействовать сетевым приложениям длительное время. Пятый уровень модели сетевого взаимодействия OSI призван решать следующие проблемы:

  • создавать сеанс связи;
  • завершать сеанс связи;
  • поддерживать обмен информацией между приложениями;
  • осуществлять синхронизацию между приемным и передающим устройством;
  • поддерживать сеанс связи, когда передача данных не ведется.

На самом деле, задачи сеансового уровня модели OSI несколько шире, чем описаны выше. В качестве примера протоколов сеансового уровня можно привести: ADSP, PPTP, H.245.

Шестой уровень модели OSI. Уровень представления эталонной модели взаимодействия

Уровень представления или представительский уровень модели OSI является шестым уровнем эталонной модели сетевого взаимодействия. Шестой уровень модели OSI определяет способы представления данных, а также способы шифрования передачи данных. Например, протокол HTTP никак не шифрует данные при передаче, поэтому эти функции на себя берут протоколы SSL и TLS, которые относятся к шестому уровню модели OSI.

В качестве представления данных можно привести в качестве примера протоколы ASCII и JPEG. В данном случае термин протокол будет более правильным, чем таблица перекодировки или формат изображения.

Но, помимо выше описанных функций, уровень представления выполняет функции преобразования протоколов и форматов из одного в другой (своеобразный переводчик). Условно мы можем разделить данные, которые передаются по сети и данные, которые видит клиент на экране. Именно на шестом уровне модели взаимодействия OSI происходит преобразование данных, которые понятны машине, в данные, которые понятны человеку и наоборот.

Любой архиватор на вашем компьютере работает на уровне представления. Также шестой уровень позволяет взаимодействовать компьютерам различных производителей между собой, преобразую данные их одного формата записи в другой. Шестой и седьмой уровень модели OSI представляют наибольший интерес для веб-разработчиков и веб-мастеров, а также для администраторов различных веб-серверов.

Седьмой уровень модели OSI. Прикладной уровень эталонной модели взаимодействия

Мы уже упоминали, что прикладной уровень модели OSI или седьмой уровень эталонной модели взаимодействия является наивысшим . Этот уровень позволяет обычному неподготовленному пользователю работать с машиной и передавать данные по сети. По задумке разработчиков эталонной модели OSI клиентские приложения при передаче данных должны взаимодействовать только с седьмым уровнем модели OSI, но это далеко не так.

В качестве примера рассмотрим , например, ( нам в данном случае не очень подходит), во-первых, указывая TCP порт, а как вы помните, протокол TCP работает на четвертом уровне модели взаимодействия, то есть мы можем сделать вывод, что в клиентской части MySQL есть механизмы, позволяющие взаимодействовать с четвертым уровнем модели OSI.

В сети производится множество операций, обеспечивающих передачу данных от компьютера к компьютеру. Пользователя не интересует, как именно это происходит, ему необходим доступ к приложению или компьютерному ресурсу, расположенному в другой компьютерной сети. В действительности же вся передаваемая информация проходит много этапов обработки.

Прежде всего, она разбивается на блоки, каждый из которых снабжается управляющей информацией. Полученные блоки оформляются в виде сетевых пакетов, потом эти пакеты кодируются, передаются с помощью электрических или световых сигналов по сети в соответствии с выбранным методом доступа, затем из принятых пакетов вновь восстанавливаются заключенные в них блоки данных, блоки соединяются в данные, которые и становятся доступны другому приложению. Это, конечно, упрощенное описание происходящих процессов.

Часть из указанных процедур реализуется только программно, другая часть – аппаратно, а какие-то операции могут выполняться как программами, так и аппаратурой.

Упорядочить все выполняемые процедуры, разделить их на уровни и подуровни, взаимодействующие между собой, как раз и призваны модели сетей. Эти модели позволяют правильно организовать взаимодействие как абонентам внутри одной сети, так и самым разным сетям на различных уровнях . В настоящее время наибольшее распространение получила так называемая эталонная модель обмена информацией открытой системы OSI ( Open System Interconnection ). Под термином " открытая система " понимается не замкнутая в себе система, имеющая возможность взаимодействия с какими-то другими системами (в отличие от закрытой системы).

Эталонная модель OSI

Модель OSI была предложена Международной организацией стандартов ISO ( International Standards Organization) в 1984 году. С тех пор ее используют (более или менее строго) все производители сетевых продуктов. Как и любая универсальная модель, OSI довольно громоздка, избыточна, и не слишком гибка. Поэтому реальные сетевые средства, предлагаемые различными фирмами, не обязательно придерживаются принятого разделения функций. Однако знакомство с моделью OSI позволяет лучше понять, что же происходит в сети.

