Как подключить питание ардуино к автомобилю. Подключение (питание) Ардуино (Arduino) к бортовой сети автомобиля (видео)

15.04.2019

Arduino - это универсальная платформа для самоделок на микроконтроллерах. К ней есть множество шилдов (плат расширения) и датчиков. Это многообразие позволяет сделать целый ряд интересных проектов, направленных на улучшение вашей жизни и повышение её комфорта. Сферы применения платы безграничны: автоматизация, системы безопасности, системы для сбора и анализа данных и прочее.

Из этой статьи вы узнаете, что можно сделать интересного на Ардуино. Какие проекты станут зрелищными, а какие полезными.

Что можно сделать с помощью Arduino

Робот пылесос

Уборка в квартире - рутинное занятие и малопривлекательное, тем более на это нужно время. Сэкономить его можно, если часть хлопот по дому возложить на робота. Этого робота собрал электронщик из г. Сочи - Дмитрий Иванов. Конструктивно он получился достаточно качественным и не уступает в эффективности .

Для его сборки вам понадобятся:

1. Arduino Pro-mini, или любая другая подобная и подходящая по размерам...

2. USB-TTL переходник, если вы используете Pro mini. Если вы выбрали Arduino Nano, то он не нужен. Он уже установлен на плате.

3. Драйвер L298N нужен для управления и реверсирования двигателей постоянного тока.

4. Маленькие двигателя с редуктором и колесами.

5. 6 ИК-датчиков.

6. Двигатель для турбины (побольше).

7. Сама турбина, а вернее крыльчатка от пылесоса.

8. Двигателя для щеток (небольшие).

9. 2 датчика столкновения.

10. 4 аккумулятора 18650.

11. 2 преобразователя постоянного напряжения (повышающий и понижающий).

13. Контроллер для работы (заряда и разряда) аккумуляторов.

Система управления выглядит следующим образом:

А вот система питания:

Подобные уборщики развиваются, модели заводского изготовления обладают сложными интеллектуальными алгоритмами, но вы можете попытаться сделать свою конструкцию, которая не будет уступать по качеству дорогим аналогам.

Способны выдавать световой поток любого цвета, в них обычно используются светодиоды в корпусе которых размещено три кристалла светящиеся разным цветом. Для их управления продаются специальные RGB-контроллеры, их суть заключается в регулировании тока подаваемого на каждый из цветов светодиодной ленты, следовательно - регулируется интенсивность свечения каждого из трёх цветов (отдельно).

Вы можете сделать своими руками RGB-контроллер на Ардуино, даже более того, в этом проекте реализовано управление через Bluetooth.

На фото приведен пример использования одного RGB-светодиода. Для управления лентой потребуется дополнительный блок питания на 12В, тогда будут управлять затворами полевых транзисторов включенных в цепь. Ток заряда затвора ограничен резисторами на 10 кОм, они устанавливаются между пином Ардуино и затвором, последовательно ему.

Пульт управления на базе Arduino и смартфона

С помощью микроконтроллера можно сделать универсальный пульт дистанционного управления управляемый с мобильного телефона.

Для этого понадобится:

    Arduino любой модели;

    ИК-приемник TSOP1138;

    ИК-светодиод;

    Bluetooth-модуль HC-06.

Проект может считывать коды с заводских пультов и сохранять их значения. После чего вы можете управлять этой самоделкой через Bluetooth.

Веб-камера устанавливается на поворотный механизм. Её подключают к компьютеру, с установленным программным обеспечением. Оно базируется на библиотеке компьютерного зрения - OpenCV (Open Source Computer Vision Library), после обнаружения программой лица, координаты его перемещения передаются через USB-кабель.

Ардуино даёт команду приводу поворотного механизма и позиционирует объектив камеры. Для движения камеры используется пара сервоприводов.

На видео изображена работа этого устройства.

Следите за своими животными!

Идея заключается в следующем - узнать, где гуляет ваше животное, это может вызвать интерес для научных исследований и просто для развлечения. Для этого нужно использовать GPS-маячок. Но чтобы хранить данные о местоположении на каком-нибудь накопителе.

При этом габариты устройства здесь играют решающую роль, поскольку животное не должно ощущать от него дискомфорт. Для записи данных можно использовать для работы с картами памяти формата Micro-SD.

Ниже приведена схема оригинального варианта устройства.

В оригинальной версии проекта использовалась плата TinyDuino и шилды к ней. Если вы не можете найти такую, вполне можно использовать маленькие экземпляры Arduino: mini, micro, nano.

Для питания использовался элемент Li-ion, малой ёмкости. Маленького аккумулятора хватает примерно на 6 часов работы. У автора в итоге все поместилось в обрезанную баночку из-под тик-така. Стоит отметить, что антенна GPS должна смотреть вверх, чтобы получать достоверные показания датчика.

Взломщик кодовых замков

Для взлома кодовых замков с помощью Ардуино понадобятся серво- и шаговый двигатель. Этот проект разработал хакер Samy Kamkar. Это достаточно сложный проект. Работа этого устройства изображена на видео, где автор рассказывает все подробности.

Конечно, для практического применения такое устройство вряд ли подойдет, но это отличный демонстрационный.

Ардуино в музыке

Это скорее не проект, а небольшая демонстрация какое применение нашла эта платформа у музыкантов.

Драм машина на Ардуино. Примечательна тем, что это не обычный перебор записанных сэмплов, а, в принципе, генерация звука с помощью «железных» приспособлений.

Номиналы деталей:

    Транзистор NPN-типа, например 2n3904 - 1 шт.

    Резистор 1 кОм (R2, R4, R5) - 3 шт.

    330 Ом (R6) - 1 шт.

    10 кОм (R1) - 1 шт.

    100 кОм (R3) - 1 шт.

    Электролитический конденсатор 3.3 мкФ - 1 шт.

Для работы проекта потребуется подключение библиотеки для быстрого разложения в ряд Фурье.

Это достаточно простой и интересный проект из разряда «можно похвастаться перед друзьями».

3 проекта роботов

Робототехника - одно из интереснейших направлений для гиков и просто любителей сделать что-нибудь необычное своими руками, я решил сделать подборку из нескольких интересных проектов.

