Цифровая схемотехника. В2

08.05.2019
25 апреля 2010 в 16:16

Самостоятельное изучение схемотехники. Основные понятия. Часть 1

  • Электроника для начинающих

Изучение цифровой схемотехники нужно начинать с теории автоматов. В этой статье можно найти некоторые элементарные вещи, которые помогут не потеряться в дальнейших статьях. Я постарался сделать статью легкочитабельной и уверен, что неподготовленный читатель сможет в ней легко разобраться.


Сигнал - материальный носитель информации, используемый для передачи сообщений по системе связи. Сигнал, в отличие от сообщения, может генерироваться, но его приём не обязателен (сообщение должно быть принято принимающей стороной, иначе оно не является сообщением, а всего лишь сигналом).

В статье рассматривается цифровой дискретный сигнал. Это такой сигнал, который имеет несколько уровней. Очевидно, что двоичный сигнал имеет два уровня - и их принимают за 0 и 1. Когда высокий уровень обозначается единицей, а низкий нулем - такая логика называется позитивной, иначе негативной.

Цифровой сигнал можно представить в виде временной диаграммы.

В природе дискретных сигналов не существует, по этому их заменяют аналоговыми. Аналоговый сигнал не может перейти из 0 в 1 мгновенно, по этому такой сигнал обладает фронтом и срезом .
Если рисовать упрощенно то это выглядит так:

1 - низкий уровень сигнала, 2 - высокий уровень сигнала, 3 - нарастание сигнала (фронт), 4 - спад сигнала (срез)

Сигналы можно преобразовывать. Для этого на практике используются логические элементы, а чтобы это записать формально используются логические функции. Вот основные:

Отрицание - инвертирует сигнал.
На схемах обозначается так:

Логическое ИЛИ (логическое сложение, дизъюнкция)

На схеме:

Логическое И (логическое умножение, конъюнкция)

На схеме:

Последние два могут иметь отрицание на выходе (И-НЕ, ИЛИ-НЕ). Значения их логических функций инвертируются, а на схеме выход рисуется кружочком.

Сводная таблица логических функций двух аргументов выглядит так:

Работа с логическими функциями основывается на законах алгебры логики , основы которых изложены в прикрепленном файле. Так же там есть задания для самоконтроля и контрольные вопросы по теме.

Проектирование логических схем с помощью функций алгебры логики

Логической схемой называется совокупность логических электронных элементов, соединенных между собой таким образом, чтобы выполнялся заданный закон функционирования схемы, иначе говоря, - выполнялась заданная логическая функция.
По зависимости выходного сигнала от входного все электронные логические схемы можно условно разбить на:

Схемы первого рода , т.е. комбинационные схемы , выходной сигнал которых зависит только от состояния входных сигналов в каждый момент времени;

Схемы второго рода или накапливающие схемы (схемы последовательностные ), содержащие накапливающие схемы (элементы с памятью ), выходной сигнал которых зависит как от входных сигналов, так и от состояния схемы в предыдущие моменты времени.

По количеству входов и выходов схемы бывают: с одним входом и одним выходом, с несколькими входами и одним выходом, с одним входом и несколькими выходами, с несколькими входами и выходами.

По способу осуществления синхронизации схемы бывают с внешней синхронизацией (синхронные автоматы), с внутренней синхронизацией (асинхронные автоматы являются их частным случаем).

Практически любой компьютер состоит из комбинации схем первого и второго рода разной сложности. Таким образом, основой любого цифрового автомата, обрабатывающего цифровую информацию, являются электронные элементы двух типов: логические или комбинационные и запоминающие . Логические элементы выполняют простейшие логические операции над цифровой информацией, а запоминающие служат для ее хранения. Как известно, логическая операция состоит в преобразовании по определенным правилам входной цифровой информации в выходную.

Можно считать, что элементарные логические функции являются логическими операторами упомянутых электронных элементов, т.е. схем. Каждая такая схема обозначается определенным графическим символом. (Они были представлены выше - Элементы И, ИЛИ, НЕ, ИЛИ-НЕ, И-НЕ)

В качестве примера ниже представлена схема электрическая функциональная логического преобразователя (комбинационного автомата), реализующего логическую функцию в элементном базисе из логических элементов И, ИЛИ, НЕ.

Для закрепления предлагаю, самостоятельно синтезировать логическую схему, реализующую следующие логические функции:

Сделать это можно к примеру в Electronic workbench.

Вот для примера первое выполненное задание:

Томский межвузовский центр дистанционного образования

А.В. Шарапов

МИКРОЭЛЕКТРОНИКА

ЦИФРОВАЯ СХЕМОТЕХНИКА

Учебное пособие

T Q 1

переходов

&D 3

ТОМСК – 2007

Рецензент: зав. кафедрой промышленной и медицинской электроники Томского политехнического университета, д-р техн. наук, проф. Г.С. Евтушенко; начальник отдела ФГУП «НПЦ «Полюс», д-р техн. наук Ю.М. Казанцев

Корректор: Тарасова Л.К.

Шарапов А.В.

Микроэлектроника: Учебное пособие. - Томск: Томский межвузовский центр дистанционного образования, 2007. - 158 с.

Излагаются принципы построения и функционирования логических элементов, дешифраторов, мультиплексоров, сумматоров, цифровых компараторов, триггеров, счетчиков, регистров, микросхем памяти. Рассмотрены примеры синтеза цифровых устройств комбинационного типа и цифровых автоматов.

Пособие предназначено для студентов вузов радиоэлектронного профиля и содержит краткий конспект лекций, примеры решения задач и компьютерный лабораторный практикум по цифровой схемотехнике. Студенты дистанционной формы обучения выполняют две лабораторные работы, одну компьютерную контрольную работу и сдают компьютерный экзамен.

Шарапов А.В., 2007Томский межвузовский центр

дистанционного образования, 2007

1 Введение..........................................................................................

2 Основные понятия микроэлектроники..................................

Виды сигналов.........................................................................

Классификация микросхем и их условные обозначения....

3 Математические основы цифровой электроники.................

Позиционные системы счисления.........................................

Таблица истинности................................................................

Совершенная дизъюнктивная нормальная форма...............

Основные законы булевой алгебры.......................................

Диаграммы Венна...................................................................

Карты Карно............................................................................

Этапы синтеза цифрового устройства...................................

Примеры синтеза цифровых устройств................................

Мажоритарный логический элемент.....................................

4 Базовые логические элементы..................................................

Классификация логических элементов.................................

Базовый элемент ТТЛ.............................................................

Логический расширитель.......................................................

Элемент с открытым коллектором........................................

Элемент с Z-состоянием на выходе.......................................

Базовый элемент ТТЛШ.........................................................

Базовая схема ЭСЛ..................................................................

Базовые элементы КМОП......................................................

4.10 Основные характеристики логических элементов.............

4.11 Примеры микросхем логических элементов......................

4.12 Микросхемы на основе арсенида галлия............................

5 Цифровые устройства комбинационного типа.....................

Шифратор................................................................................

Дешифратор.............................................................................

Преобразователи двоичного кода в двоично-десятичный,

и наоборот...............................................................................

Дешифратор для управления семисегментным

индикатором...........................................................................

Преобразователи кода Грея....................................................

Мультиплексор........................................................................

Реализация функций с помощью мультиплексора..............

Двоичный сумматор...............................................................

Двоично-десятичный сумматор.............................................

Схемы вычитания..................................................................

Преобразователь прямого кода в дополнительный...........

Цифровой компаратор..........................................................

Контроль четности................................................................

Примеры построения комбинационных цифровых

устройств................................................................................

6 Цифровые устройства последовательностного типа............

Классификация триггеров......................................................

Асинхронный RS-триггер......................................................

Тактируемый RS-триггер.......................................................

D-триггеры...............................................................................

T-триггер..................................................................................

JK-триггер................................................................................

Классификация счетчиков......................................................

Асинхронный двоичный счетчик..........................................

Асинхронный двоично-десятичный счетчик........................

Синхронный двоичный счетчик..........................................

Реверсивные счетчики..........................................................

Счетчики с произвольным модулем счета..........................

Регистры сдвига....................................................................

Регистры памяти...................................................................

Универсальные регистры.....................................................

Кольцевой регистр................................................................

Кольцевой счетчик................................................................

Счетчики на регистрах сдвига.............................................

Примеры построения цифровых устройств

последовательностного типа...............................................

7 Полупроводниковые запоминающие устройства...............

Классификация запоминающих устройств.........................

ПЗУ масочного типа.............................................................

Однократно программируемые ПЗУ...................................

Перепрограммируемые ПЗУ................................................

ОЗУ статического типа.........................................................

ОЗУ динамического типа.....................................................

Примеры микросхем памяти................................................

Организация блока памяти...................................................

8 Примеры решения задач.........................................................

9 Компьютерный практикум по цифровой схемотехнике...

10 Варианты творческих заданий.............................................

11 Пример выполнения творческого задания.........................

Список литературы......................................................................

Приложение. Условные графические обозначения

микросхем ....................................................................................

