Виды съемных носителей информации. Внешние носители информации

06.09.2019

Цели и задачи:

  • Поиск информации.

  • Выяснить принцип работы и объем информации дискеты, диска, винчестера.

  • Выявить достоинства и недостатки.


Виды носителей.

  • Носитель – это материальный объект, способный хранить информацию.

  • Носителями информации во внешней памяти современных компьютеров являются магнитные или оптические (лазерные) диски, магнитные ленты и некоторые другие.


Гибкие магнитные диски (дискеты).

    Накопитель на гибких дисках принципиально похож на накопитель на жестких дисках. Скорость вращения гибкого диска примерно в 10 раз медленнее, а головки касаются поверхности диска. В основном структура информации на дискете, как физическая так и логическая, такая же как на жестком диске. С точки зрения логической структуры на дискете отсутствует таблица разбиения диска.


Принцип работы дискеты.

    В приводе флоппи-диска (гибкого диска, или просто дискеты) имеются два двигателя: один обеспечивает стабильную скорость вращения вставленной в накопитель дискеты, а второй перемещает головки записи-чтения. Скорость вращения первого двигателя зависит от типа дискеты и составляет от 300 до 360 об/мин. Двигатель для перемещения головок в этих приводах всегда шаговый. С его помощью головки перемещаются по радиусу от края диска к его центру дискретными интервалами. В отличие от привода винчестера головки в данном устройстве не «парят» над поверхностью флоппи-диска, а касаются ее.


Оптический (лазерный) диск.

    Первые оптические лазерные диски появились в 1972 году и продемонстрировали большие возможности по хранению информации. Объемы хранимой на них информации позволяли использовать их для хранения огромных массивов данных (таких как базы данных, энциклопедии, коллекции видео и аудио данных). Легкая замена этих дисков позволяла, «носить с собой» все материалы требуемые для работы, в любом объеме. Оптические диски имели очень высокую надежность и долговечность, что позволяло использовать их для архивного хранения информации.


Принцип работы диска.

    Принцип работы дисковода напоминает принцип работы обычных дисководов для гибких дисков. Поверхность оптического диска (CD-ROM) перемещается относительно лазерной головки постоянной линейной скоростью, а угловая скорость меняется в зависимости от радиального положения головки. Луч лазера направляется на дорожку, фокусируясь при этом с помощью катушки. Луч проникает сквозь защитный слой пластика и попадает на отражающий слой алюминия на поверхности диска. При попадании его на выступ, он отражается на детектор и проходит через призму, отклоняющую его на светочувствительный диод. Если луч попадает в ямку он рассеивается и лишь малая часть излучения отражается обратно и доходит до светочувствительного диода. На диоде световые импульсы преобразуются в электрические, яркое излучение преобразуется в нули слабое - в единицы. Таким образом ямки воспринимаются дисководом как логические нули, а гладкая поверхность как логические единицы


Жесткий магнитный диск (винчестер).

  • Накопитель на жёстких магнитных дисках или винчестерский накопитель - это наиболее массовое запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины - плоттеры, обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации - программ и данных.


Принцип работы винчестера.

  • Поверхность плоттера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении плоттера над ним образуется воздушный слой , который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

  • Винчестерские накопители имеют очень большую ёмкость : от сотен Мегабайт до десятков Гбайт. У современных моделей скорость вращения шпинделя достигает 7200 оборотов в минуту, среднее время поиска данных - 10 мс, максимальная скорость передачи данных до 40 Мбайт/ с.

  • В отличие от дискеты, винчестерский диск вращается непрерывно .

  • Винчестерский накопитель связан с процессором через контроллер жесткого диска.

  • Все современные накопители снабжаются встроенным кэшем (64 Кбайт и более), который существенно повышает их производительность.


Достоинства и недостатки.


Вывод.

