Проблемы для кодирования национальных алфавитов. Решение проблем неправильной кодировкой веб-страницы

03.04.2019

Цель работы: ознакомление с многообразием окружающих человека кодов, ролью и определением области практического применения кодирования информации.

Актуальность данной темы определяется необходимостью рассматривать вопросы, связанные с кодированием информации, в виду их большой практической значимостью.

Практическая значимость: материал статьи может быть использован в качестве дополнительного при рассмотрении вопроса о кодировании информации или как учебный материал при проведении семинарского занятия.

ВВВЕДЕНИЕ.

Фундаментальной чертой цивилизации является рост производства, потребления и накопления информации во всех отраслях человеческой деятельности. Вся жизнь человека, так или иначе, связана с получением, накоплением и обработкой информации. Что бы человек ни делал: читает ли он книгу, смотрит ли он телевизор, разговаривает, он постоянно и непрерывно получает и обрабатывает информацию.

Любой живой организм, в том числе человек, является носителем генетической информации, которая передается по наследству. Генетическая информация хранится во всех клетках организма в молекулах ДНК (дезоксирибонуклеиновой кислоты). Молекула ДНК человека включает в себя около трех миллиардов пар нуклеотидов, и в ней закодирована вся информация об организме человека: его внешность, здоровье или предрасположенность к болезням, способности и т.д.

Человек воспринимает окружающий мир, т.е. получает информацию, с помощью органов чувств. Чтобы правильно ориентироваться в мире, он запоминает полученные сведения, т.е. хранит информацию, человек принимает решения, т.е. обрабатывает информацию, а при общении с другими людьми – передает и принимает информацию. Человек живет в мире информации.

Для любой операции над информацией (даже такой простой, как сохранение) она должна быть как-то представлена (записана, зафиксирована). Этот процесс имеет специальное название – кодирование информации.

ПРЕДСТАВЛЕНИЕ И КОДИРОВАНИЕ ИНФОРМАЦИИ.

История кодирования информации начинается в доисторической эпохе, когда первобытный человек выбивал в скале образы известных ему объектов окружающего мира.

Кодирование информации необычайно разнообразно. Указания водителю автомобиля кодируются в виде дорожных знаков. Музыкальное произведение кодируется с помощью знаков нотной грамоты, для записи шахматных партий и химических формул созданы специальные системы записи. Любой грамотный компьютерный пользователь знает о существовании кодировок символов. Географическая карта кодирует информацию о местности. Необходимость кодирования речевой информации возникла в связи с бурным развитием техники связи, особенно мобильной связи. Людьми были придуманы специальные коды: Азбука Брайля, азбука Морзе, флажковая азбука. Таких примеров можно приводить очень много.

Известно, что одну и ту же информацию мы можем выразить разными способами.

Например, каким образом вы можете сообщить об опасности?

  • Если на вас напали, вы можете просто крикнуть: “Караул!!” (англичанин крикнет “Неlр me!”).
  • Если прибор находится под высоким напряжением, то требуется оставить предупреждающий знак (рисунок).
  • На оживленном перекрестке регулировщик помогает избежать аварии с помощью жестов.
  • В театре пантомимы вся информация передается зрителю исключительно с помощью мимики и жестов.
  • Если ваш корабль тонет, то вы передадите сигнал “SОS” (...– – –...).
  • На флоте помимо азбуки Морзе используют также семафорную и флажковую сигнализацию.

Набор знаков, в котором определен их порядок, называется алфавитом.

Существует множество алфавитов.

  • Алфавит кириллических букв (А, Б, В, Г, Д, Е, ...)
  • Алфавит латинских букв (А, В, С, D, Е, F, ...)
  • Алфавит десятичных цифр(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
  • Алфавит знаков зодиака (^ , _ , ` , a , b , c , d , e , f , g , h , i) и др.

Имеются, однако, наборы знаков, для которых нет какого-то общепринятого порядка:

  • Набор знаков азбуки Брайля (для слепых);
  • Набор китайских идеограмм;
  • Набор знаков планет;
  • Набор знаков генетического кода (А, Ц, Г, Т).

Особенно важное значение имеют наборы, состоящие всего из двух знаков:

  • Пара знаков (+, –);
  • Пара знаков “точка”, “тире” (., –)
  • Пара цифр (0, 1).
  • Пара ответов (да, нет).

Таким образом, кодирование информации – это процесс формирования определенного представления информации. Значимость кодирования возросла в последние десятилетия в связи с внедрением ЭВМ.