BEAM-робот на Ардуино

Для сборки четырёхногого шагающего робота вам понадобятся:

    Для движения ног нужны сервомоторчики, например, Tower Hobbies TS-53;

    Кусок медной проволоки средней толщины (чтобы выдерживала вес конструкции и не гнулась, но и не слишком толстой, т.к. не имеет смысла);

    Микроконтроллер - AVR ATMega 8 или плата Ардуино любой модели;

    Для шасси в проекте указано, что использовалась Рамка Sintra. Это что-то вроде пластика, он сгибается в любую форму при нагревании.

В результате вы получите:

Примечательно то, что этот робот не ездит, а шагает, может перешагивать и заходить на возвышения до 1 см.

Этот проект мне, почему-то, напомнил робота из мультфильма Wall-e. Его особенностью является использование для зарядки аккумуляторов. Он перемещается подобно автомобилю, на 4-х колесах.

Его составляющие детали:

    Пластиковая бутылка подходящего размера;

  • Перемычки мама-папа;

    Солнечная панель с выходным напряжением в 6В;

    В качестве донора колес, двигателей и других деталей - машинка на радиоуправлении;

    Два сервопривода непрерывного вращения;

    Два обычных сервопривода (180 градусов);

    Держатель для батареек типа АА и для «кроны»;

    Датчик столкновений;

    Светодиоды, фоторезисторы, постоянные резисторы на 10 кОм - всего по 4 штуки;

    Диод 1n4001.

Вот основа - плата Ардуино с прото-шилдом.

Вот так выглядят запчасти от - колеса.

Конструкция почти в сборе, датчики установлены.

Суть работы робота заключается в том, что он едет на свет. Обилие нужно ему для навигации.

Это скорее ЧПУ станок, чем робот, но проект весьма занимательный. Он представляет собой 2-х осевой станок для рисования. Вот перечень основных компонентов, из которых он состоит:

    (DVD)CD-приводы - 2 шт;

    2 драйвера для шаговых двигателей A498;

    сервопривод MG90S;

    Ардуино Уно;

    Источник питания 12В;

    Шариковая ручка, и другие элементы конструкции.

Из привода оптических дисков используется блоки с шаговым двигателем и направляющей штангой, которые позиционировали оптическую головку. Из этих блоков извлекают двигатель, вал и каретку.

Управлять шаговым двигателем без дополнительного оборудования у вас не выйдет, поэтому используют специальные платы-драйверы, лучше, если на них будет установлен радиатор двигателя в момент пуска или смены направления вращения.

Полный процесс сборки и работы показан на этом видео.

Заключение

В статье рассмотрена лишь малая капля из всего того, что вы можете сделать на этой популярной платформе. На самом деле всё зависит от вашей фантазии и задачи, которую вы ставите перед собой.

Все об ардуино и электронике!

Arduino - торговая марка аппаратно-программных средств для построения простых систем автоматики и робототехники , ориентированная на непрофессиональных пользователей. Программная часть состоит из бесплатной программной оболочки (IDE) для написания программ, их компиляции и программирования аппаратуры. Аппаратная часть представляет собой набор смонтированных печатных плат , продающихся как официальным производителем, так и сторонними производителями. Полностью открытая архитектура системы позволяет свободно копировать или дополнять линейку продукции Arduino.

Название платформы происходит от названия одноимённой рюмочной в Иврее , часто посещавшейся учредителями проекта, а название это в свою очередь было дано в честь короля Италии Ардуина Иврейского .

Arduino может использоваться как для создания автономных объектов автоматики, так и подключаться к программному обеспечению на компьютере через стандартные проводные и беспроводные интерфейсы

В данном материале будет предоставлен пример как использовать несколько датчиков температуры 18b20 + добавлять нужное количество и производить удаленный мониторинг по средствам платы esp8266 nodemcu и приложения blynk. Данный материал будет полезен если нужно снимать удаленно несколько показаний температуры для мониторинга.

Хотите поиграть в видеоигры из детства? Танчики, Контра, Чип и Дэйл, Черепашки Ниндзя… Все эти игры ждут вас! Из данного руководства вы узнаете как просто и быстро собрать и настроить ретро-консоль на базе микрокомпьютера Raspberry Pi и сборки эмуляторов RetroPie.

Интерактивная снежинка соответствующей формы, созданная Ардуино Нано. Используя 17 независимых каналов PWM и сенсорный датчик для включения и эффектов.

Снежинка состоит из 30 светодиодов, сгруппированных в 17 независимых сегментов, которые могут управляться отдельно микроконтроллером Arduino Nano. Каждый блок управляется отдельным пином PWM, и регулирует яркость каждого блока светодиодов и эффекты отдельно.

Данная статья будет полноценной инструкцией для сборки машинки робота на базе кит комплекта 2wd robot на основе вай-фай платы esp8266 и мотор шилда под неё .

Так же в конце будет прошивка под эту плату и настройка приложения для управления нашим роботом через смартфон по средствам вай-фай сети.

Вначале статьи будет изложена теория, ближе к ее середине будет рассмотрена практика, максимально кратко так же расскажем об инструменте, о химии, которая необходима в пайке, о дополнительных инструментах. Для того, чтобы получить действительно качественную пайку, Вам все эти вопросы следует хорошо изучить, где-то узнавать подробности, но мы постараемся объяснить все максимально доступно «на пальцах», так что после прочтения вы гарантированно сможете выполнить поставленные задачи.

На просторах интернета в последнее время стали очень популярны часы на базе ESP8266 Nodemcu и пиксельных матрицах max7219 . Все из за того что данные часы очень просты в сборке, имеют широкий функционал и возможности с обновлением времени, получением различных данных с интернета и вывод на бегущую строку всех этих данных.

Популярная глушилка спаммер на базе платы ESP8266 (nodemcu \WEMOS) получила вторую версию прошивки c исправлением ошибок, улучшением интерфейса и добавлением более широкого функционала. Все это собрал до кучи и решил написать пост. Так же добавил подробный ворклог с упрощенной прошивкой через FLASHER (прошивка в 3 клика)

WIFI часы с метеостанцией на ESP8266 и матричном индикаторе на MAX7219

Очень интересный и простой проект часов с веб интерфейсом на базе платы ESP8266 nodemcu и дисплея MAX7219 . Наверное лучший вариант часов и спаренной погодной станции которая получает данные с интернета!