  • Рассмотрев все основные виды внешних носителей, мы пришли к выводу, что все они хороши в применении. Однако, в повседневной жизни я выбрала бы диск, т. к. он более распространен, легок в использовании, долговечнее других видов носителей.


Внешние носители информации

В этом разделе я расскажу о внешних носителях информации. Напомню, что в иерархии памяти они стоят последними. На них можно записать больше всего данных. Подобные накопители не так удобны (например, зачастую пользователю лень поменять компакт-диск), зато стоят совсем дешево.

Внешние носители – это не только диски или дискеты. К ним также относятся внешние жесткие диски, оптические приводы, USB-flash-карты и т. д.

Внешний жесткий диск

Внешние жесткие диски существуют достаточно давно. По строению они почти не отличаются от внутренних. Можно сказать, что это самые обычные винчестеры, но поставляемые не вместе с компьютером (в частности, с ноутбуком), а в специальном пластиковом корпусе.

Кроме жесткого диска, там размещена специальная микросхема, преобразующая сигналы для передачи по одному из разъемов, выведенных на ноутбуке или настольном ПК). Вы подключаете небольшую коробочку с помощью кабеля к компьютеру, и через несколько секунд операционная система определяет новый жесткий диск (рис. 4.11). Ее даже не придется перезагружать.

Рис. 4.11. Внешний жесткий диск формата 2,5”

Сегодня используется два способа подключения жесткого диска: через USB и FireWire. О первом типе говорилось уже не раз. Его назначение универсально, поэтому с ним совместимы не только мышь, клавиатура, принтер, сканер, но и некоторые внешние носители.

Какое-то время назад FireWire (он также известен как IEEE 1394 и i.Link) был доступен только для владельцев профессиональных и дорогих компьютеров, но сейчас он есть почти в каждом ноутбуке. Формально FireWire предпочтителен для подключения внешнего жесткого диска. Из-за лучшей защищенности он сможет обеспечить большую надежность и скорость передачи данных. Однако внешних жестких дисков, поддерживающих формат IEEE 1394, на рынке совсем немного. Чаще всего они совместимы и с USB 2.0.

Существует способ превратить обычный внутренний жесткий диск во внешний. В компьютерных магазинах есть неплохой выбор внешних кейсов для жестких дисков. Вам необходимо приобрести кейс и жесткий диск к нему. После чего по инструкции вставить винчестер внутрь – и все готово.

Важно соблюсти несколько правил. В предыдущей главе я говорил, что бывает несколько размеров винчестеров, самые распространенные – 3,5 и 2,5”. Первые используются в настольных компьютерах, вторые – в мобильных. Помните, что кейс может быть совместим только с одним из них.

Следует обратить внимание на интерфейс подключения. Это может быть Serial ATA (или SATA) и IDE (или UDMA, Ultra ATA). Необходимо, чтобы и жесткий диск, и кейс поддерживали один и тот же способ подключения. В противном случае ничего не будет работать.

Внешний оптический привод

Сегодня производители ноутбуков стараются оснастить каждую модель оптическим приводом для работы с компакт-дисками. В случае миниатюрных субноутбуков это сделать нельзя по вполне понятным причинам. Однако если вам необходимо работать с дисками, то выходом из ситуации станет приобретение внешнего оптического привода.

Как в случае с винчестерами, внешние приводы чаще всего являются внутренними версиями, заключенными в кейс. Они бывают разных размеров. Самые большие и тяжелые – аналоги приводов, устанавливаемых в настольные компьютеры. Наверное, их приобретать не следует. Во-первых, эти приводы довольно громоздкие, во-вторых, для работы может понадобиться дополнительная розетка, что говорит не в пользу мобильности.

При желании можно найти и «ноутбучный» внешний привод. Он будет намного компактнее и, конечно, дороже. Если вам нужна специальная версия для транспортировки, то именно такой вариант станет одним из лучших. «Одним из» потому, что есть модели, разработанные специально для переноса вместе с ноутбуком (рис. 4.12).