C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Пписьменность и арифметика – есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Основными атрибутами кодирования являются:

  • Код – это набор знаков, упорядоченных в соответствии с определенными правилами того или иного языка, для передачи информации.
  • Знак – это метка, предмет, которым обозначается что-нибудь (буква, цифра, отверстие). Знак вместе с его значением называют символом. Существует множество классификаций знаков (Приложение 1).
  • Язык – это сложная система символов, каждый из которых имеет определенное значение. Языковые символы, будучи общепринятыми и соответственно общепонятными в пределах данного сообщества, в процессе речи комбинируются друг с другом, порождая разнообразные по своему содержанию сообщения.

Код, знак и язык позволяют передавать информацию в символическом виде, удобном для ее кодирования

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КОДИРОВАНИЯ ИНФОРМАЦИИ.

Стенография – это скоростное письмо особыми знаками, настолько краткими, что ими можно записать живую речь. Стенография пришла к нам из древнейших времен. Еще в Древнем Египте скорописцы записывали речь фараонов. Широкое распространение стенография получила в Древней Греции. В 1883 г. в Акрополе была найдена мраморная плита, на которой были высечены стенографические знаки. По мнению ученых, эти записи были сделаны в 350 г. до н.э. Но общепризнанным днем рождения стенографии считается 5 декабря 63 года до н.э. Тогда в Древнем Риме возникла необходимость дословной записи устной речи. Автором древнеримской стенографии считается Тирон – секретарь знаменитого оратора Цицерона.

В современном мире, несмотря на обилие средств механической фиксации слова (магнитофонов, диктофонов), владение навыками стенографии по-прежнему ценится. Мы записываем в среднем в пять раз медленнее, чем говорим. Стенография же ликвидирует этот разрыв. Она особенно полезна при конспектировании лекций, публичных выступлений, бесед, составлении докладов, подготовке статей и т. п.

Известно немало случаев, когда стенография оказывала неоценимую помощь людям разных профессий (Приложение 2).

Телефонный план нумерации.

В России используется закрытая десятизначная нумерация. Это значит, что любой полный телефонный номер с кодом региона или мобильной сети должен иметь 10 цифр. Это называется Национальный телефонный номер. При звонке на телефон с отличным от “домашнего” кодом региона понадобится дополнительно набирать код выхода на междугороднюю связь (“8”).

Персональные данные.

В последнее время очень актуален вопрос о персональных данных. Персональные данные человека записаны в его паспорте.

Под фотографией в паспорте на просвет просматриваются магнитные метки с записанной информацией, которая считывается только электронным способом и недоступна владельцу документа. Подписываясь под этой графой в паспорте (пока не заполняемой по техническим причинам), человек дает согласие на присвоение ему кода вместо имени, т.е. производится замена имени числом.

Штрих-коды.

С развитием информационной техники, широким внедрением средств вычислительной техники во многие сферы деятельности все острее встает вопрос быстрого и надежного ввода информации. Ручной ввод кода изделия требуют больших затрат ручного труда, времени, часто приводит к ошибкам.

В настоящее время в России и за рубежом ведутся большие работы по созданию автоматизированных систем обработки данных с применением машиночитаемых документов (МЧД), одной из разновидностей которых являются документы со штриховыми кодами. К машиночитаемым относятся товаросопроводительные документы, ярлыки и упаковки товаров, чековые книжки и пластиковые карточки для оплаты услуг, магнитные носители. В связи с этим появились термины “электронные ведомости”, “электронные деньги” и т. д.

Наиболее перспективным и быстроразвивающимся направлением автоматизации процесса ввода информации в ЭВМ является применение штриховых кодов.

Штриховой код представляет собой чередование темных и светлых полос разной ширины. Структура штрихового кода представлена на слайде.

По мнению специалистов, системы штрихового кодирования имеют перспективу и дают возможность решить одну из самых сложных компьютерных проблем - ввод данных.

В настоящее время штриховые коды широко используются не только при производстве и в торговле товарами, но и во многих отраслях промышленного производства.

Товарный штриховой код присваивается продукции (товару) на этапе запуска его в производство. Штрих-коды получили широкое практическое применение почти во всех сферах деятельности человека (Приложение 3) :

  • Штриховое кодирование помогает в приготовлении медицинских препаратов;
  • Превосходная сортировка;
  • Штрих-коды наводят порядок на складе;
  • Вы можете стать штрих-кодом!
  • Штрих-коды охраняют детей;
  • Общее наблюдение за частной жизнью;
  • Штрих-коды контролируют гарантийное обслуживание;
  • Штрих-коды в аэропорту избежать путаницы;
  • Штрих-коды и скоропортящиеся продукты;
  • Карты безопасности;
  • Штрих-коды следят за заключенными;
  • Газеты в будущем;
  • Штрих-коды помогают найти выгодную цену;
  • Штрих-коды как искусство;
  • Штрих-коды не пропустят `зайцев`;
  • Штрих-коды отлавливают прогульщиков;
  • Процесс выписки рецептов;
  • Штриховое кодирование и медицина;
  • Штрих-коды и гонки Формулы 1;
  • Мобильный телефон вместо билета на концерт;
  • Штрих-код охраняет детей;
  • Шифровка диагнозов заболеваний в листках нетрудоспособности?