Дополнительные поля
test 1:

Этот проект сделан на плате WIFI ESP8266 и заточен на управление и мониторинг через приложение BLYNK на вашем смартфоне. Так же в проект можно добавить IP-камеру (или использовать старый смартфон с камерой в виде сервера) для мониторинга в реальном времени через IP Webcam Pro через виджет в приложении BLYNK .Для подачи корма используется шаговый двигатель NEMA17 c шагом в 1.8 градуса - 200 шагов на полный оборот. Двигатель вращает шнек в сантехническомпереходнике, в который из бункера попадает корм.

Давайте начнем с тех возможностей, которые откроются перед вами, если вы обеспечите беспроводной обмен данными между двумя платами Arduino:

  • Удаленное снятие показаний с датчиков температуры, давления, систем сигнализации на основе пироэлектрических датчиков движения и т.п.
  • Беспроводное управление и мониторинг состояния роботов на расстоянии от 50 2000 футов.
  • Беспроводное управление и мониторинг помещений в соседних домах.
  • И т.д. и т.п. В общем, практически все, что требует беспроводных систем управления и мониторинга...

Вы понимаете, - втолковывал редактор, - это должно быть занимательно, свежо, полно интересных приключений… Так, чтобы читатель не мог оторваться.
И.Ильф, Е.Петров "Как создавался Робинзон" .


Начинать работу с Arduino, как и с любой другой платформой программной или аппаратной, всегда интереснее с какого-нибудь реального проекта. Программисты при этом пишут код выводящий «Hello, world», ардуинисты моргают светодиодом. И все радуются как дети.


Я же решил начать с продвинутого проекта, в том числе с тайной надеждой оторвать молодое поколение от Counter-Strike (не получилось).


Как можно догадаться из названия RoboCar4W, первым проектом стал робот-машина о четырех колесах. Начиная работу я уже имел опыт программирования, умел когда-то давно паять, но совершенно не знал даже распиновки Arduino и документацию совершенно не читал. Все премудрости изучал по ходу пьесы и Гугл в помощь.


Поскольку сам проект принципиально не нов, подобных описаний в сети достаточно, все компоненты известны, то никаких неожиданностей не предполагалось. Поэтому задумка была сформулирована в самых общих чертах и главной целью являлось погружение в «мир вещей» с помощью Arduino, как платформы для быстрого прототипирования. В этом опусе возможно кто-то узнает себя в самом начале пути.


Всё "железо" приобреталось на ebay, и по своему опыту хочу сказать, что проще приобрести сразу стартер кит (ищите по словам Arduino Starter Kit), а не собирать подетально. Да и приедет все сразу вместе. Решено было не мелочиться, купить нормальное шасси, нормальные колеса, нормальные моторы, чтоб было "дорохобохато".


Главный секрет успешных покупок на eBay - покупать у продавцов с высоким рейтингом и при этом внимательно читать описание товара. Об этом есть много статей в интернете.


Какую плату семейства Arduino выбрать?


Я взял Arduino UNO, под нее много проектов с описаниями. Но сейчас бы взял Arduino Mega 2560, у нее больше цифровых и аналогов выводов и полная совместимость по проектам с UNO.

Общее описание проекта

В мире разработки программного обеспечения это называют еще «требования к системе».


Задумка проекта была следующей. Первый вариант машины-робота под названием RoboCar4W должен выполнять незамысловатые действия:

  • двигаться вперед, назад, выполнять повороты
  • измерять расстояние до препятствий
  • уметь автоматически объезжать препятствия находящиеся впереди.

Второй вариант машины должен управляться вручную по bluetooth с Android телефона.


Чтобы вам лучше работалось вот весь финальный проект RoboCar4W в сборе (тут без блютуза).



Вот видео ходовых испытаний.


На первом видео RoboCar4W ездит в автоматическом режиме с объездом препятствий на двух разных версиях «прошивки», т.е. скетча, поэтому, если кто самый зоркий и заметил, что поведение робота в разных эпизодах немного отличается.



На втором видео RoboCar4W передвигается при помощи команд, передаваемых «водителем» по Bluetooth с мобильного телефона под Android. На телефоне установлена программа «Bluetooth RC Car». Причем, если близко впереди оказывается препятствие, то робот останавливается, т.е. протаранить что-нибудь не получится (однако есть «секретная» кнопка, которая отключает безопасный режим).



На третьем видео RoboCar4W показывает заранее запрограммированную демо-программу движения с поворотами. Демо-программа активируется по команде с того же мобильного телефона под Android. Робот просто едет некоторое время и делает повороты.

Алгоритм управления движением

Ошибочно называть наш способ «алгоритм объезда препятствий» или «поиском пути». Это отдельные математические дисциплины, чистая математика. Если вам очень-очень сильно нравится математика, то погуглите указанные словосочетания, чтивом на полгода будете обеспечены.


Пока же нас интересуют вещи гораздо проще. Поэтому мы назовем это просто - алгоритм управления движением 4-х колёсного робота. Разумеется речь идет об автоматическом управлении без участия человека.


Вот этот простой алгоритм записанный словами, для более сложных алгоритмов придется (хочется или нет) составлять блок-схемы.

  1. Измеряем расстояние до препятствия впереди.
  2. Если это измеренное расстояние меньше значения DST_TRH_BACK (сокращение от distance threshold), то останавливаемся и едем задним ходом одновременно поворачивая. Направление поворота выбираем так: если ранее уже поворачивали влево, то поворачиваем вправо и наоборот.
  3. Если измеренное расстояние больше чем DST_TRH_BACK , но меньше чем DST_TRH_TURN , то просто поворачиваем. Направление поворота выбираем случайно.
  4. Если до препятствия далеко, то просто едем вперед.
  5. Повторяем все сначала.

Чем хорошо, что у нас 4 колеса и все ведущие? Мы можем выполнить (запрограммировать) несколько типов поворотов:

  • Плавный поворот. Все колеса вращаются, но колеса с одной стороны вращаются быстрее.
  • Резкий поворот. Колеса вращаются только с одной стороны.
  • Разворот на месте. Как трактор, колеса одной стороны вращаются назад, а другой - вперед.

Во втором варианте программы, при управлении с Android-телефона безопасный режим, когда робот старается не допускать лобовых столкновений, может быть отключен, если в программе два раза нажать кнопку


и включен обратно однократным её нажатием.


Важное примечание . Вся логика находится под управлением Arduino. Android здесь выступает просто как игровой пульт (без мозгов) от консоли, его задача - тупо передавать нажатия кнопок (т.е. команды) посредством Bluetooth в Arduino RoboCar4W.