Рис. 4.12. Специальный привод, предназначенный для переноса с ноутбуком

Подобные оптические приводы базируются не на внутренних аналогах, что отрицательным образом сказывается на их стоимости. Зато удобство транспортировки на высоте.

Что касается способа подключения, то почти всегда это USB 2.0. Иногда к нему добавляется FireWire, но таких моделей не много.

Есть еще один вид внешних носителей – USB-flash-приводы (рис. 4.13), о которых мы уже не раз говорили. Этот тип носителей может оказаться для вас наиболее удобным.

Рис. 4.13. USB-накопитель на основе flash-памяти

Из книги Запись CD и DVD: профессиональный подход автора Бахур Виктор

Глава 1 Оптические носители информации Строение CD. Строение DVD. Правила эксплуатации компакт-дисков. Привод CD/DVD.В конце 1970-х годов компании Sony и Philips начали совместную разработку единого стандарта оптических носителей информации. Philips создала лазерный

Из книги Продвижение бизнеса в Интернет. Все о PR и рекламе в сети автора Гуров Филипп

Из книги Windows Vista без напряга автора Жвалевский Андрей Валентинович

3.4. Если принесли носители В наше время развелось довольно много типов так называемых внешних носителей данных – компакт-дисков, DVD, «флэшек» и т. д. Кое-кто еще использует старые добрые дискеты. С этими внешними носителями тоже надо уметь

Из книги Эффективное делопроизводство автора Пташинский Владимир Сергеевич

Внешние документы Для осуществления оперативных связей с организациями и гражданами в случае невозможности бездокументного обмена (личного или по телефону) составляются письма. При необходимости срочной передачи информации составляются телефонограммы или факсы, реже

Из книги Основы информатики: Учебник для вузов автора Малинина Лариса Александровна

1.2. Понятие информации. Общая характеристика процессов сбора, передачи, обработки и накопления информации Вся жизнь человека так или иначе связана с накоплением и обработкой информации, которую он получает из окружающего мира, используя пять органов чувств – зрение,

Из книги Новейший самоучитель работы на компьютере автора Белунцов Валерий

Глава 7 Сменные носители информации? Компакт-диски и DVD.? Flash-устройства.? Гибкие диски и LS-120.? Другие виды

Из книги TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) автора Фейт Сидни М

4.11.1 Носители для DIX Ethernet Традиционным магистральным носителем для данной технологии является узкополосный коаксиальный кабель. Первоначально применялся жесткий полудюймовый кабель с сопротивлением 50 Ом. Позднее стал использоваться тонкий и более гибкий коаксиальный

Из книги Информатика: аппаратные средства персонального компьютера автора Яшин Владимир Николаевич

4.15.1 Конфигурация и носители для Token-Ring Локальные сети Token-Ring были представлены компанией IBM, а позднее IEEE стандартизировал их как протокол 802.5. Станции в сети Token-Ring образуют физическое

Из книги Цифровой журнал «Компьютерра» № 179 автора Журнал «Компьютерра»

6.7.2.2. Внешние накопители информации на жестких магнитных дисках Внешние (переносные) накопители информации на жестких магнитных дисках, также как и внутренние НЖМД, предназначены для долговременного хранения больших объемов информации (десятки и сотни гигабайт) и

Из книги Linux глазами хакера автора Флёнов Михаил Евгеньевич

Анализ поправок, принятых Госдумой, к закону «Об информации, информационных технологиях и о защите информации» Сергей Голубицкий Опубликовано 26 июня 2013 21 июня Государственная Дума РФ приняла сразу во втором и третьем чтении Федеральный Закон «О

Из книги Интернет-маркетинг. Полный сборник практических инструментов автора Вирин Федор Юрьевич