Все сетевые функции в модели разделены на 7 уровней ( рис. 5.1). При этом вышестоящие уровни выполняют более сложные, глобальные задачи, для чего используют в своих целях нижестоящие уровни , а также управляют ими. Цель нижестоящего уровня – предоставление услуг вышестоящему уровню , причем вышестоящему уровню не важны детали выполнения этих услуг. Нижестоящие уровни выполняют более простые и конкретные функции. В идеале каждый уровень взаимодействует только с теми, которые находятся рядом с ним (выше и ниже него). Верхний уровень соответствует прикладной задаче, работающему в данный момент приложению, нижний – непосредственной передаче сигналов по каналу связи.


Рис. 5.1.

Модель OSI относится не только к локальным сетям, но и к любым сетям связи между компьютерами или другими абонентами. В частности, функции сети Интернет также можно поделить на уровни в соответствии с моделью OSI . Принципиальные отличия локальных сетей от глобальных, с точки зрения модели OSI , наблюдаются только на нижних уровнях модели.

Функции, входящие в показанные на рис. 5.1 уровни , реализуются каждым абонентом сети. При этом каждый уровень на одном абоненте работает так, как будто он имеет прямую связь с соответствующим уровнем другого абонента. Между одноименными уровнями абонентов сети существует виртуальная (логическая) связь , например, между прикладными уровнями взаимодействующих по сети абонентов. Реальную же, физическую связь ( кабель , радиоканал ) абоненты одной сети имеют только на самом нижнем, первом, физическом уровне . В передающем абоненте информация проходит все уровни , начиная с верхнего и заканчивая нижним. В принимающем абоненте полученная информация совершает обратный путь : от нижнего уровня к верхнему ( рис. 5.2).


Рис. 5.2.

Данные, которые необходимо передать по сети, на пути от верхнего (седьмого) уровня до нижнего (первого) проходят процесс инкапсуляции ( рис. 4.6). Каждый нижеследующий уровень не только производит обработку данных, приходящих с более высокого уровня , но и снабжает их своим заголовком, а также служебной информацией. Такой процесс обрастания служебной информацией продолжается до последнего (физического) уровня . На физическом

Обобщенная структура любой программной или информационной системы может быть представлена, как было отмечено выше, двумя взаимодействующими частями:

  • функциональной части , включающей в себя прикладные программы, которые реализуют функции прикладной области;
  • среды или системной части , обеспечивающей исполнение прикладных программ.

С таким разделением и обеспечением взаимосвязи тесно связаны две группы вопросов стандартизации:

  1. стандарты интерфейсов взаимодействия прикладных программ со средой ИС, прикладной программный интерфейс (Application Program Interface - API);
  2. стандарты интерфейсов взаимодействия самой ИС с внешней для нее средой (External Environment Interface - EEI).

Эти две группы интерфейсов определяют спецификации внешнего описания среды ИС - архитектуру, с точки зрения конечного пользователя, проектировщика ИС, прикладного программиста, разрабатывающего функциональные части ИС.

Спецификации внешних интерфейсов среды ИС и интерфейсов взаимодействия между компонентами самой среды - это точные описания всех необходимых функций, служб и форматов определенного интерфейса.

Совокупность таких описаний составляет эталонную модель взаимосвязи открытых систем (Open Systems Interconnection - OSI) . Эта модель используется более 30 лет, она "выросла" из сетевой архитектуры SNA (System Network Architecture), предложенной компанией IBM. Модель взаимосвязи открытых систем используется в качестве основы для разработки многих стандартов ISO в области ИТ. Публикация этого стандарта подвела итог многолетней работы многих известных стандартизующих организаций и производителей телекоммуникационных средств.

В 1984 году модель получила статус международного стандарта ISO 7498, а в 1993 году вышло расширенное и дополненное издание ISO 7498-1-93. Стандарт имеет составной заголовок "Информационно-вычислительные системы - Взаимосвязь (взаимодействие) открытых систем - Эталонная модель". Краткое название - "Эталонная модель взаимосвязи (взаимодействия) открытых систем" (Open Systems Interconnection / Basic Reference Model - OSI/BRM).

Модель основана на разбиении вычислительной среды на семь уровней, взаимодействие между которыми описывается соответствующими стандартами и обеспечивает связь уровней вне зависимости от внутреннего построения уровня в каждой конкретной реализации ( рис. 2.6).