Смайлики.

Смайликами (от smile – улыбка) в Интернете называют значки, составленные из знаков препинания, букв и цифр, обозначающие какие-то эмоции.

Смайлик – это лучший способ передать ваши чувства и эмоции при виртуальном общении! Маленькие забавные рожицы, которые вставляются в текст, избавляют от необходимости писать излияния о ваших переживаниях. Считается, что смайлик для Интернета – все равно, что для человечества колесо. Без него невозможно обойтись ни в одной форме виртуального общения. Он крайне прост в употреблении, информативен и при всей своей простоте дает широкий простор воображению. Неудивительно, что его переняли sms-коммуникация, реклама, дизайн, обычная почта, при обмене записками на уроках.

Смайлики настолько прочно вошли в нашу жизнь, что перекочевали из виртуального пространства в науки. Так в психологии, смайлики используют для обозначения типов темпераментов или отслеживают настроение человека.

ЗАКЛЮЧЕНИЕ.

Мы знаем, насколько велики возможности компьютеров, и широк спектр их применения сегодня и можем только догадываться, какие задачи смогут решать они в ближайшем будущем. Поэтому особенно остро встает вопрос о знании и понимании способов представления информации в компьютере. Нужно, чтобы люди (не только программисты-профессионалы, но и простые пользователи) имели понятие о кодировании информации и о возможных способах кодирования разных видов информации.

Множество кодов очень прочно вошло в нашу жизнь. Если Вы заинтересовались проблемой кодирования информации, то можно прочитать ряд художественных произведений, в которых были затронуты вопросы кодирования и декодирования информации.

  • Артур Конан Дойль “Пляшущие человечки”;
  • Эдгар По “Золотой жук”;
  • Жюль Верн “Путешествие к центру земли”;
  • Валентин Каверин “Исполнение желаний”;
  • Дэн Браун “Код да Винчи”;
  • Дэвид Кан “Взломщики кодов”.

Для наглядности представления материала может быть использованы слайды презентации из

Любые числа (в определенных пределах) в памяти компьютера кодируются числами двоичной системы счисления. Для этого существуют простые и понятные правила перевода. Однако на сегодняшний день компьютер используется куда шире, чем в роли исполнителя трудоемких вычислений. Например, в памяти ЭВМ хранятся текстовая и мультимедийная информация. Поэтому возникает первый вопрос:

Как в памяти компьютера хранятся символы (буквы)?

Каждая буква принадлежит определенному алфавиту, в котором символы следуют друг за другом и, следовательно, могут быть пронумерованы последовательными целыми числами. Каждой букве можно сопоставить целое положительное число и назвать его кодом символа. Именно этот код будет храниться в памяти компьютера, а при выводе на экран или бумагу «преобразовываться» в соответствующий ему символ. Чтобы отличить представление чисел от представления символов в памяти компьютера, приходится также хранить информацию о том, какие именно данные закодированы в конкретной области памяти.

Соответствие букв определенного алфавита с числами-кодами формирует так называемую таблицу кодирования. Другими словами, каждый символ конкретного алфавита имеет свой числовой код в соответствии с определенной таблицей кодирования .

Однако алфавитов в мире очень много (английский, русский, китайский и др.). Поэтому следующий вопрос:

Как закодировать все используемые на компьютере алфавиты?

Для ответа на этот вопрос пойдем историческим путем.

В 60-х годах XX века в американском национальном институте стандартизации (ANSI) была разработана таблица кодирования символов, которая впоследствии была использована во всех операционных системах. Эта таблица называется ASCII (American Standard Code for Information Interchange – американский стандартный код для обмена информацией). Чуть позже появилась расширенная версия ASCII.

В соответствие с таблицей кодирования ASCII для представления одного символа выделяется 1 байт (8 бит). Набор из 8 ячеек может принять 28 = 256 различных значений. Первые 128 значений (от 0 до 127) постоянны и формируют так называемую основную часть таблицы, куда входят десятичные цифры, буквы латинского алфавита (заглавные и строчные), знаки препинания (точка, запятая, скобки и др.), а также пробел и различные служебные символы (табуляция, перевод строки и др.). Значения от 128 до 255 формируют дополнительную часть таблицы, где принято кодировать символы национальных алфавитов.