1 ВВЕДЕНИЕ

Электроникой называют раздел науки и техники, занимающийся:

– исследованием физических явлений и разработкой приборов, действие которых основано на протекании электрического тока в твердом теле, вакууме или газе;

изучением электрических свойств, характеристик и параметров названных приборов ;

практическим применением этих приборов в различных устройствах и системах.

Первое из указанных направлений составляет область физической электроники . Второе и третье направления составляют областьтехнической электроники.

Схемотехника электронных устройств - это инженерное воплощение принципов электроники для практической реализации электронных схем, призванных выполнять конкретные функции генерирования, преобразования и хранения сигналов, несущих информацию в слаботочной электронике и функции преобразования энергии электрического тока в сильноточной электронике.

Исторически электроника явилась следствием возникновения и быстрого развития радиотехники . Радиотехнику определяют как область науки и техники, занимающуюся исследованиями, разработкой, изготовлением и применением устройств и систем, предназначенных для передачи информации по радиочастотным каналам связи.

В основе радиотехники лежат научные открытия XIX века: работы М. Фарадея (англ.), выяснившего закономерности взаимодействия электрического и магнитных полей; Дж. Максвелла (англ.), обобщившего элементарные законы электромагнетизма и создавшего систему уравнений, описывающих электромагнитное поле. Дж. Максвелл теоретически предсказал новый вид электромагнитных явлений - электромагнитные волны, распространяющиеся в пространстве со скоростью света. Г. Герц (нем.) экспериментально подтвердил существование электромагнитных волн.

Первый радиоприемник был изобретен, сконструирован и успешно испытан в 1895 г. А.С. Поповым (рус.). Годом позже радиосвязь осуществил Г. Маркони (итал.), запатентовавший свое изобретение и ставший Нобелевским лауреатом в 1909 году.

С этих пор развитие радиотехники определялось развитием

ее элементной базы, которая в основном определяется достижениями электроники. Интересно вкратце проследить за основными этапами развития ее элементной базы.

Простейший электронный прибор - вакуумный диод - был изобретен Т. Эдиссоном (амер.) в 1883 г., который вмонтировал металлический электрод в баллон электрической лампы накаливания и зарегистрировал ток одного направления во внешней цепи. В 1904 г. Дж. Флемминг (англ.) впервые применил вакуумный диод в качестве детектора в радиоприемнике. Усилительный электровакуумный прибор - триод - был изобретен Луи де Форестом (амер.) в 1906 г. С этих пор в течение первой четверти ХХ столетия в ряде научных лабораторий многих стран мира происходило медленное созревание технологий электровакуумных приборов. В России это направление возглавил руководитель нижегородской лаборатории М.А. Бонч-Бруевич. Уже в 1922 г. сотрудники этой лаборатории построили в Москве первую

в мире радиовещательную станцию им. Коминтерна мощностью 12 кВт. А к 1927 г. было построено 57 таких станций. В 1925 г. была создана генераторная лампа мощностью 100 кВт. В 1933 г. в России вступила в строй мощнейшая в мире (500 кВт) радиостанция. Первый телевизионный передатчик мощностью 15 кВт введен в строй в Москве в 1948 г. А.И. Берг в 1927–1929 гг. создал классическую теорию передатчиков. В.А. Котельниковым в период с 1933 по 1946 гг. доказана теорема квантования по времени, заложившая основу цифровых методов обработки сигналов, показана возможность радиосвязи на одной боковой полосе и опубликована теория потенциальной помехоустойчивости.

Период с 1920 по 1955 гг. был эрой ламповой электроники. Первый полупроводниковый триод - транзистор - создан

в 1948 г. Дж. Бардиным и У. Браттейном (амер.). С 1955 г. начинается эра полупроводниковой электроники. Первые интегральные схемы появились в 1960-е годы. Первый микропроцессор датируется 1971 г.

В 1998 году транзистор отметил свой полувековой юбилей:

в последний июньский день 1948 года американская фирма «Bell telephon laboratoris» продемонстрировала общественности только что изобретенный электронный прибор, о котором назавтра «НьюЙорк Таймс» сообщила буднично и без пафоса: «Рабочие элементы прибора состоят из двух тонких проволочек, прижатых к кусочку полупроводникового вещества... Вещество усиливает ток, подводимый к нему по одной проволочке, а другая проволочка отводит усиленный ток. Прибор под названием «транзистор» в некоторых случаях можно использовать вместо электронных ламп».

Да, именно так выглядел первый транзистор, и неудивительно, что даже специалисты не сразу смогли разглядеть его триумфальное будущее. А между тем представленный прибор мог усиливать и генерировать электрические сигналы, а также выполнять функцию ключа, по команде открывающего или запирающего электрическую цепь. И, что принципиально важно, все это осуществлялось внутри твердого кристалла, а не в вакууме, как это происходит в электронной лампе. Отсюда следовал целый набор потенциальных достоинств транзистора: малые габариты, механическая прочность, высокая надежность, принципиально неограниченная долговечность. Через три-четыре года, когда были разработаны значительно более совершенные конструкции транзисторов, все эти ожидаемые достоинства начали становиться реальностью.

Честь открытия транзисторного эффекта, за которое в 1956 году была присуждена Нобелевская премия по физике, принадлежит У. Шокли, Дж. Бардину, У. Браттейну. Характерно, что все трое были блистательными физиками, целенаправленно шедшими к этому открытию. Шокли, руководитель группы исследователей, еще в предвоенные годы читал лекции по квантовой теории полупроводников и подготовил фундаментальную монографию, которая надолго стала настольной книгой для специалистов в этой области. Высочайшая квалификация Бардина как физика-теоретика подтверждена не только изобретением транзистора и предсказанием ряда эффектов в поведении полупроводников, но и тем, что позднее, в 1972 году, совместно с двумя другими исследователями он был повторно удостоен Нобелевской премии - теперь за создание теории сверхпроводимости. Браттейн, самый старший в группе, к моменту изобретения

транзистора имел за плечами пятнадцатилетний опыт исследования поверхностных свойств полупроводников.

Хотя само открытие транзисторного эффекта явилось до некоторой степени счастливой случайностью (говоря сегодняшним языком, они пытались изготовить полевой транзистор, а изготовилибиполярный ), теоретическая подготовка исследователей позволила им практически мгновенно осознать открытое и предсказать целый ряд гораздо более совершенных устройств. Иными словами, создание транзистора оказалось под силу лишь физикам, которые по необходимости владели еще и минимумом изобретательских навыков.

У нас в стране транзистор был воспроизведен в 1949 году во фрязинской лаборатории, возглавляемой А.В. Красиловым, крупным ученым, обладающим широчайшей эрудицией.

Первые транзисторы изготавливались на основе полупроводника германия и допускали рабочую температуру лишь до 70 °С, а этого во многих прикладных задачах было недостаточно.

Во второй половине пятидесятых годов в развитии транзисторов произошел решающий качественный скачок: вместо германия стали использовать другой полупроводник - кремний. В итоге рабочая температура транзисторов выросла до 120–150 °С, при этом их характеристики сохраняли высокую стабильность, а срок службы приборов стал практически бесконечным. Но, пожалуй, главное заключалось в том, что в 1959 году американской фирмой «Firechild» применительно к кремнию была разработана так называемаяпланарная технология. Принципиальным здесь было то, что тончайшая пленка диоксида кремния, выращенная при высокой температуре на поверхности кристалла, надежно защищает кремний от агрессивных воздействий и является отличным изолятором. В этой пленке создают «окна», через которые, также при высокой температуре, в полупроводник вводят легирующие добавки, - так изготавливаются фрагменты будущего прибора. Затем на изолированную от объема поверхность напыляют тонкопленочные алюминиевые токоподводы к активным зонам - и транзистор готов. Особенностями процесса является то, что все воздействия на пластину осуществляются в одной плоскости и что обеспечивается одновременная обработка тысяч и миллионов

транзисторов на пластине, а это ведет к высочайшей степени воспроизводимости изделий и высокой производительности.

Методами планарной технологии легко обеспечить изоляцию транзисторов от подложки и друг от друга, а отсюда лишь шаг до создания интегральной схемы (микросхемы ), т. е. созда-

ния электронной схемы с активными и пассивными компонентами и их соединениями на едином кристалле в едином технологическом процессе. Этот шаг был сделан в том же 1959 году. Мир вступил в эру микроэлектроники .

Типичная микросхема представляет собой кремниевый кристаллик (чип), в приповерхностной области которого изготовлено множество транзисторов, соединенных между собой пленочными алюминиевыми дорожками в заданную электрическую схему. В первой микросхеме «множество» состояло всего лишь из 12 транзисторов, но уже через два года уровень интеграции превысил сто элементов на чипе, а к середине 60-х годов стали доминировать большие интегральные схемы (БИС), содержащие тысячи элементов, затем - сверхбольшие (СБИС) и т. д.

Микросхема обладает тем большей информационной мощностью, чем большее количество транзисторов она содержит, т. е. чем выше плотность интеграции (плотность упаковки активных элементов в кристалле). А она определяется минимальными размерами активного элемента и площадью кристалла, которые способна воспроизводить технология.