11.3. Внешние DNS-серверы Если в локальном файле /etc/hosts не найдено записи о нужном имени, то компьютер должен запросить эту информацию у DNS-сервера. Для этого нужно знать IP-адрес этого самого сервера. Как система его узнает? Из файла /etc/resolv.conf, который должен выглядеть примерно

Из книги Восстановление данных на 100% автора Ташков Петр Андреевич

13.4.6. Носители Теперь рассмотрим, сколько носителей нам понадобится для хранения всех резервных копий. Для каждого типа данных нужны свои носители, потому что их копирование происходит с разной периодичностью и рассматривать их надо отдельно:? конфигурационные файлы. Мы

Из книги iOS. Приемы программирования автора Нахавандипур Вандад

Из книги Ноутбук [секреты эффективного использования] автора Пташинский Владимир

Носители и накопители Информация, о восстановлении которой пойдет речь в этой книге, существует в двоичном виде на различных устройствах хранения, или носителях. С точки зрения обычного пользователя, носитель – это устройство, способное хранить информацию и выдавать ее

Из книги автора

12.2. Запись информации в файлы и считывание информации из файлов Постановка задачи Требуется сохранить на диске информацию (например, текст, данные, изображения и

Из книги автора

Внешние повреждения Внешние повреждения – то, на что необходимо обратить внимание еще до того, как вы заплатите деньги. В первую очередь осмотрите корпус ноутбука на наличие трещин. По большому счету о подобных дефектах вам должны будут сказать сразу. Кроме того, если они

Человек для запоминания любой информации использует собственную память, но, как известно она не безгранична, поэтому, чтобы что-то не забыть он пользуется записной книжкой, бумажным ежедневником и прочими средствами, способными хранить текстовые или графические записи. Компьютер тоже можно сравнить с человеческим организмом в плане запоминания, вот только вместо записной книжки он использует различные носители информации, на которые в цифровом формате заносятся данные и хранятся там заданное количество времени (вплоть до бесконечности).

На сегодняшний день различаются носители информации нескольких форматов, каждый из которых имеет свои особенности и уникальные достоинства. В первую очередь стоит отметить, что носители информации бывают внешними и внутренними, это, пожалуй, две самых обширных группы, каждая из которых делится еще на несколько направлений. Не нужно изучать терминологию и вдаваться в подробности, чтобы понять суть каждой из этих групп. Внутренние носители информации располагаются внутри общей системы и не могут по желанию извлекаться или устанавливаться, а внешние напортив, отличаются мобильностью и возможностью перемещения от машины к машине.

Одно из главных достоинств, которыми отличаются внутренние носители информации, это их объем, то есть размер информации, которая может быть на них записана. Недостаток их в том, что их можно использовать, только разобрав часть корпуса компьютера. Внешние носители информации можно легко извлекать и подключать к устройствам через общераспространенный порт, но их объем имеет ограничение.

Внешние носители информации.

Наверняка у каждого человека есть «флешка», она может иметь разъем USB или вставляться в слот (мини, микро и т.д.), это самые распространенные варианты внешних носителей информации. Самый распространенный максимальный размер таких накопителей ограничивается объемом 64 Гб, но есть модели и с большими показателями, но пока они имеют слишком большую стоимость, чтобы быть широкодоступными.

Чтобы заиметь внешний носитель информации большого объема придется приобрести внешний жесткий диск, который по характеристикам сопоставим с моделями внутреннего базирования, но имеет удобный порт для сопряжения с различными устройствами. Он достаточно громоздкий, но очень объемный. Здесь нужно выбирать или скромные габариты, или скромные объемы.

Отдельного упоминания заслуживают носители информации USB флешки с необычным дизайном, это своего рода полезный сувенир, который можно преподнести в качестве презента. Так сказать, и польза, и красота в одном выражении. Подарить такой носитель информации можно любому человеку и по любому поводу.

Внутренние носители информации.