Рис. 2.6.

Основным достоинством этой модели является детальное описание связей в среде с точки зрения технических устройств и коммуникационных взаимодействий. Вместе с тем она не принимает в расчет взаимосвязь с учетом мобильности прикладного программного обеспечения.

Преимущества "слоистой" организации модели взаимодействия заключаются в том, что она обеспечивает независимую разработку уровневых стандартов, модульность разработок аппаратуры и программного обеспечения информационно-вычислительных систем и способствует тем самым техническому прогрессу в этой области.

В стандарте ISO 7498 выделено семь уровней (слоев) информационного взаимодействия, которые отделены друг от друга стандартными интерфейсами:

  1. уровень приложения (прикладной уровень)
  2. уровень представления
  3. сеансовый (уровень сессии)
  4. транспортный
  5. сетевой
  6. канальный
  7. физический.

В соответствии с этим, информационное взаимодействие двух или более систем представляет собой совокупность информационных взаимодействий уровневых подсистем, причем каждый слой локальной информационной системы взаимодействует, как правило, с соответствующим слоем удаленной системы. Взаимодействие осуществляется при помощи соответствующих протоколов связи и интерфейсов. Кроме того, применяя методы инкапсуляции, можно использовать одни и те же программные модули на различных уровнях.

Протоколом является набор алгоритмов (правил) взаимодействия объектов одноименных уровней различных систем.

Интерфейс - это совокупность правил, в соответствии с которыми осуществляется взаимодействие с объектом данного или другого уровня. Стандартный интерфейс в некоторых спецификациях может называться услугой.

Инкапсуляция - это процесс помещения фрагментированных блоков данных одного уровня в блоки данных другого уровня.

При разбиении среды на уровни соблюдались следующие общие принципы:

  • не создавать слишком много мелких разбиений, так как это усложняет описание системы взаимодействий;
  • формировать уровень из легко локализуемых функций это в случае необходимости позволяет быстро перестраивать уровень и существенно изменить его протоколы для использования новых решений в области архитектуры, программно-аппаратных средств, языков программирования, сетевых структур, не изменяя при этом стандартные интерфейсы взаимодействия и доступа;
  • располагать на одном уровне аналогичные функции;
  • создавать отдельные уровни для выполнения таких функций, которые явно различаются по реализующим их действиям или техническим решениям;
  • проводить границу между уровнями в таком месте, где описание услуг является наименьшим, а число операций взаимодействий через границу (пересечение границы) сведено к минимуму;
  • проводить границу между уровнями в таком месте, где в определенный момент должен существовать соответствующий стандартный интерфейс.

Каждый уровень имеет протокольную спецификацию, т.е. набор правил, управляющих взаимодействием равноправных процессов одного и того же уровня, и перечень услуг, которые описывают стандартный интерфейс с расположенным выше уровнем. Каждый уровень использует услуги расположенного ниже уровня, каждый расположенный ниже предоставляет услуги расположенному выше. Приведем краткую характеристику каждого уровня, отметив при этом, что в некоторых описаниях модели OSI нумерация уровней может идти в обратном порядке.

Уровень 1 - уровень приложения или прикладной уровень (Application Layer). Этот уровень связан с прикладными процессами. Протоколы уровня предназначены для обеспечения доступа к ресурсам сети и программам-приложениям пользователя. На данном уровне определяется интерфейс с коммуникационной частью приложений. В качестве примера протоколов прикладного уровня можно привести протокол Telnet, который обеспечивает доступ пользователя к "хосту" (главному вычислительному устройству, одному из основных элементов в многомашинной системе или любому устройству, подключенному к сети и использующему протоколы TCP/IP) в режиме удаленного терминала.

Прикладной уровень выполняет задачу обеспечения различных форм взаимодействия прикладных процессов, расположенных в разнообразных системах информационной сети. Для этого он осуществляет следующие функции:

  • описание форм и методов взаимодействия прикладных процессов;
  • выполнение различных видов работ (управление заданиями, передача файлов, управление системой и т. д.);
  • идентификацию пользователей (партнеров взаимодействия) по их паролям, адресам, электронным подписям;
  • определение функционирующих абонентов;
  • объявление о возможности доступа к новым прикладным процессам;
  • определение достаточности имеющихся ресурсов;
  • посылку запросов на соединение с другими прикладными процессами;
  • подачу заявок представительному уровню на необходимые методы описания информации;
  • выбор процедур планируемого диалога процессов;
  • управление данными, которыми обмениваются прикладные процессы;
  • синхронизацию взаимодействия прикладных процессов;
  • определение качества обслуживания (время доставки блоков данных, допустимой частоты ошибок и т. д.);
  • соглашение об исправлении ошибок и определении достоверности данных;
  • согласование ограничений, накладываемых на синтаксис (наборы символов, структура данных).