Изложенные в данном учебном пособии основы цифровой схемотехники формируют схемотехнические навыки построения цифровых устройств на базе интегральных микросхем. Изучается принцип работы простейших логических элементов и методы проектирования на их основе преобразователей кодов, сумматоров, цифровых коммутаторов, триггеров, регистров, счетчиков, микросхем памяти. Проверить работу многих устройств можно путем компьютерного моделирования с помощью пакета Electronics Workbench.

Рекомендуемый список литературы включает прежде всего справочники по цифровым интегральным микросхемам. Из других источников, используемых в данном учебном пособии, хочется отметить работы доцентов ТУСУРа Потехина В.А. и Шибаева А.А. , которым автор выражает искреннюю благодарность.

Изучение цифровой схемотехники нужно начинать с теории автоматов. В этой статье можно найти некоторые элементарные вещи, которые помогут не потеряться в дальнейших статьях. Я постарался сделать статью легкочитабельной и уверен, что неподготовленный читатель сможет в ней легко разобраться.


Сигнал - материальный носитель информации, используемый для передачи сообщений по системе связи. Сигнал, в отличие от сообщения, может генерироваться, но его приём не обязателен (сообщение должно быть принято принимающей стороной, иначе оно не является сообщением, а всего лишь сигналом).

В статье рассматривается цифровой дискретный сигнал. Это такой сигнал, который имеет несколько уровней. Очевидно, что двоичный сигнал имеет два уровня - и их принимают за 0 и 1. Когда высокий уровень обозначается единицей, а низкий нулем - такая логика называется позитивной, иначе негативной.

Цифровой сигнал можно представить в виде временной диаграммы.

В природе дискретных сигналов не существует, по этому их заменяют аналоговыми. Аналоговый сигнал не может перейти из 0 в 1 мгновенно, по этому такой сигнал обладает фронтом и срезом .
Если рисовать упрощенно то это выглядит так:

1 - низкий уровень сигнала, 2 - высокий уровень сигнала, 3 - нарастание сигнала (фронт), 4 - спад сигнала (срез)

Сигналы можно преобразовывать. Для этого на практике используются логические элементы, а чтобы это записать формально используются логические функции. Вот основные:

Отрицание - инвертирует сигнал.
На схемах обозначается так:

Логическое ИЛИ (логическое сложение, дизъюнкция)

На схеме:

Логическое И (логическое умножение, конъюнкция)

На схеме:

Последние два могут иметь отрицание на выходе (И-НЕ, ИЛИ-НЕ). Значения их логических функций инвертируются, а на схеме выход рисуется кружочком.

Сводная таблица логических функций двух аргументов выглядит так:

Работа с логическими функциями основывается на законах алгебры логики , основы которых изложены в прикрепленном файле. Так же там есть задания для самоконтроля и контрольные вопросы по теме.

Проектирование логических схем с помощью функций алгебры логики

Логической схемой называется совокупность логических электронных элементов, соединенных между собой таким образом, чтобы выполнялся заданный закон функционирования схемы, иначе говоря, - выполнялась заданная логическая функция.
По зависимости выходного сигнала от входного все электронные логические схемы можно условно разбить на:

Схемы первого рода , т.е. комбинационные схемы , выходной сигнал которых зависит только от состояния входных сигналов в каждый момент времени;

Схемы второго рода или накапливающие схемы (схемы последовательностные ), содержащие накапливающие схемы (элементы с памятью ), выходной сигнал которых зависит как от входных сигналов, так и от состояния схемы в предыдущие моменты времени.

По количеству входов и выходов схемы бывают: с одним входом и одним выходом, с несколькими входами и одним выходом, с одним входом и несколькими выходами, с несколькими входами и выходами.

По способу осуществления синхронизации схемы бывают с внешней синхронизацией (синхронные автоматы), с внутренней синхронизацией (асинхронные автоматы являются их частным случаем).

Практически любой компьютер состоит из комбинации схем первого и второго рода разной сложности. Таким образом, основой любого цифрового автомата, обрабатывающего цифровую информацию, являются электронные элементы двух типов: логические или комбинационные и запоминающие . Логические элементы выполняют простейшие логические операции над цифровой информацией, а запоминающие служат для ее хранения. Как известно, логическая операция состоит в преобразовании по определенным правилам входной цифровой информации в выходную.

Можно считать, что элементарные логические функции являются логическими операторами упомянутых электронных элементов, т.е. схем. Каждая такая схема обозначается определенным графическим символом. (Они были представлены выше - Элементы И, ИЛИ, НЕ, ИЛИ-НЕ, И-НЕ)

В качестве примера ниже представлена схема электрическая функциональная логического преобразователя (комбинационного автомата), реализующего логическую функцию в элементном базисе из логических элементов И, ИЛИ, НЕ.

Для закрепления предлагаю, самостоятельно синтезировать логическую схему, реализующую следующие логические функции:

Сделать это можно к примеру в Electronic workbench.

Вот для примера первое выполненное задание:

PAGE 173

Курс лекций Техническая электроника

Лекция 26

ОСновы цифровой схемотехники

26.1 логические элементы

В цифровых вычислительных машинах, устройствах автоматики и обработки информации используют устройства, осуществляющие логические операции.

Логическая операция - это преобразование по правилам алгебры логики (или булевой алгебры) входной цифровой информации в выходную.

Простейшее в функциональном отношении логическое устройство, выполняющее одну определенную логическую операцию над входными сигналами, называют логическим элементом .

В алгебре логики истинность суждения или высказывания о результатах той или иной логической операции обозначают символом 1, ложность - 0. Таким образом, логические переменные в алгебре логики принимают лишь два значения: единицу и нуль . Их называют двоичными переменными. Чтобы реализовать алгебру логики на электронных элементах, необходимо значение параметров этих элементов перевести на язык алгебры логики (0 или 1). Задавать значения параметров можно уровнем напряжения или полярностью импульсов.

Если сигналы подают в виде высокого (положительной или отрицательной полярности) и низкого (близкого к нулю) уровня напряжения, то такой способ подачи сигнала называют потенциальным. Если высокому уровню напряжения U 1 приписывают значение "единица", а низкому U ° - "нуль", то логику называют положительной (позитивной) , в противном случае - отрицательной (негативной). Разность уровней единицы и нуля называют логическим перепадом U л = U 1 - U 0 . Он должен быть значительным, иначе нельзя будет четко отделить один уровень от другого.

Если сигналы подают в импульсной форме, то такой способ подачи сигнала называют импульсным. При этом логической единице соответствует наличие импульса, логическому нулю - отсутствие импульса (положительная логика). Сигналы, соответствующие 1 (или 0), могут быть на входе и выходе разными. Наибольшее распространение получили потенциальные логические элементы, так как их можно изготовлять по технологии интегральных микросхем.

Элементарные логические операции и типы логических элементов .

Система логических элементов, на базе которой можно строить логическую схему любой сложности, называется функционально полной . Основными и наиболее простыми логическими элементами являются элементы, выполняющие операции отрицания (НЕ), конъюнкции (И), дизъюнкции (ИЛИ). Они составляют функционально полную систему и являются системой минимального базиса. Каждая из этих операций и логических элементов имеет и другое название (табл. 26.1).

Таблица 26.1 Таблица истинности четырёх логических элементов

В этой таблице даны названия логических элементов, обозначение данной операции, показано, как читается запись операции, обозначаются логические элементы в функциональных схемах, а также таблица истинности для случая, когда имеется два входа и один выход. Таблица истинности содержит правила и результат выполнения операций. В каждой ее строке записывают состояние сигналов на входах (х 1 , х 2 ) и результат логической операции на выходе (у). В общем случае логический элемент может иметь n входов и n выходов.

Функционально полную систему могут обеспечить составные (комбинированные) логические элементы, выполняющие логические операции И - НЕ, ИЛИ - НЕ . Их названия, обозначения также даны в табл. 26.1.

Логические элементы выполняют как на дискретных приборах, так и методами интегральной технологии. Для большинства серий интегральных микросхем базисной системой являются составные логические элементы И - НЕ или ИЛИ - НЕ. Их выпускают в виде отдельных микроминиатюрных устройств в герметичном корпусе.

Рассмотрим логические элементы на полупроводниковых приборах. Логические элементы И и ИЛИ могут выполняться на резисторах, диодах, биполярных и полевых транзисторах и туннельных диодах. Элемент НЕ выполняется на транзисторах.

Составные логические элементы на разных ступенях могут выполняться на различных приборах (резисторах, диодах, транзисторах, как биполярных, так и полевых), т. е. могут иметь разные схемные варианты. В соответствии с конструкцией их называют логикой типа резисторно-транзисторной (РТЛ); диодно-транзисторной (ДТЛ); транзисторно-транзисторной (на биполярных транзисторах - ТТЛ; на полевых - р-канальная МОПТЛ, n -канальная МОПТЛ; на комплементарных полевых транзисторах - КМОП или КМОПТЛ; на транзисторах с эмиттерными связями - ТЛЭС или ЭСЛ).