Поскольку национальных алфавитов огромное множество, то расширенные ASCII-таблицы существуют во множестве вариантов. Даже для русского языка существуют несколько таблиц кодирования (распространены Windows-1251 и Koi8-r). Все это создает дополнительные трудности. Например, мы отправляем письмо, написанное в одной кодировке, а получатель пытается прочитать ее в другой. В результате видит кракозябры. Поэтому читающему требуется применить для текста другую таблицу кодирования.

Есть и другая проблема. В алфавитах некоторых языков слишком много символов и они не помещаются в отведенные им позиции с 128 до 255 однобайтовой кодировки.

Третья проблема - что делать, если в тексте используется несколько языков (например, русский, английский и французский)? Нельзя же использовать две таблицы сразу …

Чтобы решить эти проблемы одним разом была разработана кодировка Unicode.

Стандарт кодирования символов Unicode

Для решения вышеизложенных проблем в начале 90-х был разработан стандарт кодирования символов, получивший название Unicode . Данный стандарт позволяет использовать в тексте почти любые языки и символы.

В Unicode для кодирования символов предоставляется 31 бит (4 байта за вычетом одного бита). Количество возможных комбинаций дает запредельное число: 231 = 2 147 483 684 (т.е. более двух миллиардов). Поэтому Unicode описывает алфавиты всех известных языков, даже «мертвых» и выдуманных, включает многие математические и иные специальные символы. Однако информационная емкость 31-битового Unicode все равно остается слишком большой. Поэтому чаще используется сокращенная 16-битовая версия (216 = 65 536 значений), где кодируются все современные алфавиты.

В Unicode первые 128 кодов совпадают с таблицей ASCII.

Всем доброго времени суток. На связи Алексей Гулынин. В прошлой статье мы разобрали создание таблиц в html . В данной статье я бы хотел рассказать о проблеме, с которой вы обязательно столкнетесь (если ещё не столкнулись) в своей практике. А проблема эта связана с кодировкой на сайте . Нередко бывает такая ситуация: ты сидишь, что-то придумываешь, в итоге твои мысли выражаются в написанный код. Открываешь своё творение в браузере, а там написана полная ерунда, или как обычно данную ерунду называют — "кракозябры" . Тут очевидно одно, что проблема с кодировкой на сайте . Скорее всего у вас по умолчанию стоит кодировка windows-1251 (кирилица) , а браузер пытается открыть ваш файл в кодировке utf-8 . Кратко о том, что такое кодировка. Кодировка — это некая таблица, которая каждому символу ставит в соответствие какой-то машинный код. Соответственно наши русские буквы в одной кодировке имеют один код, в других — другой код. Друзья, используйте везде кодировку utf-8 и будет вам счастье. По-другому utf-8 называется Юникод .

Давайте создадим тестовый документ в Notepad++ и запишем следующий код.

Проблемы с кодировкой

Тестируем проблемы с кодировкой

В меню Notepad++ проверьте, чтобы наверху стояло "Кодировки" — "Кодировать в ANSI". Мы сейчас с вами искусственно создадим проблему с кодировкой. Попробуйте сейчас открыть данный файл в браузере. Мы увидим иероглифы. Дело здесь в том, что мы создали наш файл в кодировке ANSI (кирилица), а браузеру сообщили, что наш файл в кодировке utf-8 () .

Причины, по которым возникают проблемы с кодировкой на сайте :

1) Неправильное значение атрибута charset у мета-тега.

2) В меню Notepad++ проверьте, чтобы кодировка файла была utf-8. Это нужно сделать "Кодировки" — "Кодировать в UTF-8 (без BOM)". В интернете можно найти определение, что такое "BOM", но оно малопонятное. Как я понял, в начале документа, ставится неразрывный пробел с нулевой шириной. Он нам не нужен, поэтому всегда ставьте "без BOM".

3) Бывает такое, что первые два пункта выполнены, но на страницах сайта всё равно появляется ерунда. Здесь проблема может быть в настройках сервера,т.е. хостинг напрямую передаёт заголовки для наших файлов и выставляет кодировку по умолчанию. Давайте попробуем отучить его это делать. В корневой директории сайта должен быть файл .htaccess . С помощью этого файла можно вносить корректировки в работу хостинга. Если данного файла у вас нет, то его нужно создать. Удобно это сделать в редакторе Notepad++. В данном файле необходимо написать следующий код:

AddDefaultCharset UTF-8

Данной инструкцией мы говорим серверу, что у нас кодировка по умолчанию "utf-8". Если это не помогло, то нужно написать в этом же файле следующий код:

Charsetdisable on AddDefaultCharset Off

Здесь мы пытаемся сказать серверу, что нам не нужна кодировка по умолчанию. Если после данных махинаций ничего не помогло, то необходимо писать хостеру и решать данную проблему с ним. Возможно он что-то подскажет.