Прикладной уровень часто делится на два подуровня. Верхний подуровень включает сетевые службы. Нижний - содержит стандартные сервисные элементы, поддерживающие работу сетевых служб.

Уровень 2 - уровень представления (Presentation Layer). На этом уровне информация преобразуется к такому виду, в каком это требуется для выполнения прикладных процессов. Уровень представления обеспечивает кодирование данных, выдаваемых прикладными процессами, и интерпретацию передаваемых данных. Например, выполняются алгоритмы преобразования формата представления данных для печати - ASCII или КОИ-8. Или, если для визуализации данных используется дисплей, то эти данные по заданному алгоритму формируются в виде страницы, которая выводится на экран.

Представительный уровень выполняет следующие основные функции:

  • выбор образа представлений из возможных вариантов;
  • изменение образа представления в заданный виртуальный образ;
  • преобразование синтаксиса данных (кодов, символов) в стандартный;
  • определение формата данных.

Уровень 3 - сеансовый уровень или уровень сессии (Session Layer). На данном уровне устанавливаются, обслуживаются и прекращаются сессии между представительными объектами приложений (прикладными процессами). В качестве примера протокола сеансового уровня можно рассмотреть протокол RPC (Remote Procedure Call). Как следует из названия, данный протокол предназначен для отображения результатов выполнения процедуры на удаленном хосте. В процессе выполнения этой процедуры между приложениями устанавливается сеансовое соединение. Назначением данного соединения является обслуживание запросов, которые возникают, например, при взаимодействии приложения-сервера с приложением-клиентом.

Сеансовый уровень обеспечивает взаимодействие с транспортным уровнем, координирует прием и передачу данных одного сеанса связи, содержит функции управлениями паролями, подсчета платы за использование ресурсов сети и т.д. Этот уровень обеспечивает выполнение следующих функций:

  • установление и завершение на сеансовом уровне соединения между партнерами;
  • выполнение нормального и срочного обмена данными между прикладными процессами;
  • синхронизация работы сеансовых соединений;
  • извещение прикладных процессов об исключительных ситуациях;
  • установление в прикладном процессе меток, позволяющих после отказа либо ошибки восстановить его выполнение от ближайшей метки;
  • прерывание в нужных случаях прикладного процесса и его корректное возобновление;
  • прекращение сеанса без потери данных;
  • передачу особых сообщений о ходе проведения сеанса.

Уровень 4 - транспортный уровень (Transport Layer). Транспортный уровень предназначен для управления потоками сообщений и сигналов. Управление потоком является важной функцией транспортных протоколов, поскольку этот механизм позволяет надёжно обеспечивать передачу данных по сетям с разнородной структурой, при этом в описание маршрута включаются все компоненты коммуникационной системы, обеспечивающие передачу данных на всем пути от устройств отправителя до приемных устройств получателя. Управление потоком заключается в обязательном ожидании передатчиком подтверждения приема обусловленного числа сегментов приемником. Количество сегментов, которое передатчик может отправить без подтверждения их получения от приемника, называется окном.

Существует два типа протоколов транспортного уровня - сегментирующие протоколы и дейтаграммные протоколы. Сегментирующие протоколы транспортного уровня разбивают исходное сообщение на блоки данных транспортного уровня - сегменты. Основной функцией таких протоколов является обеспечение доставки этих сегментов до объекта назначения и восстановление сообщения. Дейтаграммные протоколы не сегментируют сообщение, они отправляют его одним пакетом вместе с адресной информацией. Пакет данных, который называется "дейтаграмма" (Datagram), маршрутизируется в сетях с переключением адресов или передается по локальной сети прикладной программе или пользователю.

На транспортном уровне может выполняться также согласование сетевых уровней различных несовместимых сетей через специальные шлюзы. Рассматриваемый уровень определяет адресацию абонентских систем и административных систем. Главной задачей транспортного уровня является использование виртуальных каналов, проложенных между взаимодействующими абонентскими системами и административными системами, для передачи в пакетах блоков данных. Основные функции, выполняемые транспортным уровнем:

  • управление передачей блоков данных и обеспечение их целостности;
  • обнаружение ошибок, их частичная ликвидация, сообщение о неисправленных ошибках;
  • восстановление передачи после отказов и неисправностей;
  • укрупнение либо разукрупнение блоков данных;
  • предоставление приоритетов при передаче блоков;
  • передача подтверждений о переданных блоках данных;
  • ликвидация блоков при тупиковых ситуациях в сети.