Специфической логикой на транзисторах является инжекционная логика - И2Л, она не имеет аналогов в транзисторных схемах на дискретных элементах. Связь между ступенями логических элементов осуществляется либо непосредственно, либо через резистор, либо через RC -цепочку. Тогда в название логики добавляют соответствующие буквенные обозначения: НСТЛ - транзисторная логика с непосредственной связью; НСТЛМ - транзисторная логика с непосредственной связью на МОП-транзисторе; РЕТЛ - транзисторная логика с резистивно-емкостной связью.

Основные логические элементы в дискретном исполнении .

Логический элемент НЕ (табл. 26.1) имеет один вход и один выход и выполняет операцию НЕ. Он представляет собой усилительный каскад на биполярном или полевом транзисторе, работающий в ключевом режиме. На рис. 26.1 показан элемент НЕ на биполярном npn транзисторе, включенном по схеме с ОЭ.

Элемент предназначен для работы с сигналами положительной полярности в положительной логике. Транзистор T закрыт отрицательным потенциалом на базе, подаваемым от источника ЕБ. При подаче на вход элемента сигнала низкого уровня U вх = U 0 , соответствующего логическому 0, транзистор остается закрытым, коллекторный ток равен нулю, т. е. через резистор R K ток не проходит и на выходе напряжение U вых = +E K , т. е. высокого уровня U 1 , соответствующего логической 1.

При высоком уровне напряжения на входе U вх = U 1 транзистор находится в режиме насыщения, появляется коллекторный ток и на резисторе R K создается падение напряжения, примерно равное E K , а на выходе напряжение примерно равно нулю (U вых = U 0 ), т. е. будет логический нуль. Итак, если х = 0, то y = 1, если x = 1, то y = 0, т. е. элемент является инвертором - выполняет операцию отрицания .

Замечание: Следует отметить, что если элемент выполнен на кремниевом транзисторе n-р-n-структуры, источник смещения E Б можно не включать, так как и при положительных потенциалах на базе (до 0,6 В) транзистор практически закрыт.

Логический элемент И (табл. 26.1)

Может иметь два (или более) входа и один выход и работать как при потенциальных, так и импульсных сигналах. Аналогом его может служить схема из последовательно включенных контактов реле. Рассмотрим работу элемента И, выполненного на диодах.

Элемент, предназначенный для работы с сигналами в виде напряжений (или импульсов) положительной полярности в положительной логике , показан на рис. 26.3, а. Он имеет три входа и один выход. Элемент реализует операцию И, если сигнал 1 появляется на выходе только тогда, когда одновременно на всех входах присутствует сигнал 1 . При этом, если хотя бы на одном входе присутствует сигнал, соответствующий логическому нулю, он должен передаваться через открытый диод на выход и обеспечивать запирание тех диодов, на которые со стороны входа воздействуют сигналы, соответствующие логической 1. Будем считать, что сопротивление открытого диода R доткр << R, а потенциалы сигнала и источника питания E схемы имеют значения, удовлетворяющие соотношению U 0 < Е < U 1 .

Если на одном из входов цепи, например Bх 1 действует сигнал U 0 , то диод Д 1 будет открыт и ток пройдет по цепи +E, резистор R, диод Д 1 , источник U 0 . Все напряжение источника Е приложится к резистору R и на выходе напряжение окажется равным U 0 , т. е. сигнал на выходе - логический нуль. На остальных входах действует высокий потенциал U 1 , поэтому диоды закрыты, так как их анод подсоединен к зажиму на выходе с низким потенциалом U 0 , а катоды - к высокому положительному потенциалу U 1 .

Если на всех входах действует напряжение U 1 , то все диоды будут закрыты, ток в цепи +E K , R, закрытый диод, источник U 1 не проходит и падение напряжения на резисторе R равно нулю. На выходе напряжение E > U 0 , что соответствует логической 1. Таким образом, если хотя бы на один из входов воздействует сигнал, соответствующий логическому нулю, сигнал на выходе также соответствует логическому нулю. Сигнал на выходе соответствует логической 1 только если сигналы на всех входах соответствуют логической единице.

На рис. 26.3,б, г, д показаны элементы, предназначенные соответственно для работы с сигналами отрицательной полярности в положительной логике, положительной (рис. 26.3, г) и отрицательной (рис. 26.3, д) полярности в отрицательной логике. Отметим, что один и тот же элемент может работать как от положительных, так и от отрицательных сигналов, но полярность включения источника питания для положительных сигналов должна быть положительной (+E), для отрицательных сигналов - отрицательной (-E). Работают элементы так же, как и элемент на рис. 26.3, а. Наиболее распространены элементы, показанные на рис. 26.3, а, д.

Элемент И может работать и без источника питания. В этом случае возможны только два варианта включения диода, причем элемент на рис. 26.3, в реализует операцию И только от сигналов отрицательной полярности в положительной логике, а элемент на рис. 26.3, е - только от сигналов положительной полярности в отрицательной логике. Элементы без источника питания менее предпочтительны, чем с источником питания.

Логический элемент ИЛИ (табл. 26.1)

Может иметь два (и более) входа, один выход и работать как при потенциальных, так и при импульсных сигналах. Аналогом его может служить схема из параллельно включенных реле.

Рассмотрим элемент ИЛИ, выполненный на диодах и предназначенный для работы от сигналов в виде напряжений (импульсов) положительной полярности в положительной логике. Для того чтобы элемент реализовал операцию ИЛИ, необходимо, чтобы сигнал на выходе имел значение 1 только тогда, когда хотя бы на одном из входов действует сигнал 1 . При этом сигнал 1 на входе должен обеспечивать запирание всех диодов, на которые со стороны входа воздействует сигнал 0. Соотношение потенциалов источника сигналов низкого U 0 и высокого U 1 уровней и источника питания Е схемы такое же, как и в схеме элемента И: U 0 < E < U 1 (если U 1 < E, то диоды будут всегда закрыты и выходное напряжение не будет изменяться). Сопротивление диода в открытом состоянии R Доткр ≈ 0.

Если на все входы подано низкое напряжение U 0 , все диоды закрыты, так как потенциал их анодов ниже потенциала катодов (φ K = -E); следовательно, напряжение на выходе равно E < U 1 , т. е. на выходе сигнал соответствует логическому 0. При подаче хотя бы на один из входов, например Вх 1 , высокого напряжения U 1 откроется диод Д 1 , который подключен к этому входу, а так как сопротивление открытого диода равно нулю, то потенциал φ K = +U 1 и на выходе имеется сигнал U 1 (логическая 1). Если в это время на какие-то диоды со стороны входа будет подан низкий потенциал U 0 , они окажутся закрытыми, так как их катодам сообщится потенциал φ K = +U 1 . Таким образом, на выходе сигнал будет соответствовать логической 1, если хотя бы на одном из входов (или первом, или втором, или третьем) сигнал соответствует логической 1.

Сравним рис. 26.5, а, на котором показан элемент ИЛИ, предназначенный для работы от сигналов положительной полярности в отрицательной логике, с рис. 26.3, г. Они одинаковы. Таким образом, можно отметить, что элемент ИЛИ в положительной логике может выполнить операцию И в отрицательной логике, и наоборот. Все элементы И на рис. 26.3 в другой логике, чем для элемента И, реализуют операцию ИЛИ.

Элемент ИЛИ, как и элемент И, может не содержать источника питания. Элемент на рис. 26.5,б предназначен для работы от сигналов положительной полярности в положительной логике, а на рис. 26.5, в - от сигналов отрицательной полярности в отрицательной логике. Сравнение этих элементов ИЛИ с элементами И на рис. 26.3, в, е подтверждает, что оба элемента могут выполнять обе операции: и И, и ИЛИ; элемент И (ИЛИ) - в положительной логике, в отрицательной логике - ИЛИ (И).

Операции ИЛИ - НЕ и И - НЕ образуются путем инверсии результатов, получаемых при выполнении операции ИЛИ и И соответственно:

ИЛИ - НЕ (26.1)

И - НЕ (26.2)

что видно из таблицы истинности для двух входных элементов (табл. 26.2).

Таблица 26.2 - таблица истинности для двух входных элементов

Элемент, выполняющий операцию И - НЕ в положительной логике (табл. 26.3), в отрицательной логике выполнит операцию ИЛИ - НЕ (табл. 26.4).

Таблица 26.3 Таблица 26.4

Логические элементы в интегральном исполнении предназначают для работы с сигналами в потенциальной форме. Они могут выполняться по логике разных типов. Тип логики влияет на характеристики элемента. В интегральных биполярных микросхемах чаще используют кремниевые транзисторы n-p-n-типа (см. замечание к элементу НЕ). В режиме насыщения напряжение между эмиттером и коллектором таких транзисторов сравнительно велико (0,4 В и выше).