Компоненты

Первоначально в состав машины входил сервопривод, который поворачивал ультразвуковой измеритель расстояния на определенный угол для измерений по трем направлениям. Но в ходе испытаний из-за неосторожного обращения сервопривод сгорел, поэтому теперь датчик расстояния просто жестко закреплен впереди корпуса.


Нет худа без добра, зато скетч стал немного проще.


На будущее, сервопривод покупайте самый простой и дешевый, особая мощность, скорость и точность поворота на заданный угол не нужны, а вывести серво из строя довольно легко, как оказалось. Вполне подойдет SG90 стоимостью $2.


Итак составные части проекта RoboCar4W, описание на английском дается для облегчения поиска на ebay и ему подобных:

  • Arduino UNO R3
  • Готовое шасси 4 Wheel Drive Mobile Robot Platform Smart Car Chassis Arduino Compatible
  • Моторы постоянного тока (DC) с вращением в обе стороны - 4 шт.
  • Колеса - 4 шт.
  • Плата для управления 4-мя DC моторами Motor Drive Shield L293D
  • Ультразвуковой измеритель расстояния HC-SR04 Ultrasonic Module Distance Measuring Sensor
  • Аккумуляторы Ni-MH 1.2 В - 8 шт.
  • Пластиковый бокс держатель для батареек, Battery Box holder 4 AA Batteries - 2 шт.
  • Аккумулятор типа «Крона» 8.4 В - 1 шт.
  • Опционально тумблер - выключатель питания

Шасси, DC моторы и колеса приобретались сразу в комплекте и даже с инструкцией по сборке.


Аналоговые входы могут использоваться как цифровые выводы портов ввода/вывода. Выводы Arduino, соответствующие аналоговым входам, имеют номера от 14 до 19. Это относится только к выводам Arduino, а не к физическим номерам выводов микроконтроллера Atmega.


Рисовать не обязательно, можно просто свести все в таблицу. У меня получилось так.



Пины D4, D7, D8, D12 будут заняты, если используются любые DC моторы или шаговые.


Пины D9 (Servo #1 control), D10 (Servo #2 control) будут заняты, только если используются сервомоторы.


Сама по себе плата для управления моторами Motor Drive Shield L293D пины Arduino не занимает.


Пины питания 3.3 В, 5 В и «земля» дублируются на Motor Drive Shield в достаточном количестве. Поэтому об их нехватке не стоит беспокоиться.


Если все-таки хотите красиво нарисовать, то бесплатная программа Fritzing вам в помощь.


Это второй очень важный момент. От питания зависит очень многое. Например, серво-мотор при повороте вала на заданный угол начинает потреблять большой ток. При этом если серво подключен по питанию на 5 В Arduino, то происходит «просадка» по напряжению и вся остальная схема начинает глючить, а Arduino даже может перезагружаться при этом.


В любом случае, если в поделке используете моторы, то Motor Drive Shield необходим (или подобная ему схема).


Итак, имеем 4 мотора постоянного тока (DC), сервопривод, саму плату Arduino и несколько датчиков. Моторы самые прожорливые, а вот датчики могут успешно запитываться с разъемов самой платы Arduino, поэтому с ними все просто. Для удобства я свел всё хозяйство в одну таблицу.


Напряжение рекомендованное или типовое. Потребляемый ток Максимальное напряжение Чем планируется питать Примечания
Плата Arduino UNO R3 7 - 12V, 200mA (среднее) 6 - 20 «Крона 9V» Li-ion 650mAh, 8.4V Разъем с плюсом в центре
Сервомотор MG-995 5-6 V, 0.1 - 0.3A (пиковое) 4.8 - 7.2 Аккумуляторы (5) шт. Ni-Mh 1.2V = 6V Питание только от отдельного источника. Если запитать вместе с Arduino, то будет глючить всё. Напряжения Ni-Mh аккумуляторов 4шт. * 1.2В = 4.8V не хватает. Некоторые утверждают, что данную серву не стоит использовать на 6 вольтах только 4,8
DC двигатели (4 шт.) 6 - 8V, ток от 70mA до 250mA 3 - 12 аккумуляторы (5+3) шт. Ni-Mh 1.2V = 9.6V Вы не сможете нормально запустить двигатели от 9В батареи, так что даже не тратьте время (и батареи)!
Motor Drive Shield L293D не требуется 4.5 - 36 не требуется
Модуль Bluetooth HC-0506 3.3 V, 50 mA 1.8-3.6 С пина 3.3V платы Arduino
Ультразвуковой измеритель расстояния HC-SR04 5 V, 2 mA 5 С пина 5V платы Arduino

DC/DC преобразователя напряжения у меня не было в наличии. Крона 9V оказался не очень хорошим источником питания, просто у меня он уже был.


А вот от использования Li-ion аккумуляторов большой емкости я отказался. Во-первых, из-за высокой стоимости, во-вторых в китайских интернет-шопах легко нарваться на подделку. Точнее не «легко», а «всегда». Кроме этого Li-ion требует особого обращения, и он не безопасен.


Итак, как видим из таблицы, нам требуется 3 независимых источника питания:

  • Для платы Arduino и датчиков.
  • Для сервомотора.
  • Для 4-х DC моторов.

Где ж столько набрать? Саму плату Arduino в любом случае надо питать от отдельного источника, т.к. при «проседании» напряжения, например от включения моторов, плата может перезагружаться или просто глючить. Здесь применяем аккумулятор форм-фактора «Крона 9В», причем разъем который будет подключаться к Arduino должен быть с «плюсом в центре».


Для сервомотора и 4-х DC моторов можно обойтись одним источником питания. Проблема только в том, что сервомотор рассчитан на напряжение 5-6В (максимум 7.2В) и ток 100 - 300мA (пиковое), а DC моторам требуется 6 - 8В (максимум 12В) и ток 250мА.


Для решения проблемы существуют DC-DC преобразователи, но у меня таких не оказалось. В итоге я применил свою "фирменную" схему соединения (безо всяких понижающих электронных схем, только экологически чистые напряжение и ток!): подключил 8 шт. аккумуляторов на 1.2V последовательно и сделал отводы в нужных местах, как показано на схеме.



6В пошло на сервомотор, а 9.6 на DC моторы. Понятно, что аккумуляторы 1--5 будут испытывать повышенную нагрузку.