В отличие от внешних моделей, внутренние имеют гораздо более скромное выражение, причем во всех отношениях. Единственное неоспоримое достоинство таких моделей, это их размер, который уже исчисляется в терабайтах, что для внешних носителей лишь заоблачная перспектива.

Внутренние носители информации делятся на всем известные жесткие диски (винчестеры), то есть традиционная система с вращающимися частями. Так же можно воспользоваться более современными моделями без вращающихся элементов, которые чаще всего ставятся на ноутбуки, моноблоки, а также на традиционные системные блоки. Поскольку любые внутренние носители информации не доступны глазу окружающих, их дизайну не уделяется никакого внимания, это безликие «коробочки» с высокотехнологичной «начинкой». Внутренний носитель информации может стать отличным подарком, но лишь, в том случае, если доподлинно известно, что такая вещь нужна одариваемому.

В эпоху становления человеческого общества людям хватало стен пещеры, чтобы зафиксировать нужную им информацию. Такая «база данных» целиком уместилась бы да флэш-карте размером в мегабайт. Однако за последние несколько десятков тысяч лет объем информации, которой вынужден оперировать человек, существенно возрос. Теперь для хранения данных широко используются дисковые накопители и облачные хранилища данных.

Считается, что история записи информации и ее хранения началась около 40 тыс. лет назад. Поверхности скал и стены пещер сохранили изображения представителей животного мира позднего палеолита. Гораздо позже в обиход вошли пластинки из глины. На поверхности такого древнего «планшета» человек мог наносить изображения и делать записи посредством заостренной палочки. Когда глиняный состав высыхал, запись фиксировалась на носителе. Недостаток глиняной формы хранения информации очевиден: такие таблички отличались хрупкостью и недолговечностью.

Примерно пять тысяч лет назад в Египте стали использовать более совершенный носитель информации - папирус. Сведения заносили на особые листы, которые изготовлялись из специально обработанных стеблей растения. Этот вид хранения данных был более совершенным: листы папируса легче глиняных табличек, писать на них гораздо удобнее. Данный вид хранения информации дожил в Европе до XI века новой эры.

В другой части света - в Южной Америке - хитроумные инки изобрели тем временем узелковое письмо. Информация в данном случае закреплялась при помощи узлов, которые в определенной последовательности завязывали на нити или веревке. Существовали целые «книги» из узелков, где фиксировались сведения о численности населения империи инков, о налоговых сборах, хозяйственной деятельности индейцев.

Впоследствии основным носителем информации на планете на несколько веков стала бумага. Ее применяли для печатания книг и средств массовой информации. В начале XIX века стали появляться первые перфокарты. Их делали из плотного картона. Эти примитивные машинные носители информации стали широко использовать для механического счета. Они нашли применение, в частности, при проведении переписей населения, их использовали и для управления ткацкими станками. Человечество вплотную приблизилось к технологическому прорыву, который произошел в XX веке. На смену механическим устройствам пришла электронная техника.

Что такое носители информации

Все материальные объекты способны нести в себе какую-либо информацию. Принято считать, что носители информации наделены вещественными свойствами и отражают определенные отношения между объектами действительности. Материальные свойства объектов определяются характеристиками веществ, из которых выполнены носители. Свойства отношений находятся в зависимости от качественных особенностей процессов и полей, посредством которых носители информации проявляются в материальном мире.

В теории информационных систем принято подразделять носители информации по происхождению, форме и размеру. В самом простом случае носители информации делят на:

  • локальные (к примеру, жесткий диск персонального компьютера);
  • отчуждаемые (съемные дискеты и диски);
  • распределенные (ими могут считаться линии связи).

Последний вид (каналы связи) можно при определенных условиях считать как носителями информации, так и средой для ее передачи.

В самом общем смысле носителями информации могут считаться разные по своей форме объекты:

  • бумага (книги);
  • пластинки (фотопластинки, граммофонные пластинки);
  • пленки (фото-, кинопленка);
  • аудиокассеты;
  • микроформы (микрофильм, микрофиша);
  • видеокассеты;
  • компакт-диски.