Лекция 27

ОСновы цифровой схемотехники

27.1 логические элементы на транзисторах

Логический элемент И - НЕ диодно-транзисторной логики (ДТЛ). Входные сигналы подаются на элемент И, выходной сигнал снимается с элемента НЕ . Таким образом, на выходе элемента И - НЕ сигналом будет логическая 1, если на входе элемента НЕ присутствует сигнал, соответствующий логическому 0. Чтобы это имело место, хотя бы на один вход элемента И должен быть подан сигнал, соответствующий логическому 0. Логический элемент И - НЕ для сигналов положительной полярности показан на рис. 27.1. Он представляет собой соединение через диоды Д с двух элементов: диодного элемента И и транзисторного элемента НЕ (см. соответственно рис. 26.3, а и рис. 26.1, на которых показаны элементы НЕ и И). При этом элемент "НЕ" не имеет источника смещения E Б , исходя из сделанного ранее замечания о работе кремниевых транзисторов. Кроме того, значения напряжений, соответствующих логическим 0 и 1, необходимо выбрать должным образом, так как при напряжении на базе, несколько меньшем 0,6В, транзистор будет закрыт, а в режиме насыщения напряжение между эмиттером и коллектором равно 0,4 В (и выше).

Рассмотрим работу элемента. Если на все входы подано напряжение U 1 (логическая 1), все диоды (Д 1 Д 2 , Д 3 ) будут закрыты и ток в цепи источник E 1 , резистор R 1 , открытые диоды Дc пройдет в базу транзистора. Вследствие падения напряжения на резисторе R 1 потенциал φ 1 окажется несколько ниже потенциала +E 1 , диод Д 1 будет открыт и потенциал базы φ Б транзистора меньше потенциала φ 1 на значение падения напряжения на диодах Дc (но выше 0,6В, так что транзистор будет находиться в режиме насыщения). На выходе элемента НЕ установится низкое напряжение U 0 , соответствующее логическому 0. Если хотя бы на один вход, например Вх 1 , будет подано напряжение U 0 , то соответствующий диод Д 1 будет открыт и потенциал φ 1 будет ≈ U 0 . Ток от источника E 1 будет проходить через резистор R 1 . Часть тока замкнется через открытый диод Д 1 ; источник U 0 , источник E 1 , часть - через смещающие диоды Дc, резистор R 2 и источник E 1 . Потенциал базы φ Б = U БЭ будет ниже потенциала φ 1 на значение падения напряжения на смещающих диодах Дc. При этом элемент рассчитывают таким образом, чтобы падение напряжения на диодах Дc было таким, чтобы φ Б = U БЭ > 0, но значительно меньше 0,6В. В этом случае транзистор будет закрыт и на выходе элемента НЕ напряжение окажется равным E K > U 0 , т. е. получим логическую 1.

Логический элемент И - НЕ транзисторно-транзисторной логики (ТТЛ) . Простейший элемент И - НЕ показан на рис. 27.2, а. Он состоит из двух частей: элемента И на многоэмиттерном транзисторе Т 1 и элемента НЕ на транзисторе Т 2 . Связь непосредственная: коллектор Т 1 соединен с базой транзистора Т 2 . Смещение в цепи базы транзистора Т 2 выполняет коллекторный переход Т 1 . Три эмиттерных перехода Т 1 подключенных к входу элемента (рис. 27.2,б), выполняют функции входных диодов в схеме И на диодах.

По сравнению с ДТЛ-элементами элементы ТТЛ обладают более высоким быстродействием. Элемент выполнен по технологии интегральных микросхем, поэтому он не содержит реактивных элементов. Он работает от сигналов в виде напряжений положительной полярности.

Рассмотрим принцип работы подобных элементов. Если на все входы подать напряжение U 1 , то все эмиттерные переходы сместятся в обратном направлении. Потенциал коллектора транзистора Т 2 окажется близким нулю, переход база - коллектор смещен в прямом направлении за счет источника +E K . Транзистор T 1 будет в инверсном режиме, транзистор Т 2 - в режиме насыщения. Коллекторный ток транзистора T 1 втекает в базу транзистора Т 2 , оставляя последний в режиме насыщения. Таким образом, на выходе будет напряжение низкого уровня U 0 , т. е. логический 0.

Если на один из входов подано напряжение U 0 , то потенциал базы транзистора T 1 станет выше потенциалов эмиттера и коллектора, поэтому T 1 окажется в режиме насыщения и ток базы замкнется через эмиттерные переходы T 1 и не поступит в его коллектор, а следовательно, и в базу T 2 . Поэтому транзистор T 2 будет закрыт, а на его выходе - напряжение высокого уровня (логическая 1). Таким образом, элемент выполняет операцию И - НЕ, так как сигнал логического нуля на выходе может быть только тогда, когда на все входы будет подан сигнал логической единицы.

27.2.1 Логический элемент ИЛИ - НЕ п-канальной МОП-транзисторной логики (МОПТЛ ). В логических схемах на полевых транзисторах используют только МОП-транзисторы с диэлектриком SiO 2 . Основные преимущества схем на МОП-транзисторах по сравнению с другими схемами - высокая степень интеграции и повышенная помехоустойчивость.

Рассмотрим схему ИЛИ - НЕ на МОП-транзисторе с индуцированным n-каналом (рис. 27.3). В отличие от рассмотренных ранее схем в ней вместо нагрузочного резистора R K имеется МОП-транзистор (на схеме рис. 27.3 он обозначен Т K ). Это связано с тем, что нагрузочный резистор сильно увеличил бы площадь схемы. Логические транзисторы Т 1 и Т 2 включены параллельно. Входное напряжение на каждом из них равно напряжению затвора: U ВХ1 = U ЗИ1 , U ВХ2 = U ЗИ2 ; выходное напряжение равно напряжению стока: U ВЫХ = U СИ . Напряжение питания обычно выбирают в три раза большим порогового Uпор (Uпор - напряжение на затворе, при котором образуется канал).

Если Uпор = 2,0В, то логический перепад (разность между входным и пороговым напряжениями) составляет 4 В. Логические уровни соответствуют выходным напряжениям открытого и закрытого транзисторов. Если на оба входа подать напряжение меньше порогового (соответствующее логическому нулю), то транзисторы T 1 и Т 2 окажутся закрытыми, а ток стока - практически равным нулю. При этом ток стока нагрузочного транзистора Т K тоже будет равен нулю. Поэтому на выходе установится напряжение, близкое к напряжению источника питания Е C и соответствующее логической 1.

Если на вход хотя бы одного транзистора подать напряжение, превышающее пороговое (соответствующее логической 1), то этот транзистор откроется и появится ток стока. Тогда на выходе схемы будет остаточное напряжение, значительно меньшее порогового, что соответствует логическому 0.

27.2.2 МОП-транзисторная логика на комплементарных транзисторах (КМОП). Отличительной особенностью схем КМОП по сравнению с биполярными технологиями (ТТЛ, ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения состояний). Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами (N-МОП, P-МОП) является наличие как n-, так и p-канальных полевых транзисторов (рис. 27.4); как следствие, КМОП-схемы обладают более высокой скоростью действия и меньшим энергопотреблением, однако при этом характеризуются более сложным технологическим процессом изготовления и меньшей плотностью упаковки.

Для примера рассмотрим схему вентиля 2И-НЕ, построенного по технологии КМОП (рисунок 27.5).

Если на оба входа A и B подан высокий уровень, то оба транзистора снизу на схеме открыты, а оба верхних закрыты, то есть выход соединён с землёй.

Если хотя бы на один из входов подать низкий уровень, соответствующий транзистор сверху будет открыт, а снизу закрыт. Таким образом, выход будет соединён с напряжением питания и отсоединён от земли.

В схеме нет никаких нагрузочных сопротивлений, поэтому в статическом состоянии через КМОП-схему протекают только токи утечки через закрытые транзисторы, и энергопотребление очень низкое. При переключениях электрическая энергия тратится в основном на заряд емкостей затворов и проводников, так что потребляемая (и рассеиваемая) мощность пропорциональна частоте этих переключений (например, тактовой частоте процессора).

Схема 2ИЛИ-НЕ (рисунок 27.6) работает следующим образом: когда на оба входа подан низкий уровень, оба транзистора вверху открыты и на выход подаётся высокий уровень. Если на один из входов подать высокий уровень, тогда один из транзисторов снизу будет открыт и выход будет соединён с землёй.

На рисунке с топологией микросхемы 2И-НЕ можно заметить, что в ней используются два двухзатворных полевых транзистора разных конструкций. Верхний двухзатворный полевой транзистор выполняет логическую функцию 2ИЛИ, а нижний двухзатворный полевой транзистор выполняет логическую функцию 2И.

Ниже приведена схема 2ИЛИ-НЕ, применяемая на ОАО "Интеграл".

Все обозначения на рисунке 27.6 взяты с библиотеки вентильного уровня ОАО "Интеграл". Там же (в библиотеке) приведены временные задержки и рассеиваеме мощности при различных нагрузках вентиля и его топоплогическая реализация.

Подавляющее большинство современных логических микросхем, в том числе, процессоров, используют схемотехнику КМОП.