Для управления серво и DC моторами использовал 4-х канальный Motor Drive Shield на базе микросхемы L293D.


Собрать готовое шасси небольшая проблема. Но не думайте, что без допиливания у вас всё сразу соберется. Поэтому приготовьте надфили.




Подключить нормально несколько моторов, сервомотор или шаговый напрямую к Arduino не удастся. Так как пины (выводы) Arduino являются слаботочными. Для решения проблемы существует дополнительный модуль управления приводами - Motor Drive Shield на базе микросхемы L293D, которая является одной из самых распространенных микросхем, предназначенных для этой цели. Чип L293D известен также как H-мост (H-Bridge).


Я использовал плату, которая обеспечивает 4 канала для подключения на двух микросхемах L293D и сдвиговом регистре. Приобретается на eBay за $5.


Данная плата модуля управления приводами имеет следующие характеристики.

  • L293D Motor Drive Shield совместим с Arduino Mega 1280 и 2560, UNO, Duemilanove, Diecimila
  • 4-х канальное управление
  • питание моторов от 4.5В до 36В
  • допустимый ток нагрузки 600мА на канал, пиковый ток - 1.2A
  • защита от перегрева
  • 2 интерфейса с точным таймером Arduino (не будет «дрожания») для подключения сервомоторов на напряжение 5В, если напряжение питания нужно повыше, то подключение по питанию нужно переделать как описано ниже
  • можно одновременно управлять 4 двунаправленными DC коллекторными моторами или 2 шаговыми, и 2 сервомоторами
  • 4 двунаправленные DC моторы подключены каждый к 8-битной шине для выбора индивидуальной скорости
  • подключение до 2 шаговых приводов (однополярных или биполярных), с одной катушкой, двойной катушкой или с чередованием шага
  • разъем для подключения внешнего источника для раздельного питания управляющей логики и моторов
  • Кнопка RESET Arduino
  • для управления используется библиотека Adafruit AFMotor.

Motor Drive Shield требует небольшой доработки, чтобы можно было после него хоть что-нибудь подключить. Я подпаял сверху необходимые разъемы, получилось вот что.



Моторы могут быть подключены к дополнительному по отношению к плате Arduino источнику питания. Я рекомендую именно такой способ подключения. Для этого нужно снять, разомкнуть перемычку, как показано на картинке.



В этом случае питание Arduino и питание моторов производится независимо друг от друга.


Светодиод на мотор-шилде светится при наличии питания для моторов, если он не горит, то моторы работать не будут.


Новая проблема.


Сервомоторов положение джампера питания не касается, они по прежнему будут запитаны от 5V Arduino. Так как сервомоторы обычно потребляют большой ток и если питания недостаточно, то всё устройство начинает глючить, в «лучшем» случае будет глючить только сервопривод - не будет поворачиваться на заданный угол, либо все время перед каждым поворотом поворачивать сначала в 0 градусов, а уже потом на заданный угол (и если будет успевать). Поэтому я рекомендую питать сервопривод также от дополнительного источника питания. Для этого придется немного переделать схему подключения: откусить плюсовой провод (обычно красный) от стандартного разъема и соединить его с плюсом источника питания напрямую.



При подключении Motor Drive Shield аналоговые пины не используются. Цифровые пины 2, 13 не используются.


Указанные ниже пины используются, только если подключены и используются соответствующие DC двигатели или шаговые двигатели (Stepper):

  • D11: DC Motor #1 / Stepper #1 (активация и контроль скорости)
  • D3: DC Motor #2 / Stepper #1 (активация и контроль скорости)
  • D5: DC Motor #3 / Stepper #2 (активация и контроль скорости)
  • D6: DC Motor #4 / Stepper #2 (активация и контроль скорости)

Эти пины будут заняты, если используются любые DC/steppers: D4, D7, D8, D12.


Указанные ниже пины будут заняты, только если используются соответствующие сервомоторы:

  • D9: Servo #1 управление
  • D10: Servo #2 управление


Для начала работы с Motor Drive Shield необходимо скачать и установить библиотеку Adafruit AFMotor .


Пример кода для управления моторами:


#include // подключить библиотеку Adafruit #include // подключить библиотеку для сервомотора AF_DCMotor motor(1); // создать объект мотор, указав номер разъема DC мотора на плате Motor Shiled и, опционально, частоту frequency Servo servo; // создать объект сервомотор servo.attach(10); // присоединить серво на пин 9 или 10 (крайний разъем на плате Motor Shiled) motor.setSpeed(speed); // установить скорость DC мотора от 0 (останов) до 255 (полный газ) motor.run(RELEASE); // DC мотор стоп motor.run(FORWARD); // DC мотор вперед motor.run(BACKWARD); // DC мотор назад servo.write(90); // повернуть серво на 90 град.

DC мотор у меня начал крутиться только при указании скорости больше 100, если меньше - просто жужжит. Минимальную скорость вашего мотора вам придется определить экспериментально.


Для моторов, подключенных к M1 и M2 можно задать частоту: MOTOR12_64KHZ, MOTOR12_8KHZ, MOTOR12_2KHZ, MOTOR12_1KHZ. Наибольшая скорость вращения достигается при 64KHz эта частота будет слышна, меньшая частота и скорость на 1KHz но и использует меньше энергии. Моторы 3 и 4 всегда работают на 1KHz другие значения игнорируются. По умолчанию везде 1KHz.


После этого необходимо прогнать тест моторов. . В начале скетча измените номер мотора в строке (или в строках) типа:


AF_DCMotor motor(…);

Скетч некоторое время вращает мотор(ы) вперед по ходу движения робота, а затем назад. Посмотрите внимательно в ту ли сторону вращается мотор, и измените полярность подключения если нужно.


Подключаем ультразвуковой измеритель расстояния HC-SR04 Ultrasonic Module. Распиновка выводов:

  • Trig (T)
  • Echo (R)

Время затрачиваемое ультразвуковым дальномером на измерения (определено опытным путем):

  • максимум 240 мсек, если расстояние слишком велико (out of range)
  • минимум 1 мсек, если расстояние слишком мало
  • расстояние в 1.5 м определяется примерно за 10 мсек


Ультразвуковой датчик дальномер, в силу своей физической природы, а не потому что Китай, в некоторых случаях плохо определяет расстояние до препятствия:

  • если препятствие сложной формы, то ультразвук отражается под разными углами и датчик ошибается,
  • ультразвук отлично поглощается (т.е. не отражается) мягкой мебелью или игрушками, и датчик считает что перед ним ничего нет.