Актуальность. Внедрение информационных технологий отразилось на технологии документооборота внутри организаций и между ними, и между отдельными пользователями. Большое значение в данной сфере приобретает электронный документооборот, позволяющий отказаться от бумажных носителей (снизить их долю в общем потоке) и осуществлять обмен документами между субъектами в электронном виде. Преимущества данного подхода очевидны: снижение затрат на обработку и хранение документов и их быстрый поиск. Однако отказ от бумажного документооборота поставил ряд проблем, связанных с обеспечением целостности передаваемого документа и аутентификации подлинности его автора.

Цель работы. Дать основные понятия по теме «Кодирование текстовой информации», отразить возможности злоумышленника при реализации угроз, направленных на нарушение целостности передаваемых сообщений, предложить пути решения проблемы.

Что такое код? Код – это система условных знаков для представления информации.

Кодирование – это представление информации в удобном альтернативном виде с помощью некоторого кода для передачи, обработки или хранения, а декодирование – это процесс восстановления первоначальной формы представления информации.

Персональный компьютер обрабатывает числовую, текстовую, графическую, звуковую и видео – информацию. В компьютере она представлена в двоичном коде, так если используется алфавит в два символа – 0 и 1. В двоичном коде ее легче всего представить как электрический импульс, его отсутствие (0) и присутствие (1). Подобный вид кодирования называется двоичным.

Элементы кодируемой информации :

Буквы, слова и фразы естественного языка;

Знаки препинания, арифметические и логические операции, и т.д;

Наследственная информация и т.д.

Сами знаки операций и операторы сравнения – это кодовые обозначения , представляющие собой буквы и сочетания букв, числа, графические обозначения, электромагнитные импульсы, световые и звуковые сигналы и т.д.

Способы кодирования: числовой (с помощью чисел), символьный (с помощью символов алфавита исходного текста) и графический (с помощью рисунков, значков)

Цели кодирования:

А) Удобство хранения, обработки, передачи информации и обмена ей между субъектами;

Б) Наглядность отображения;

В) Идентификация объектов и субъектов;

Г) Сокрытие секретной информации.

Различают одноуровневое и многоуровневое кодирование информации. Одноуровневое кодирование–это световые сигналы светофора. Многоуровневое- представление визуального (графического) образа в виде файла фотографии. Bначале визуальная картинка разбивается на пиксели, каждая отдельная часть картинки кодируется элементарным элементом, а элемент, в свою очередь, кодируется в виде набора цветов (RGB: англ.red – красный, green – зеленый, blue – синий) соответствующей интенсивностью, которая представляется в виде числового значения (наборы этих чисел кодируются в форматах jpeg, png и т.д.). Наконец, итоговые числа кодируются в виде электромагнитных сигналов для передачи по каналам связи или областей. Сами числа при программной обработке представляются в соответствии с принятой системой кодирования чисел.

Различают обратимое и необратимое кодирование. При обратимом можно однозначно восстановить сообщение без потери качества, например, кодирование с помощью азбуки Морзе. При необратимом однозначное восстановление исходного образа невозможно. Например, кодирование аудиовизуальной информации (форматы jpg, mp3 или avi) или хеширование.

Существуют общедоступные и секретные системы кодирования. Первые используются для облегчения обмена информацией, вторые – в целях ее сокрытия от посторонних лиц.

Кодирование текстовой информации . Пользователь обрабатывает текст, состоящий из букв, цифр, знаков препинания и других элементов.

Для кодирования одного символа необходим 1 байт памяти или 8 бит. Cпомощью простой формулы, связывающей количество возможных событий (К) и количество информации (I), вычисляем, сколько не одинаковых символов можно закодировать: К = 2^I = 28 = 256 . Для кодирования текстовой информации используют алфавит мощностью в 256 символов.

Принцип данного кодирования заключается в том, что каждому символу (букве, знаку) соответствует свой двоичный код от 00000000 до 11111111.

Для кодирования букв российского алфавита есть пять разных кодировочных таблиц (КОИ – 8, СР1251, СР866, Мас, ISO). Тексты, закодированные одной таблицей, не будут корректно отображаться в другой кодировке:

Для одного двоичного кода в разных таблицах соответствуют разные символы:

Таблица 1 – Соответствие разных символов двоичному коду

Двоичный код Десятичный код КОИ8 СР1251 СР866 Мас ISO
11000010 194 Б В - - Т

Перекодированием текстовых документов занимаются программы, встроенные в текстовые редакторы и процессоры. С начала 1997 года Microsoft Office поддерживает новую кодировку Unicode, в ней можно закодировать не 256, а 655369 символов (под каждый символ начали отводить 2 байта).