„ ЦИФРОВАЯ СХЕМОТЕХНИКА ”

ХАРЬКОВ 2006

Предисловие

1 ЛОГИЧЕСКИЕ И СХЕМОТЕХНИЧЕСКИЕ ОСНОВЫ ЦИФРОВОЙ МИКРОСХЕМОТЕХНИКИ

1.2 Логические элементы

2 КОМБИНАЦИОННЫЕ СХЕМЫ

2.1 Основные положения

2.2 Дешифраторы

2.3 Шифраторы

2.4 Демультиплексоры

2.5 Мультиплексоры

2.6 Арифметические устройства

3 ТРИГГЕРНЫЕ УСТРОЙСТВА

3.1 Основные понятия

3.2 Асинхронный RS-триггер

3.3 Синхронные триггеры

4 РЕГИСТРЫ

4.2 Регистры памяти

4.3 Сдвигающие регистры

4.4 Реверсивные регистры

4.5 Универсальные регистры

5 СЧЕТЧИКИ

5.4 Реверсивные счетчики

ПРЕДИСЛОВИЕ

Данное методическое пособие содержит информацию, которая обеспечивает изучение дисциплин:

- «Цифровая схемотехника» для студентов специальности 5.091504 (Обслуживание компьютерных и интеллектуальных систем и сетей);

- «Микросхемотехника» для студентов специальности 5.090805 (Конструирование, производство и техническое обслуживание изделий электронной техники);

- «Электронные приборы и микроэлектроника» для студентов специальности 5.090704 (Конструирование, производство и техническое обслуживание радиотехнических устройств).

Материал, который представлен в данной работе, предназначен для ознакомления студентов с основами современной цифровой микросхемотехники и включает основные виды цифровых устройств, которые широко используются и как самостоятельные изделия в виде микросхем малой и средней степени интеграции, и в составе микросхем высокой степени интеграции: микропроцессоров и микроконтроллеров.

Методическое пособие состоит из пяти разделов:

Логические и схемотехнические основы цифровой микросхемотехники,

Комбинационные схемы,

Триггерные устройства,

Регистры,

Счетчики.

Изложение материала построено таким образом, чтобы последовательно «от простого к сложному» представить основные теоретические принципы анализа и синтеза цифровых устройств. Каждый раздел содержит подразделы, в которых дается информация об условном графическом обозначении изучаемого устройства, приводится его таблица функционирования, функциональная или принципиальная схема и временные диаграммы работы там, где это требуется. Каждой из схем дается подробное описание логики ее работы с таким расчетом, чтобы каждый изучающий предмет освоил принципы анализа работы цифровых схем и приобрел необходимые навыки. Каждая из приведенных схем является типичной для данного устройства. При этом не исключается другая схемная реализация.

Основные понятия, определения, правила выделены «жирным» шрифтом, чтобы сделать освоение предмета более удобным и наглядным.

Учитывая, что изложение материала проводится в порядке возрастания сложности изучаемых цифровых устройств и при этом каждая последующая тема базируется на материале предыдущей, целесообразно пользоваться данным методическим пособием в той последовательности, в которой расположены соответствующие разделы.

Данное пособие полезно использовать не только при изучении теоретических основ цифровой микросхемотехники, но и при подготовке к выполнению лабораторных работ, целью которых является углубление знаний и приобретение практических навыков по сборке и отладке цифровых устройств. Пособием можно пользоваться для самостоятельного изучения, а также при курсовом и дипломном проектировании.

1 ЛОГИЧЕСКИЕ и схемотехнические ОСНОВЫ ЦИФРОВОЙ МИКРОСХЕМОТЕХНИКИ

1.1 Основные понятия алгебры логики

Логика - это наука о законах и формах мышления.

Математическая логика - наука о применении математических методов для решения логических задач.

Все цифровые вычислительные устройства построены на элементах, которые выполняют те или иные логические операции. Одни элементы обеспечивают переработку двоичных символов, представляющих цифровую или иную информацию, другие - коммутацию каналов, по которым передается информация, наконец, третьи - управление, активизируя различные действия и реализуя условия их выполнения.

Электрические сигналы, действующие на входах и выходах названных элементов, имеют, как правило, два различных уровня и, следовательно, могут быть представлены двоичными символами, например 1 или 0. Условимся обозначать свершение какого-либо события (например, наличие высокого уровня напряжения в какой-либо точке схемы) символом 1. Этот символ называют логической единицей. Отсутствие какого-либо события обозначим символом 0, называемым логическим нулем.

Таким образом, каждому сигналу на входе или выходе двоичного элемента ставится в соответствие логическая переменная, которая может принимать лишь два значения: состояние логической единицы (событие истинно) и состояние логического нуля (событие ложно). Эти переменные называют булевыми по имени английского математика Дж. Буля, который еще в девятнадцатом столетии разработал основные положения математической логики. Обозначим логическую переменную символом х.

Различные логические переменные могут быть связаны функциональными зависимостями. Например, выражение у = f (x1, х2) указывает на функциональную зависимость логической переменной у от логических переменных х1 и х2, называемых аргументами или входными переменными.

Любую логическую функцию всегда можно представить в виде совокупности простейших логических операций. К таким операциям относятся:

Отрицание (операция «НЕ»);

Логическое умножение (конъюнкция, операция «И»);

Логическое сложение (дизъюнкция, операция «ИЛИ»).

Отрицание (операция «НЕ») - это такая логическая связь между входной логической переменной х и выходной логической переменной у, при которой у истинно только тогда, когда х ложно, и, наоборот, у ложно только тогда, когда истинно х. Изобразим данную функциональную зависимость в виде таблицы 1.1, которая называется таблицей истинности.

Таблица истинности - это таблица, отображающая соответствие всех возможных комбинаций значений двоичных аргументов значениям логической функции.

Таблица 1.1- Таблица истинности операции «НЕ»

x y
0 1
1 0

Логическая функция НЕ переменной у записывается как у = и читается «у есть не х». Если, например, х - утверждение о наличии сигнала высокого уровня (логической единицы), то y соответствует утверждению о наличии сигнала низкого уровня (логического нуля).

Логическое умножение (конъюнкция, операция «И») - это такая функция, которая истинна только тогда, когда одновременно истинны все умножаемые переменные. Таблица истинности операции логического умножения соответствует таблице 1.2.

Таблица 1.2- Таблица истинности операции логического умножения

х2 х1 y
0 0 0
0 1 0
1 0 0
1 1 1

Операция «И» обозначается точкой ( ). Иногда точка подразумевается. Например, операция «И» между двумя переменными х1 и х2 обозначается как у = х1 х2.

Логическое сложение (дизъюнкция, операция «ИЛИ») – это такая функция, которая ложна только тогда, когда одновременно ложны все слагаемые переменные. Таблица истинности операции логического сложения соответствует таблице 1.3. Операция «ИЛИ» обозначается знаком V. Например, у = x1 V х2.

Таблица 1.3 - Таблица истинности операции логического сложения

х2 х1 y
0 0 0
0 1 1
1 0 1
1 1 1

1.2 Логические элементы

1.2.1 Общие сведения о логических элементах

Логические элементы - это электронные схемы, реализующие простейшие логические функции.

Логические элементы, схематически представляются в виде прямоугольников, на поле которых изображается символ, обозначающий функцию, выполняемую данным элементом. Например, на рисунке 1.1 показаны условные обозначения элементов, реализующих логические функции НЕ, И, ИЛИ, И- НЕ, ИЛИ- НЕ.

Рисунок 1.1-Условные обозначения логических элементов НЕ, И, ИЛИ, И-НЕ, ИЛИ-НЕ

Входные переменные принято изображать слева, а выходные - справа. Считается, что передача информации происходит слева направо.

Если выходы одних элементов соединить со входами других, то получим схему, реализующую более сложную функцию. Совокупность различных типов элементов, достаточных для воспроизведения любой логической функции, назовем логическим базисом. Элементы И и НЕ представляют такой логический базис.

Логический базис может состоять всего лишь из одного типа элементов, например элемента типа И─НЕ, схема которого показана на рис. 1.2.

Рисунок 1.2- Схема получения элемента И-НЕ

Универсальность элемента И─НЕ обеспечила ему широкое применение при создании логических устройств цифровой вычислительной техники.

Существует и ряд других элементов, реализующих простейшие логические функции. К их числу, например, относится элемент суммирования по модулю два (исключающее ИЛИ), реализующий функцию неравнозначности двух переменных:

Таблица истинности и условное обозначение такого элемента показаны на рис. 1.3.

Х2 Х1 У
0 0 0
0 1 1
1 0 1
1 1 0

Рисунок 1.3 - Таблица истинности и условное обозначение элемента «исключающее ИЛИ»

Функция неравнозначности равна единице лишь в случае, когда переменные xl и х2 имеют разные значения.

1.2.2 Параметры логических элементов

Простейшие цифровые элементы характеризуются следующими параметрами:

Быстродействием tз ср,

Нагрузочной способностью (коэффициентом разветвления по выходу) п,

Коэффициентом объединения по входу (числом входов логического элемента) т,

Помехоустойчивостью Un,

Потребляемой мощностью Рср,

Напряжением питания U,

Уровнем сигналов.

Быстродействие - один из важнейших параметров, характеризуемый средним временем задержки распространения сигнала

где и - задержки включения и выключения схемы (рисунок 1.4).