Многие носители информации известны с древних времен. Это каменные плиты с нанесенными на них изображениями; глиняные таблички; папирус; пергамент; береста. Гораздо позже появились иные искусственные носители информации: бумага, различные виды пластмассы, фотографические, оптические и магнитные материалы.

Информация заносится на носитель посредством изменения каких-либо физических, механических или химических свойств рабочей среды.

Общие сведения об информации и способах ее хранения

Любое природное явление так или иначе связано с сохранением, преобразованием и передачей информации. Она может быть дискретной или непрерывной.

В самом общем смысле носитель информации - это некая физическая среда, которую можно использовать для регистрации изменений и накопления информации.

Требования к искусственным носителям информации:

  • высокая плотность записи;
  • возможность неоднократного использования;
  • большая скорость считывания информации;
  • надежность и долговечность хранения данных;
  • компактность.

Отдельная классификация разработана для носителей информации, применяемых в электронно-вычислительных комплексах. К таким носителям информации относят:

  • ленточные носители;
  • дисковые носители (магнитные, оптические, магнитооптические);
  • флэш-носители.

Такое деление носит условный характер и не является исчерпывающим. При помощи особых устройств на компьютерной технике можно работать с традиционными аудио- и видеокассетами.

Характеристики отдельных носителей информации

В свое время наибольшую популярность получили магнитные носители информации. Данные в них представлены в виде участков магнитного слоя, который наносится на поверхность физического носителя. Сам носитель может иметь вид ленты, карты, барабана или диска.

Информация на магнитном носителе сгруппирована в зоны с промежутками между ними: они необходимы для качественной записи и считывания данных.

Носители информации ленточного типа используются для резервного копирования и хранения данных. Они представляют собой магнитную ленту объемом до 60 Гб. Иногда такие носители имеют вид ленточных картриджей значительно большего объема.

Дисковые носители информации могут быть жесткими и гибкими, сменными и стационарными, магнитными и оптическими. Они имеют обычно форму дисков или дискет.

Магнитный диск имеет вид пластмассового или алюминиевого плоского круга, который покрыт магнитным слоем. Фиксация данных на таком объекте осуществляется путем магнитной записи. Магнитные диски бывают переносными (сменными) или несменными.

Гибкие магнитные диски (флоппи-диски) имеют объем 1,44 Мб. Они упакованы с особые пластмассовые корпуса. Иначе такие носители информации именуют дискетами. Назначение их - временное хранение информации и перенос данных с одного компьютера на другой.

Жесткий магнитный диск нужен для постоянного хранения данных, которые часто используются в работе. Такой носитель представляет собой пакет их сцепленных между собой нескольких дисков, заключенных в прочный герметичный корпус. В обиходе жесткий диск часто называют «винчестером». Емкость такого накопителя может достигать нескольких сотен Гб.

Магнитооптический диск - это носитель информации, помещенный в особый пластиковый конверт, называемый картриджем. Это универсальное и очень надежное вместилище данных. Его отличительная черта - высокая плотность хранимой информации.

Принцип записи информации на магнитный носитель

Принцип записи данных на магнитный носитель основан на использовании свойств ферромагнетиков: они способны сохранять намагниченность после снятия действующего на них магнитного поля.

Магнитное поле создает соответствующая магнитная головка. В ходе записи двоичный код принимает форму электрического сигнала и подается на обмотку головки. Когда ток протекает через магнитную головку, вокруг нее формируется магнитное поле определенной напряженности. Под действием такого поля в сердечнике образуется магнитный поток. Его силовые линии замыкаются.

Магнитное поле взаимодействует с носителем информации и создает в нем состояние, которое характеризуется некоторой магнитной индукцией. Когда импульс тока прекращается, носитель сохраняет свое состояние намагниченности.