Биты и байты. Цифра, воспринимаемая машиной, таит в себе некоторое количество информации. Оно равно одному биту. Это касается каждой единицы и каждого нуля, которые составляют ту или иную последовательность зашифрованной информации. Соответственно, количество информации в любом случае можно определить, просто зная количество символов в последовательности двоичного кода. Они будут численно равны между собой. 2 цифры в коде несут в себе информацию объемом в 2 бита, 10 цифр – 10 бит и так далее. Принцип определения информационного объема:

Рисунок 1 – определение информационного объема

Проблема целостности информации. Проблема целостности информации с момента ее появления до современности прошла довольно долгий путь. Изначально существовало два способа решения задачи: использование криптографических методов защиты информации и хранения данных и программно-техническое разграничение доступа к данным и ресурсам вычислительных систем. Стоит учесть, что в начале 80–х годов компьютерные системы были слабо распространены, технологии глобальных и локальных вычислительных сетей находились на начальной стадии своего развития, и указанные задачи удавалось достаточно успешно решать.

Современные методы обработки, передачи и накопления информационной безопасности способствовали появлению угроз, связанных с возможностью потери, искажения и раскрытия данных, адресованных или принадлежащих другим пользователям. Поэтому обеспечение целостности информации является одним из ведущих направлений развития ИТ .

Под информационной безопасностью понимают защищенность информации от незаконного ее потребления: ознакомления, преобразования и уничтожения.

Различают естественные (не зависящие от деятельности человека) и искусственные (вызванные человеческой деятельностью) угрозы информационной безопасности. В зависимости от их мотивов искусственные подразделяют на непреднамеренные (случайные) и преднамеренные (умышленные).

Гарантия того, что сообщение не было изменено в процессе его передачи, необходима и для отправителя, и для получателя электронного сообщения. Получатель должен иметь возможность распознать факт искажений, внесенных в документ.

Проблема аутентификации подлинности автора сообщения заключается в обеспечении гарантии того, что никакой субъект не сможет подписаться ни чьим другим именем, кроме своего. В обычном бумажном документообороте информация в документе и рукописная подпись автора жестко связана с физическим носителем (бумагой). Для электронного же документооборота жесткая связь информации с физическим носителем отсутствует.

Рассмотрим методы взлома компьютерных систем, все попытки подразделяют на 3 группы:
1. Атаки на уровне операционной системы: кража пароля, сканирование жестких дисков компьютера, сборка “мусора” (получение доступа к удаленным объектам в “мусорной” корзине), запуск программы от имени пользователя, модификация кода или данных подсистем и т.д.
2. Атака на уровне систем управления базами данных: 2 сценария, в первом случае результаты арифметических операций над числовыми полями СУБД округляются в меньшую сторону, а разница суммируется в другой записи СУБД, во втором случае хакер получает доступ к статистическим данным
3. Атаки на уровне сетевого программного обеспечения. Сетевое программное обеспечение (СПО) наиболее уязвимо: перехват сообщений на маршрутизаторе, создание ложного маршрутизатора, навязывание сообщений, отказ в обслуживании

Перечислим возможности злоумышленника при реализации угроз, направленных на нарушение целостности передаваемых сообщений и подлинности их авторства:

А) Активный перехват. Нарушитель перехватывает передаваемые сообщения, изменяя их.

Б) Маскарад. Нарушитель посылает документ абоненту B, подписываясь именем абонента A.

В) Ренегатство. Абонент А заявляет, что не посылал сообщения абоненту B, хотя на самом деле посылал. В этом случае абонент А – злоумышленник.

Г) Подмена. Абонент B изменяет/формирует новый документ, заявляя, что получил его от абонента A. Недобросовестный пользователь – получатель сообщения B.

Для анализа целостности информации используется подход, основанный на вычислении контрольной суммы переданного сообщения и функции хэширования (алгоритма, позволяющего сообщение любой длины представить в виде короткого значения фиксированной длины).

H а всех этапах жизненного цикла существует угроза ЦИ (целостности информации):

При обработке информации нарушение ЦИ возникает вследствие технических неисправностей, алгоритмических и программных ошибок, ошибок и деструктивных действий обслуживающего персонала, внешнего вмешательства, действия разрушающих и вредоносных программ (вирусов, червей).

В процессе передачи информации – различного рода помехи как естественного, так и искусственного происхождения. Возможно искажение, уничтожение и перехват информации.

В процессе хранения основная угроза – несанкционированный доступ с целью модификации информации, вредоносные программы (вирусы, черви, логические бомбы) и технические неисправности.

В процессе старения – утеря технологий, способных воспроизвести информацию, и физическое старение носителей информации.