Рисунок 1.4-Задержки включения и выключения схемы

Нагрузочная способность показывает, сколько логических входов может быть одновременно подключено к выходу данного логического элемента без нарушения его работоспособности.

Коэффициент объединения по входу определяет максимально возможное число входов логического элемента. Увеличение т расширяет логические возможности схемы за счет реализации функции от большего числа аргументов на одном элементе И-НЕ, ИЛИ-НЕ и т. д., однако при этом ухудшаются быстродействие и помехоустойчивость.

Помехоустойчивость характеризует способность элемента правильно функционировать при наличии помех. Помехоустойчивость определяется максимально допустимым напряжением помехи, при котором обеспечивается работоспособность схемы.

Потребляемая мощность характеризуется средним значением

Рср = (Р0 + Р3)/ 2 ,

где Р0 и Р3 потребляемые мощности в открытом и закрытом состояниях схемы. При этом считается, что в устройстве в каждый момент времени приблизительно половина схем открыта. Однако в устройствах, которые имеют сложный инвертор, потребляемая мощность зависит от частоты их переключений. Поэтому тут необходимо учитывать среднюю потребляемую мощность при максимально допустимой частоте следования переключающих импульсов и скважности, равной двум. При определении этой мощности усреднение проводят по полному периоду переключения схемы.

Логические элементы характеризуются еще количеством используемых источников питания и значениями напряжения питания, а также полярностью и уровнем входного и выходного сигналов.

1.2.3 Базовые схемы логических элементов

Из всего разнообразия схемотехнического и технологического построения цифровых схем наибольшее распространение получили две основные разновидности: ТТЛ и МОП-схемы.

1.2.3.1 Базовые интегральные ТТЛ-схемы

Основной особенностью элементов ТТЛ является использование в них многоэмиттерных транзисторов (МЭТ), которые реализует функцию «И». Базовые интегральные ТТЛ-схемы реализует функцию И-НЕ и имеют два вида выходов: с нагрузкой в коллекторе выходного транзистора VT4 (R3, VT3, VD) и с открытым коллектором. Оба варианта показаны на рисунках 1.5 и 1.6.

Рисунок 1.5-Базовая интегральная ТТЛ-схема с нагрузкой в коллекторе выходного транзистора

Рисунок 1.6-Базовая интегральная ТТЛ-схема с открытым коллектором

В схеме на рисунке 1.5 на транзисторах VT2-VT4 реализован сложный инвертор, осуществляющий операцию «НЕ», что позволило обеспечить высокую нагрузочную способность, достаточное быстродействие и помехоустойчивость схемы. Кроме того, в выходной цепи отсутствует сквозной ток по цепи +5В через R3 – VT3 – VD – VT4 – общий провод, т.к. в любом состоянии закрыт один из транзисторов либо VT3, либо VT4.

Схема на рисунке 1.6 с открытым коллектором, позволяет иметь много параллельных выходов, что повышает нагрузочную способность схемы.

Рассмотрим принцип работы базовой ТТЛ-схемы (рисунок 1.5) для двух случаев, соответствующих различным наборам входных сигналов.

Случай 1. Если на все входы МЭТ VT1 поданы напряжения, соответствующие уровню логической единицы, то закрыты эмиттерные переходы VT1, и протекает ток через резистор R1, открытый коллекторный переход в базу транзистора VT2, открывая его. Теперь протекает ток через резистор R2, открытый VT2, а затем усиленный ток с эмиттера VT2 поступает в базу выходного инвертирующего транзистора VT4, открывая его до состояния насыщения, тем самым соединяя выход с общим проводом – и напряжение на выходе У будет соответствовать уровню логического нуля. При этом транзистор VT3 будет закрыт, т.к. потенциал его базы не будет превышать 1В, что недостаточно для открывания VT3.

Действительно:

UбVT3 = UбэVT4 + UкэVT2 = 0,7 + 0,3 = 1В;

UэVT3 = UкэVT4 + UVD = 0,3 + 0,7 = 1В.

UбэVT3 = UбVT3 – UэVT3 = 1 – 1 = 0.

Случай 2. Если хотя бы на одном входе МЭТ VT1 появится входное напряжение, соответствующее уровню логического нуля, то откроется соответствующий переход база - эмиттер VT1, МЭТ перейдет в состояние насыщения и потенциал его коллектора станет близким к нулю.

А точнее, если считать, что логический ноль не превышает 0,3В, а падение напряжения на открытом переходе база - эмиттер VT1 – 0,7В, то потенциал базы VT1 будет не более, чем 0,3 + 0,7 = 1В. Следовательно, VT2 закроется, и закроется VT4, т.к. для их открывания необходимо по 0,7В и плюс 0,7В для открывания перехода база – коллектор VT1. Итак, чтобы открыть цепочку VT2 - VT4 надо, чтобы на базе VT1 было не менее 0,7 + 0,7 + 0,7 = 2,1В, что соответствует первому случаю.

Транзистор VT3 откроется по следующей причине. Т.к. VT2 закрыт, то нет тока через R2 и соответственно падения напряжения на нем, поэтому потенциал на коллекторе VT2, а следовательно и на базе VT3, повысится до 5В. На выходе у схемы установится напряжение, соответствующее уровню логической единицы, которое поступает через открытый VT3 от +5В.

Кроме рассмотренных ТТЛ-схем, выпускаются схемы с тремя состояниями для обеспечения совместной работы с линиями магистралей (рисунок 1.7).

Рисунок 1.7- Базовая интегральная ТТЛ-схема с тремя состояниями

Название этих схем может ввести в заблуждение, так как на самом деле они не являются логическими элементами с тремя уровнями напряжений. Это самые обычные логические схемы, которые имеют третье состояние выхода - «обрыв». Они совмещают в себе все преимущества элементов с резистором в цепи нагрузки и способность работать на общую шину, которой обладает схема с открытым коллектором. Схемы с тремя состояниями имеют отдельный запирающий вход С (обычно он обозначается CS (Chip Select – выбор кристалла), с помощью которого (при подаче на него логического нуля) они могут устанавливаться в третье состояние независимо от того, какие сигналы действуют на логических входах. Третье состояние характеризуется тем, что при этом закрыты оба транзистора VT3 и VT4, и выход не подсоединен ни к +5В, ни к общему проводу.

Ввиду улучшенных характеристик их используют обычно в качестве шинных формирователей вместо схем с открытым коллектором. Устанавливать нагрузочный резистор в этом случае не требуется.

1.2.3.2 Логические схемы на МОП-транзисторах

В настоящее время выпускается несколько разновидностей логических схем на МОП-транзисторах. Особенность ИМС на МОП-структурах состоит в том, что в этих схемах отсутствуют резисторы, а роль нелинейных резисторов выполняют соответствующим образом включенные транзисторы. Они имеют высокую нагрузочную способность и помехоустойчивость и занимают мало площади на поверхности кристалла, они технологичны и дешевы. МОП-транзисторы по принципу работы являются аналогами электронных ламп, так как управляются напряжением, а не током.

Схемы на МОП-транзисторах пока имеют меньшее быстродействие, чем схемы на биполярных транзисторах, что объясняется довольно значительными емкостями, образующимися между затвором, истоком, стоком и подложкой МОП-транзистора, на перезаряд которых требуется определенное время.

Наибольшее распространение получили КМОП-схемы (комплементарные МОП-схемы), в которых совместно применяются как п-канальные, так и р-канальные транзисторы.

Преимуществами схем на КМОП-транзисторах являются малая потребляемая мощность, высокое быстродействие и повышенная помехоустойчивость. В основе всех логических КМОП-схем лежит КМОП-инвертор (рисунок 1.8).

Рисунок 1.8 - КМОП-инвертор

3десь нижний транзистор с каналом n-типа, верхний - с каналом р-типа. Затворы обоих транзисторов объединены, на них подается управляющее напряжение. Подложки соединены с истоками. При поступлении на вход напряжения высокого уровня (логической единицы) открывается транзистор с каналом n-типа (нижний), a с каналом р-типа (верхний) закрывается. На выходе – сигнал логического нуля.

Наоборот, при подаче на вход напряжения, соответствующего уровню логического нуля, открывается верхний транзистор, a нижний закрывается. На выходе – сигнал логической единицы.

Схема, реализующая функцию ИЛИ-НЕ, показана на рисунке 1.9.

Рисунок 1.9 - Схема ИЛИ-НЕ КМОП

При поступлении на вход А напряжения, соответствующего уровню логической единицы, открывается транзистор VT4 и закрывается VT1, в результате чего напряжение на выходе будет соответствовать уровню логического нуля. При подаче на входы A и В напряжения, соответствующего уровню логического нуля, транзисторы VT3 и VT4 закрываются, a VT1 и VT2 открываются. При этом напряжение на выходе будет соответствовать уровню логической единицы (т. е. близко к напряжению Е).

Схема, реализующая функцию И-НЕ, изображена на рисунке 1.10.