Чтобы воспроизвести запись, используют считывающую головку. Магнитное поле носителя замыкается через сердечник головки. Если носитель перемещается, изменяется магнитный поток. В считывающую головку поступает сигнал воспроизведения.

Одна из важных характеристик магнитного носителя информации - плотность записи. Она находится в прямой зависимости от свойств магнитного носителя, типа магнитной головки и ее конструкции.




Гибкие магнитные диски (дискеты). Накопитель на гибких дисках принципиально похож на накопитель на жестких дисках. Скорость вращения гибкого диска примерно в 10 раз медленнее, а головки касаются поверхности диска. В основном структура информации на дискете, как физическая так и логическая, такая же как на жестком диске. С точки зрения логической структуры на дискете отсутствует таблица разбиения диска.


Принцип работы дискеты. В приводе флоппи-диска (гибкого диска, или просто дискеты) имеются два двигателя: один обеспечивает стабильную скорость вращения вставленной в накопитель дискеты, а второй перемещает головки записи-чтения. Скорость вращения первого двигателя зависит от типа дискеты и составляет от 300 до 360 об/мин. Двигатель для перемещения головок в этих приводах всегда шаговый. С его помощью головки перемещаются по радиусу от края диска к его центру дискретными интервалами. В отличие от привода винчестера головки в данном устройстве не «парят» над поверхностью флоппи-диска, а касаются ее.


Оптический (лазерный) диск. Первые оптические лазерные диски появились в 1972 году и продемонстрировали большие возможности по хранению информации. Объемы хранимой на них информации позволяли использовать их для хранения огромных массивов данных (таких как базы данных, энциклопедии, коллекции видео и аудио данных). Легкая замена этих дисков позволяла, «носить с собой» все материалы требуемые для работы, в любом объеме. Оптические диски имели очень высокую надежность и долговечность, что позволяло использовать их для архивного хранения информации.


Принцип работы диска. Принцип работы дисковода напоминает принцип работы обычных дисководов для гибких дисков. Поверхность оптического диска (CD-ROM) перемещается относительно лазерной головки постоянной линейной скоростью, а угловая скорость меняется в зависимости от радиального положения головки. Луч лазера направляется на дорожку, фокусируясь при этом с помощью катушки. Луч проникает сквозь защитный слой пластика и попадает на отражающий слой алюминия на поверхности диска. При попадании его на выступ, он отражается на детектор и проходит через призму, отклоняющую его на светочувствительный диод. Если луч попадает в ямку он рассеивается и лишь малая часть излучения отражается обратно и доходит до светочувствительного диода. На диоде световые импульсы преобразуются в электрические, яркое излучение преобразуется в нули слабое - в единицы. Таким образом ямки воспринимаются дисководом как логические нули, а гладкая поверхность как логические единицы


Жесткий магнитный диск (винчестер). Накопитель на жёстких магнитных дисках или винчестерский накопитель это наиболее массовое запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины плоттеры, обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации программ и данных.


Принцип работы винчестера. Поверхность плоттера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении плоттера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска. Винчестерские накопители имеют очень большую ёмкость: от сотен Мегабайт до десятков Гбайт. У современных моделей скорость вращения шпинделя достигает 7200 оборотов в минуту, среднее время поиска данных 10 мс, максимальная скорость передачи данных до 40 Мбайт/ с. В отличие от дискеты, винчестерский диск вращается непрерывно. Винчестерский накопитель связан с процессором через контроллер жесткого диска. Все современные накопители снабжаются встроенным кэшем (64 Кбайт и более), который существенно повышает их производительность.


Достоинства и недостатки. Носители.Достоинства.Недостатки. Дискета Компактная, низкая цена. Маленькая скорость обмена информацией, небольшой объем памяти, Диск Долговечный, удобный в применении. Информация недостаточно защищена, хрупкий. Винчестер Объем памяти существенно выше, чем гибких; скорость обмена информацией намного больше. Немобильный.