Кроме этого, транспортный уровень может восстанавливать блоки данных, потерянные на нижних уровнях.

Уровень 5 - сетевой уровень (Network Layer). Основной задачей протоколов сетевого уровня является определение пути, который будет использован для доставки пакетов данных при работе протоколов верхних уровней (маршрутизация). Для того чтобы пакет был доставлен до какого-либо заданного хоста, этому хосту должен быть поставлен в соответствие известный передатчику сетевой адрес. Группы хостов, объединенные по территориальному принципу, образуют сети. Для упрощения задачи маршрутизации сетевой адрес хоста составляется из двух частей: адреса сети и адреса хоста. Таким образом, задача маршрутизации распадается на две - поиск сети и поиск хоста в этой сети. На сетевом уровне могут выполняться следующие функции:

  • создание сетевых соединений и идентификация их портов;
  • обнаружение и исправлений ошибок, возникающих при передачи через коммуникационную сеть;
  • управление потоками пакетов;
  • организация (упорядочение) последовательностей пакетов;
  • маршрутизация и коммутация;
  • сегментация и объединение пакетов;
  • возврат в исходное состояние;
  • выбор видов сервиса.

Уровень 6 - канальный уровень или уровень звена данных (Data Link Layer). Назначением протоколов канального уровня является обеспечение передачи данных в среде передачи по физическому носителю. В канале формируется стартовый сигнал передачи данных, организуется начало передачи, производится сама передача, проводится проверка правильности процесса, производится отключение канала при сбоях и восстановление после ликвидации неисправности, формирование сигнала на окончание передачи и перевода канала в ждущий режим.

Таким образом, канальный уровень может выполнять следующие функции:

  • организацию (установление, управление, расторжение) канальных соединений и идентификацию их портов;
  • передачу блоков данных;
  • обнаружение и исправление ошибок;
  • управление потоками данных;
  • обеспечение прозрачности логических каналов (передачи по ним данных, закодированных любым способом).

На канальном уровне данные передаются в виде блоков, которые называются кадрами. Тип используемой среды передачи и её топология во многом определяют вид кадра протокола транспортного уровня, который должен быть использован. При использовании топологии "общая шина" (Common Bus) и "один-ко-многим" (Point-to-Multipoint) средства протокола канального уровня задают физические адреса, с помощью которых будет производиться обмен данными в среде передачи и процедура доступа к этой среде. Примерами таких протоколов являются протоколы Ethernet (в соответствующей части) и HDLC. Протоколы транспортного уровня, которые предназначены для работы в среде типа "один-к-одному" (Point-to-Point), не определяют физических адресов и имеют упрощенную процедуру доступа. Примером протокола такого типа является протокол PPP.

Уровень 7 - физический уровень (Physical Layer). Протоколы физического уровня обеспечивают непосредственный доступ к среде передачи данных для протоколов канального и последующих уровней. Данные передаются с помощью протоколов данного уровня в виде последовательностей битов (для последовательных протоколов) или групп битов (для параллельных протоколов). На этом уровне определяются набор сигналов, которыми обмениваются системы, параметры этих сигналов (временные и электрические) и последовательность формирования сигналов при выполнении процедуры передачи данных.

Физический уровень выполняет следующие функции:

  • устанавливает и разъединяет физические соединения;
  • передает последовательность сигналов;
  • "прослушивает" в нужных случаях каналы;
  • выполняет идентификацию каналов;
  • оповещает о появлении неисправностей и отказов.

Кроме того, на данном уровне формулируются требования к электрическим, физическим и механическим характеристикам среды передачи, передающих и соединительных устройств.

Сетезависимые и сетенезависимые уровни. Указанные выше функции всех уровней можно отнести к одной из двух групп: либо к функциям, ориентированным на работу с приложениями вне зависимости от устройства сети, либо к функциям, зависящим от конкретной технической реализации сети.

Три верхних уровня - прикладной, представительный и сеансовый ориентированы на приложения и практически не зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие-либо изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.


Рис. 2.9.

Стандартизация интерфейсов обеспечивает полную прозрачность взаимодействия вне зависимости от того, каким образом устроены уровни в конкретных реализациях (службах) модели.