Другими словами, для ультразвукового дальномера в идеале было бы отлично, если бы все препятствия имели вид твёрдой плоскости, перпендикулярной направлению излучения ультразвука.


Некоторые проблемы можно решить с помощью инфракрасного датчика расстояния. Но он тоже не идеален:

  • небольшая максимальная дальность по сравнению с ультразвуковым: 0,3-0,8 м против 4 м
  • большое минимальное расстояние по сравнению с ультразвуковым: 10 см против 2 см
  • зависимость чувствительности датчика от общей освещенности.

Хотя если установить эти дальномеры в паре, то эффективность их работы заметно повысилась бы.

Подключаем Bluetooth HC-05

Как видим из даташита основные пины «голого» HC-05:

  • TX (pin 1) передача
  • RX (pin 2) прием
  • 3,3V (pin 12) питание 3.3В
  • GND (pin 13) земля
  • PIO8 (pin 31) индикатор режима
  • PIO9 (pin 32) статус соединения, если соединение установлено, то на выходе будет высокий уровень
  • PIO11 (pin 34) для включения режима AT-команд

Наш модуль припаян к плате Breakout/Base Board, где уже есть делитель напряжения, поэтому диапазон рабочих напряжений у него от 3.3В до 6В.


Подключаем наш Bluetooth модуль в сборе:

  • Arduino (TX) - (RX) HC-05
  • Arduino (RX) - (TX) HC-05
  • Arduino (+5В) - (VCC) Bluetooth
  • Arduino (GND) - (GND) Bluetooth
  • пины LED, KEY не используются

После подачи питания на модуль Bluetooth HС-05 на нем должен заморгать светодиод, что означает работоспособность блютуза.


Включаем bluetooth на мобиле, находим устройство с именем HC-05 и подключаемся, пароль 1234.


Для тестирования заливаем в Arduino простой скетч:


int count = 0; void setup() { Serial.begin(9600); Serial.println("Test Arduino + Bluetooth. http://localhost"); } void loop() { count++; Serial.print("Count = "); Serial.println(count); delay(1000); }

На Android телефон устанавливаем Bluetooth Terminal. Подключаемся к устройству HC-05 и наблюдаем на экране телефона бегущие строки с увеличивающимся счетчиком.


Чтобы модуль мог принимать AT-команды, нужно его перевести в соответствующий режим - для этого нужно установить вывод KEY (PIO11) в логическую 1. На некоторых Breakout/Base Board вместо вывода KEY есть вывод EN (ENABLE), который может или не может быть припаян к выводу на самом чипе. Это касается только чипов HC05. Вот как раз у меня вывод EN платы никуда не припаян. Поэтому его можно припаять отдельным проводом к выводу KEY(PIO11) чипа. Либо во время работы, чтобы перевести HC05 в режим AT-команд на пару секунд закоротить вывод чипа KEY(PIO11) на вывод питания Vcc. Для HC06 вывод KEY не нужен.

Программное обеспечение

Примечание. Каждый раз перед загрузкой программы в Arduino, убедитесь, что модуль Bluetooth не подключен к Arduino. Это вызовет проблемы заливки скетча. Просто отсоедините питание от Bluetooth модуля или провода, соединяющие Arduino и RX, TX контакты модуля.


В начале скетча измените номера моторов в строках типа:


AF_DCMotor motor(…);

Если заменить строку


byte debug = 0;

byte debug = 10;

то включится режим отладки.


В режиме отладки робот RoboCar4W реально ездить или крутить колесами не будет. Вместо этого активируйте монитор последовательного порта и там увидите как он «ездит» виртуально. Вместо реальной езды вперед в монитор последовательного порта будет писаться строка «Forward», вместо заднего хода с поворотом влево - «Turn Back L(eft)» и т.д. Датчик ультразвукового измерения расстояния тоже ничего не делает, вместо этого расстояния до препятствий генерируются программно и случайно.

Добавить метки

Совсем недавно недорогие микроконтроллеры, такие как Arduino, открыли новые двери для тех, кто хочет сделать интересные приспособления для своих автомобилей. В этой статье мы рассмотрим популярный проект, связанный с Аrduino в автомобиле, который использует эту популярную открытую аппаратную плату.

Самый распространенный проект на Ардуино для автомобиля – установка в машине ЖК-дисплея с особыми функциями и показателями.

Когда Ардуино-дисплей в авто находится в движении, отображаются: процент нагрузки двигателя, напряжение батареи, температура в салоне и температура охлаждающей жидкости двигателя (есть несколько других статистических данных о транспортном средстве, которые могут отображаться, если нужны). Помимо дисплея и микроконтроллера, понадобятся различные датчики для создания этого Аrduino проекта для автомобиля.

Если Аrduino для автомобиля совместим с IDE Teensy 3.6, то читается анимированный растровый образ машины и резервные датчики. Каждый из четырех датчиков на своем месте, так же, как и анимационная картинка автомобиляоторая меняет цвет, исходя из того, насколько близко объект находится к машине (только зеленый означает <5 футов, зеленый и желтый означает <2,6 фута и зеленый, желтый, а красный означает <1 фут).

Этот Ардуино проект для авто очень сложный, потому что резервные датчики взаимодействуют с приемопередатчиком, а затем отображают информацию на маленький ЖК-дисплей.

Проприетарный протокол связи не является типичным, как например, I2C, UART, CAN, USB и так далее. Свойства протокола могут различаться в каждом случае, в зависимости от поставщика.

Прежде чем отключить ЖК-дисплей, нужно проверить три провода, соединяющие трансивер и ЖК-дисплей. В инструкции указывается, что необходим красный провод + 5В, провод черного цвета и синий провод. После подключения осциллографа к синему проводу и заземлению пользователь увидит характерное изображение.

Биты под номерами 0-5 не несут никакой существенной информации и не кодируются.иты 6-8 соответствуют датчикам с названиями A, B, C или D. Необходимо загрузить эскиз в IDE Arduino, который считывает датчики и выводит данные через последовательную консоль.