Угрозы ЦИ возникают на протяжении всего жизненного цикла информации с момента ее появления до начала утилизации.

Мероприятия по предотвращению утечки информации по техническим каналам включают в себя обследования помещений на предмет обнаружения подслушивающих устройств, а также оценку защищенности помещений от возможной утечки информации с использованием дистанционных методов перехвата и исследование ТС, где ведутся конфиденциальные разговоры.

Обеспечение целостности информации. Для обеспечения ЦИ необходимым условием является наличие высоконадежных технических средств (ТС), включающие в себя аппаратную и/или программную составляющие, и различные программные методы, значительно расширяющие возможности по обеспечению безопасности хранящейся информации . ТС обеспечивает высокую отказоустойчивость и защиту информации от возможных угроз. K ним относят средства защиты от электромагнитного импульса (ЭМИ). Наиболее эффективный метод уменьшения интенсивности ЭМИ – это экранирование – размещение оборудования в электропроводящем корпусе, который препятствует проникновению электромагнитного поля.

К организационным методам относят разграничение доступа , организующий доступ к информации к используемому оборудованию и предполагающий достаточно большой перечень мероприятий, начиная от подбора сотрудников и заканчивая работой с техникой и документами. Среди них выделяют технологии защиты,обработки и хранения документов, аттестацию помещений и рабочих зон, порядок защиты информации от случайных/несанкционированных действий. Особое внимания уделяют защите операционных систем (ОС), обеспечивающих функционирование практически всех составляющих системы. Наиболее действенный механизм разграничения доступа для ОС – изолированная программная среда (ИПС). Устойчивость ИКС к различным разрушающим и вредоносным программам повышает ИПС, обеспечивая целостность информации.

Антивирусная защита . В настоящее время под компьютерным вирусом принято понимать программный код, обладающий способностью создавать собственные копии и имеющие механизмы, внедряющие эти копии в исполняемые объекты вычислительной системы . Вредоносные программы (вирусы) имеют множество видов и типов, отличаясь между собой лишь способами воздействия на различные файлы, размещением в памяти ЭВМ или программах, объектами воздействия. Главное свойство вирусов, выделяющее их среди множества программ и делающее наиболее опасным, это способность к размножению.

ЦИ обеспечивает использование антивирусных программ, однако ни одна из них не гарантирует обнаружение неизвестного вируса. Применяемые эвристические сканеры не всегда дают правильный диагноз. Пример подобных ошибок – две антивирусные программы, запущенные на одном компьютере: файлы одного антивируса принимаются за вредоносную программу другим антивирусом.

Использование локальных сетей, не имеющих связи с интернетом – лучший способ защиты от вирусов. При этом необходимо жестко контролировать различные носители информации с прикладными программами, с помощью которых можно занести вирус .

Помехоустойчивое кодирование . Наиболее уязвимой информация бывает в процессе ее передачи. Разграничение доступа снимает многие угрозы, но она невозможна при использовании в канале

связи беспроводных линий. Информация наиболее уязвима именно на таких участках ИКС. Обеспечение ЦИ достигается засчет уменьшения объема передаваемой информации. Это уменьшение можно достичь за счет оптимального кодирования источника.

Метод динамического сжатия . При таком подходе структура сжатого сообщения включает в себя словарь и сжатую информацию. Однако, если в словаре при передаче или хранении есть ошибка, то возникает эффект размножения ошибок, приводящий к информационному искажению/уничтожению.

Стеганография. С этим термином знаком тот,кто занимается криптографией. Выделяют три направления стеганографии: сокрытие данных, цифровые водяные знаки и заголовки. При скрытой передаче информации одновременно с обеспечением конфиденциальности решается и вопрос обеспечения ЦИ. Нельзя изменить того, чего не видишь – главный аргумент использования стеганографии. Ее главный недостаток – больший объем контейнера. Но это можно нивелировать, передавая в качестве контейнера полезную информацию, не критичную к ЦИ.

Резервирование используется при передаче и хранении информации. При передаче возможен многократный повтор сообщения в одно направление либо его рассылка во все возможные направления. Данный подход можно рассматривать как один из методов ПКИ. При хранении идея резервирования достаточно проста – создание копий полученных файлов и их хранение отдельно от первоначальных документов. Зачастую такие хранилища создаются в географически разнесенных местах.

Недостаток резервирования – возможность ее несанкционированного снятия, т.к. информация, располагаемая на внешних устройствах хранения, является незащищенной.

Заключение . Любая информация, выводящаяся на монитор компьютера, прежде чем там появиться, подвергается кодированию, которое заключается в переводе информации на машинный язык. Он представляет собой последовательность электрических импульсов – нулей и единиц. Для кодирования различных символов существуют отдельные таблицы.