Для следующего Ардуино проекта в автомобиле можно использовать бесплатное программное обеспечение для редактирования фотографий под названием GIMP для обрезки и изменения размера изображения машины с верхнего вида. Затем необходимо экспортировать изображение в виде 24-битного растрового изображения с именем «car.bmp», которое составляет 110 пикселей на 250 пикселей. После загружаем все на карту microSD и помещаем эту карту в микроконтроллер Teensy 3.6.

Основными причинами, по которым нужно использовать Teensy 3.6 вместо UNO, остается скорость, с которой Teensy может читать SD-карту и отображать изображение с помощью драйвера дисплея RA8875. При использовании UNO процесс займет около 8 секунд, в то время как с Teensy 3.6 займет 1,8 секунды.

Для дальнейшего конструирования проекта с Аrduino для автомобиля потребуется сделать трехмерную печать верхней и нижней крышки ЖК-дисплея для его защиты. В машине необходимо предварительно просверлить отверстия для датчиков.

Какие датчики можно подключить к Ардуино

В конечном итоге, пользователь получит отличное приспособление, контролирующие все возможные параметры автомобиля. Список деталей, которые понадобятся для создания этого ЖК-дисплея Ардуино для автомобиля, приведен ниже:

  1. Адаптер Freematics OBD-II.
  2. Резервные датчики.
  3. 7-дюймовый ЖК-дисплей TFT.
  4. Драйвер для дисплея LCD на базе SPI.
  5. Микропроцессор Teensy 3.6.
  6. Специальный уровень Shifter.
  7. 74HC125 Tri State Buffer IC.
  8. Карта памяти MicroSD Card.
  9. Провод, конденсаторы и резисторы.
  10. Датчик температуры DS18B20.
  11. Разделитель OBD-II.
  12. Микроконтроллер Ардуино.

Подключение, запуск и настройка автоустройств на Ардуино

Для загрузки эскиза проекта Ардуино для авто в виде ЖК-дисплея в Teensy 3.6 вам необходимо установить Teensyduino. Затем вам нужно будет заменить библиотеки Adafruit_RA8875 и Adafruit_GFX в расположении библиотеки Teensy (а не на вашем типичном месте в документах). На Mac операционной системе нужно щелкнуть правой кнопкой мыши по значку приложения Arduino в приложениях, а затем перейти в:

В Windows данная папка находится под основным диском C, в файлах программ x86, Arduino, а затем в папке с аппаратным обеспечением. Как только вы это сделаете, вам нужно будет изменить расположение эскиза в приложении Arduino, отредактировав его в настройках – обычно библиотеки “Тинси” размещаются по следующему адресу:

/Applications/Arduino.app/Contents/Java/hardware/teensy/avr

Из-за проблемы с внутренним температурным датчиком пользователь устанавливает температурный датчик модуля DS18B20 .

  1. Загрузите эскиз display_code, если вы хотите использовать внутренний температурный датчик модуля OB2 I2C OBD-II.
  2. Загрузите эскиз display_code_with_new_temperature_sensor, если вы хотите использовать модуль DS18B20.

Необходимо исправить ошибки, всплывающие при подключении электронного устройства, включая DS18B20 , выводя температуру в 185 градусов по Фаренгейту; дисплей не включается вообще в холодную погоду, а пиксели застревают в неправильном цвете, когда дисплей затемнен.

Обратите внимание, что разгон teensy до 240 МГц не позволяет адаптеру I2C OBD-II взаимодействовать с teensy. Наконец, просто нажмите кнопку «Загрузить». В представленном скетче находятся обширные комментарии, которые помогут пользователю адаптироваться при конструировании ЖК-дисплея для авто.

Вскоре после установки дисплея пользователь поймет, что дисплей работает даже тогда, даже когда автомобиль выключен.

Заглянув в разводку OBD-II, электронщик обнаружит, что линия питания 12 В к разъему OBD-II всегда подключается непосредственно к батарее. Чтобы обойти это, необходимо купить разветвитель OBD-II и отрезать провод, идущий на контакт 16 на одном из двух разъемов на сплиттере, а затем подключить этот разрезаемый провод к добавлению проводки.

Затем, используя мультиметр, необходимо заглянуть в коробку предохранителей на стороне водителя и протестировать существующие предохранители, чтобы узнать, какой предохранитель получил питание после того, как ключ был включен в зажигание.

В конце пользователь подключает добавочный провод к предохранителю, который нужен для того, чтобы дисплей теперь включался только тогда, когда автомобиль работает и находится на ходу. Проведите некоторое исследование того, как правильно добавить схему к вашему автомобилю. Многие подобные проекты описаны на нашем сайте с подробными разъяснениями.

Кроме того, пользователь может добавить кнопку “стоп-старт” на Ардуино для своего дисплея с параметрами для автомобиля.

Технологии не стоят на месте и сегодня автолюбителям предлагается множество различных вариантов для совершенствования своих «железных коней». Одним из таковых является Arduino. Это устройство представляет собой инструмент, использующийся для проектирования электронных устройств. В случае с автомобилем проектирование обычно осуществляется на лобовое стекло. Как сделать бортовой компьютер на Arduino и как его правильно настроить — читайте в этой статье.

[ Скрыть ]

Идеи для авто на основе маленькой платы с маленьким процессором — Arduino

Компы давно и плотно вошли в нашу жизнь. Аппаратная платформа Arduino — это одна из последних разработок с открытым программным кодом, которая построена на обычной печатной схеме. Подробнее о том, как с помощью такой платы сделать разные устройства для авто, мы расскажем далее.

БК

С помощью платы Arduino можно соорудить автомобильный бортовой компьютер, который сможет:

  • рассчитать расход горючего;
  • вывести информацию о температуре антифриза;
  • рассчитать скорость движения, а также расстояние поездки;
  • вывести потраченное горючее за определенный километраж;
  • определить обороты мотора и т.д (автор видео — канал Arduino Tech PTZ).

Помимо устройства Arduino вам также потребуется жидкокристаллический модуль, адаптер Блютуз НС-05, а также сканер ELM327 и резисторное устройство на 10 кОм. Разумеется, необходимо приготовить и звуковой индикатор, монтажные провода и сам корпус устройства.

Процедура сборки осуществляется следующим образом:

  1. Сначала настраиваем Блютуз адаптер. К пинам устройства нужно припаять провода — к двум нижним и верхним контактам.
  2. Сам модуль подключается к плате для настройки, для этого необходимо открыть программу Arduino IDE 1.0.6 или любую другую версию, после его залить скетч в схему через USB-выход.
  3. Когда загрузка будет завершена, нужно зайти в меню Сервис — Монитор порта и выставить скорость 9600.
  4. Затем собирается схема с платой, адаптером и заранее подготовленным дисплеем. Сначала подключается Блютуз адаптер.
  5. После этого в схему добавляется дисплей. Более подробное описание подключения вы найдете на фото ниже.
  6. Резисторный элемент на 10 кОм используется для управления яркостью и контрастностью дисплея. Поэтому при первом подключении вы можете заметить, что изображения нет, если это так, то его нужно просто настроить путем поворота резистора.
  7. Далее, производится подключение дополнительной клавиши, которая будет выполнять функцию переключения экранов с информацией. Один контакт от кнопки идет к элементу GND, второй — к контакту 10. Чтобы подключить бипер, плюсовой контакт соединяется с 13 пином, а минусовой — с GND.
  8. Затем, используя то же программное обеспечение Arduino IDE 1.0.6, нужно залить скетч. Теперь вам остается только настроить бортовой компьютер и подключить его к автомобилю.

Фотогалерея «Схема подключения БК»

GPS-трекер

Чтобы собрать GPS-трекер на базе Arduino, вам потребуется:

  • сама плата, процесс описан на примере модели Mega 2560;
  • модуль GSM/GPRS, который будет использоваться для передачи данных на сервер;
  • а также Arduino GPS-приемник, в примере мы рассмотрим модель SKM53 (автор видео об изготовлении трекера на примере платы SIM 808 — канал Alex Vas).

Как производится подключение схемы:

  1. Сначала осуществляется подключение модуля к основной плате, по умолчанию установлена скорость передачи данных 115200.
  2. После подключения нужно включить девайс и установить одинаковую скорость для всех портов — как последовательных, так и программных.
  3. GSM передатчик подключается к контактам 7 и 8 на основной микросхеме.
  4. Затем производится настройка модуля путем ввода команд. Все команды мы описывать не будем, их и так можно найти в Интернете без проблем. Рассмотрим только самые основные. AT+SAPBR=3,1,«CONTYPE»,«GPRS» — команда определяет тип подключения, в данном случае это GPRS. AT+SAPBR=3,1,«APN»,«internet.***.ru», где *** — это адрес оператора мобильной сети, который будет использоваться. AT+HTTPINIT — по этой команде производится инициализация HTTP.
  5. Нужно отметить один нюанс — при написании серверной составляющей интерфейса, желательно предусмотреть прием и выведение данных для нескольких адаптеров. Нужно установить переключатель на три позиции, это даст возможность получать данные от восьми автомобилей.
  6. Затем производится написание скетча на микросхеме. Сам скетч также можно найти в Сети, писать его необязательно. Учтите, если будут использоваться два активных последовательных порта, это может привести к ошибкам в передачи и отправке информации.

Парктроник

Чтобы соорудить парктроник, вам потребуются такие составляющие:

  • сама микросхема;
  • ультразвуковое устройство, в данном случае это дальномер HC-SR04:
  • шесть светодиодных элементов;
  • шесть резисторных элементов сопротивлением на 220 Ом;
  • соединительные провода типа «папа-папа»;
  • пьезодинамический элемент;
  • макетная схема для сборки.

Процедура сборки выглядит следующим образом:

  1. Для начала на макетной схеме необходимо установить светодиодные элементы, подготовленные заранее. Отрицательный контакт у всех светодиодов будет общим. Короткий контакт — катод — следует подключить к отрицательной шине, которая имеется на макетной плате.
  2. К более длинным контактам диодов, то есть анодам, необходимо подключить резисторные элементы на 200 Ом, если вы не будете их использовать, это приведет к перегоранию диодов.
  3. На центральной части производится монтаж ультразвукового устройства. На этом контроллере есть четыре контакта. Vcc — это контакт питания на пять вольт, Echo — это выходной контакт, Trig — это вход, а GND — это заземление.
  4. После того, как дальномер будет установлен, к его выходам следует подключить проводку. В частности, контакт Echo подключается к выходу 13, Trig — к 12 контакту. GND, соответственно, необходимо соединить с заземлением, которое имеется на схеме контроллера, а оставшийся выход Vcc соединяется с 5-вольтовым питанием на плате Arduino.
  5. После выполнения этих действий нужно соединить проводку с контактами резисторных элементов. А также они подключаются последовательным образом к пинам на плате — используются пины от 2 до 7.
  6. Следующим этапом будет подключение пьезопищалки, которая и будет предупреждать водителя о приближении к препятствию. Минусовой выход, как вариант, можно будет объединить с отрицательным контактом установленного ранее дальномера. Что касается положительного контакта, то он соединяется с пином под номером 11 на микросхеме.
  7. Для того, чтобы устройство в конечном итоге работало в нормальном режиме, дополнительно нужно будет написать, после чего загрузить код программы в плату. В этом коде необходимо точно указать дистанцию, при приближении к которой начнут загораться диодные элементы и будет срабатывать пищалка. Причем тональность пищалки должна быть разной, чтобы водитель мог узнать, когда приближение к препятствию будет критическим. Сам код либо пишется самостоятельно, либо берется уже готовый вариант из Интернета. Вариантов скетчей очень много, вам нужно только выбрать наиболее подходящий для вашего устройства (автор видео — канал Arduino Prom).

Заключение

Как видите, микроплата Arduino — это универсальный вариант, с помощью которого можно создать множество различных девайсов. Помимо вышеописанных устройств, вы также можете соорудить спидометр, который будет выдавать информацию о скорости прямо на лобовое стекло, кнопку старт-стоп, и даже сигнализацию для транспортного средства. В целом вариантов очень много, если подойти к вопросу изготовления самодельного гаджета правильно, то у вас все получится.

Разумеется, для этого вы должны обладать знаниями в области электроники и электротехнике, при этом минимальных навыков, вероятнее всего, будет недостаточно. При изготовлении девайсов вам придется принимать собственные решения, о чем в Интернете может и не быть информации. Поэтому будьте готовы к тому, что процесс сборки может занять достаточно долгое время.

Видео «Как соорудить систему управления электродвигателем печки?»

Из видео ниже вы сможете узнать, как обустроить климат-контроль путем доработки регулятора отопительной системе на примере автомобиля ВАЗ 2115 (автор ролика — Иван Никульшин).