  • Андрианов, В.И. «Шпионские штучки» и устройства для защиты объектов и информации: справ. пособие / В.И. Андрианов, В.А. Бородин, А.В. Соколов. С- Пб.: Лань, 1996. – 272с.
  • Баранов, А.П. Проблемы обеспечения информационной безопасности в информационно-телекоммуникационной систем специального назначения и пути их решения // Информационное общество. - 1997. вып.1. - с. 13-17.
  • Количество просмотров публикации: Please wait

    На сегодняшний день кодировка ASCII представляет собой стандартом представления первых 128-значений (включая цифры и знаки препинания) английского алфавита, представленных в определенном порядке.

    Однако, даже 1 байт позволяет закодировать в 2 раза больше значений, то есть не 128, а целых 256 разных значений. Поэтому достаточно быстро на смену базовой ASCII стали появляться более расширенные варианты этой знаменитой и популярной по сей день кодировки, в которых кодировались также символы алфавитов и, соответственно, текста различных языков, в том числе и русского.

    Расширения ASCII для России

    На сегодняшний день для российских пользователей приоритетными являютсякодировка Windows1251 и кодировка юникод, а также UTF 8 , которые произошли от ASCII .

    Собственно говоря, у кого-то может возникнуть весьма справедливый вопрос: «А зачем вообще нужны эти кодировки текстов?»
    Стоит помнить, что компьютер - это всего-навсего машина, которая должна действовать четко по инструкциям. Чтобы было понятно, что нужно делать с каждым символом написанного, его представляют в виде набора векторных форм, каждый набор которых отправляет в нужное место, чтобы на экране появлялось то или иное обозначение.

    За формирование векторных форм отвечают шрифты, а сам процесс кодирования зависит от операционной системы, а также используемых в ней программ. Таким образом, каждый текст по своей сути - это некоторый набор байтов, в каждом из них представлена кодировка одного написанногосимвола. А программа, занимающаяся отображением напечатанной информации на экране (это может быть браузер или текстовый процессор), разбирает код, находит подходящее отображение по его коду в таблице кодировок, преобразует в необходимую векторную форму и отображает в текстовом файле.

    Кодировка CP866 и KOI8-R широко применялись до появления графической операционной системы, завоевавшей популярность во всем мире, - Windows . Теперь самой популярной кодировкой, поддерживающей русский, стала Windows1251 .

    Однако, она не единственная, поэтому у производителей шрифтов для русского, используемых в программном обеспечении, периодически даже до сих пор появляются затруднения, связанные с неверным отображением символов и появлением так называемой кракозябры. Эти несуразные иероглифы являются результатом некорректного использования таблиц кодировок, то есть при кодировании и декодировании использовались разные таблицы.

    Такая же ситуация имеет место и на сайтах, блогах и прочих ресурсах, где есть информация на русском и прочих иностранных символах, отличных от английских. Данная ситуация определила основную предпосылкой создания универсальной кодировки, позволяющей кодировать текст на любом языке, даже китайском, где символов значительно больше, чем 256.

    Универсальные кодировки

    Первой версией универсальной кодировки, разработанной в рамках консорциума Юникод, была кодировка UTF 32 . Для кодирования каждого символа использовалось 32 бита. Теперь была реализована возможность кодирования огромного количества знаков, но появилась другая проблема -большинству европейских стран такое число лишних символов было совершенно не нужно. Ведь документы получались очень тяжелыми. Поэтому на смену UTF 32 пришла UTF 16 , ставшая базовой для всех символов, используемых в нашей стране и не только.

    Но все равно оставалось достаточно много недовольных. Например, те, кто общался только на английском языке, так как при переходе с ASCII на UTF 16 их документы все равно увеличивались в размерах, причем существенно, практически в 2 раза.
    В результате появилась кодировка переменной длинны UTF 8 , что позволило не увеличивать вес текста.

    Кракозябры и методы борьбы с ними

    Вообще, кодировка задается на странице, где создается само информационное сообщение. В результате, в начале документа формируется своеобразная метка, в которой запоминается, в прямом или обратном порядке записаны коды символов UTF16 .

    Если что-то было напечатано в UTF-8 , то никакого маркера в начале нет, так как сама возможность записи кода символа в обратном порядке в этой кодировке отсутствует.

    Поэтому, следует сохранять все, что набрано в редакторе, без маркеров (BOM ), чтобы снизить вероятность появления кракозябров в документе.

    Еще одним полезным советом по борьбе с кракозябрами - прописать в шапке кода каждой страницы сайта информацию о правильной кодировке текста, чтобы ни на локальном хосте, ни на сервере не было путаницы.

    Например, так