Рисунок 1.10- Схема И-НЕ КМОП

К недостаткам КМОП-технологии следует отнести то, что здесь невозможно достичь столь же высокой плотности упаковки, как при МОП-техноологии из-за некоторой избыточности транзисторов. Однако в КМОП-схемах не протекает постоянно ток, что значительно снижает потребляемую мощность в статическом режиме. В динамическом режиме потребляемая мощность растет из-за перезаряда межэлектродных емкостей транзисторов и одновременного открывания всех транзисторов в момент их переключения, т. е. потребляемая мощность таких схем растет с повышением частоты переключения.

1.3 Основные законы алгебры логики

В алгебре логики приняты следующие основные законы:

Переместительный (свойства коммутативности)

x1 V х2 = х2V x1

x1 х2 = х2 x1

Сочетательный (свойства ассоциативности)

x1 V (х2 V x 3) = (x1 V х2) V x 3

x1 (х2 x 3) = (x1 х2) x 3

Распределительный (свойства дистрибутивности)

x1 V х2 x 3 = (x1 V х2) (x1 V х3)

x1 (х2 V x 3) = x1 х2 V x1 х3

Закон инверсии (правило де Моргана)

Закон склеивания

Переместительный и сочетательный законы встречается в обычной алгебре и не вызывает сомнения.

Распределительного закона для умноження и закона инверсии в обычной алгебре нет. Доказательство этих законов может быть выполнено посредством составления таблиц истинности для правой и левой частей уравнений, описывающих тот или иной закон.

Закон инверсии может быть использован для перехода от дизъюнкции к конъюнкции, и наоборот. Так, например, если применить инверсию к левой и правой частям выражений, отражающих закон инверсии, получим , и далее . Такое преобразование может понадобиться при проектировании логической схемы для перехода к базису И-НЕ.

В законе склеивания каждая пара объединяемых элементарных произведений различается лишь одной переменной (х2), которая входит в первое произведение без отрицания, а во второе - с отрицанием. Такие элементарные произведения называют соседними. К соседним произведениям применим закон склеивания, в результате чего уменьшаются число суммируемых произведений и на единицу - число переменных. Остается только та переменная, которая неизменна.

1.4 Дизъюнктивные нормальные формы

Для записи одной и той же функции алгебры логики можно использовать много различных форм. Формы, которые представляют суммы элементарных произведений, называют дизъюнктивными нормальными формами (ДНФ).

Элементарное произведение – это такое произведение, в котором сомножителями являются только отдельные переменные или их отрицания.

Очевидно, одна и та же функция может быть представлена множеством различных ДНФ. Однако существуют такие виды ДНФ, в которых функция может быть записана единственным образом. Эти формы называют совершенными дизъюнктивными нормальными формами (СДНФ). СДНФ определяется как сумма элементарных произведений, в которых присутствуют все переменные либо с отрицанием, либо без него.

Правило записи СДНФ функции по ее таблице истинности:

Для всех комбинаций входных переменных, обращающих функцию в единицу, записать элементарные произведения, инвертируя переменные, равные в данной комбинации нулю, а все полученные элементарные произведения соединить знаками логического суммирования.

Рассмотрим пример. Пусть функция задана таблицей истинности (таблица 1.4). Требуется записать СДНФ функции по ее таблице истинности.

Таблица 1.4- Таблица истинности

х2 х1 х0 F(х2, х1, х0)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

таблица истинности такой функции содержит три строки, в которых функция равна единице. Каждой из этих строк соответствует определенная комбинация входных переменных, а именно: 001, 100 и 101.

Применим правило записи СДНФ к функции, представленной таблице 1.4, и получим три элементарных произведения , соответствующие входным комбинациям. Соединив эти произведения знаками логического суммирования, придем к СДНФ:

F(х2, х1, х0) = .

1.5 Минимизация логических функций

СДНФ не всегда является самым простым выражением функции. тождественные преобразования позволяют существенно упростить (минимизировать) выражения логических функций. Каждая логическая функция реализуется с помощью определенного набора устройств. Чем меньше элементов содержит выражение, тем проще схема, реализующая соответствующую ему логическую функцию. Поэтому значительный интерес представляет рассмотрение методов минимизации логических функций.

Различают аналитические и табличные методы минимизации.

1.5.1 Аналитические методы

Наиболее распространенным является метод непосредственных тождественных преобразований. Этот метод состоит в последовательном применении к некоторой формуле законов и правил тождественных преобразований алгебры логики.

метод непосредственных преобразований не поддается четкой алгоритмизации. Действия, используемые при реализации этого метода, определяются видом исходного преобразуемого выражения, квалификацией исполнителя и другими субъективными факторами. Отсутствие такой алгоритмизации значительно повышает вероятность появления ошибок и возможность получения не полностью минимизированной формулы.

Метод непосредственных преобразований наиболее пригоден для простых формул, когда последовательность преобразований очевидна для исполнителя. Наиболее часто этот метод применяется для окончательной минимизации выражений, полученных после минимизации их другими методами.

Стремление к алгоритмизации поиска соседних элементарных произведений привело к разработке табличных методов минимизации логических функций. Одним из них является метод, основанный на использовании карт Карно.

1.5.2 Использование карт Карно

Карта Карно - это графическое представление таблицы истинности логических функций.

Она представляет собой таблицу, содержащую по 2п прямоугольных ячеек, где п - число логических переменных. Например, карта Карно для функции четырех переменных имеет 24 = 16 ячеек. Структура карт Карно для функций двух и трех переменных показана ниже.

Рисунок 1.11 - Таблица истинности (а) и структура карт Карно (б) для функции двух переменных

Рисунок 1.12- Таблица истинности (а) и структура карт Карно (б) для функции трех переменных

Карта размечается системой координат, соответствующих значениям входных переменных. Например, верхняя строка карты для функции трех переменных соответствует нулевому значению переменной x1, а нижняя - ее единичному значению. Каждый столбец этой карты характеризуется значениями двух переменных: х2 и х3. Комбинация цифр, которыми отмечается каждый столбец, показывает, для каких значений переменных х2 и х3 вычисляется функция, размещаемая в клетках этого столбца.

Если на указанном наборе переменных функция равна единице, то ее СДНФ обязательно содержит элементарное произведение, принимающее на этом наборе единичное значение. Таким образом, ячейки карты Карно, представляющие функцию, содержат столько единиц, сколько элементарных произведений содержится в ее СДНФ, причем каждой единице соответствует одно из элементарных произведений.

Обратим внимание на то, что координаты строк и столбцов в карте Карно следуют не в естественном порядке возрастания двоичных кодов, а в порядке 00, 01, 11, 10. Изменение порядка следования наборов сделано для того, чтобы соседние наборы были соседними, т.е. отличались значением только одной переменной. Ячейки, в которых функция принимает значения, равные единице, заполняются единицами. В остальные ячейки записываются нули.

Процесс минимизации рассмотрим на примере, представленном на рисунке 1.13.

Сначала формируем прямоугольники, содержащие по 2k ячеек, где k - целое число. В прямоугольники объединяются соседние ячейки, которые соответствуют соседним элементарным произведениям.

Рисунок 1.13-Таблица истинности (а) и карта Карно (б)

Например, на рисунке 1.13,б объединены ячейки с координатами 001 и 101. При объединении этих ячеек образовался прямоугольник, в котором переменная x1 изменяет свое значение. Следовательно, она исчезнет при склеивании соответствующих элементарных произведений и останутся только х2 и х3, причем переменную х2 берем в инверсном виде, т.к. она равна 0.

Ячейки, расположенные в первой строке (рисунок 1.13,б), содержат единицы и являются соседними. Поэтому все они объединяются в прямоугольник, содержащий 22 = 4 ячейки.

Переменные х2 и х3 в пределах прямоугольника меняют свое значение; следовательно, они исчезнут из результирующего элементарного произведения. Переменная х1 остается неизменной и равной нулю. Таким образом, элементарное произведение, полученное в результате объединения ячеек первой строки рисунка 1.13,6, содержит лишь один х1, который берем в инверсном виде, т.к. он равен 0. Это, в частности, следует из того, что четырем ячейкам первой строки соответствует сумма четырех элементарных произведений:

Функция, соответствующая рисунку 1.6 имеет вид:

Совокупность прямоугольников, покрывающих все единицы, называют покрытием. Заметим, что одна и та же ячейка (например, ячейка с координатами 001) может покрываться два или несколько раз.

Итак, можно сделать следующие выводы:

1. Формула, получающаяся в результате минимизации логической функции с помощью карт Карно, содержит сумму стольких элементарных произведений, сколько прямоугольников имеется в покрытии.

2. Чем больше ячеек в прямоугольнике, тем меньше переменных содержится в соответствующем ему элементарном произведении.

Например, для карты Карно, изображенной на рисунке 1.14,а, прямоугольнику, содержащему четыре ячейки, соответствует элементарное произведение двух переменных, а квадрату, состоящему всего лишь из одной ячейки,- элементарное произведение , включающее все четыре переменные.

Рисунок 1.14-Карты Карно для функций четырех переменных

Функция, соответствующая покрытию, показанному на рисунке 1.14, а, имеет вид:

Несмотря на то, что карты Карно изображаются на плоскости, соседство квадратов устанавливается на поверхности тора. Верхняя и нижняя границы карты Карно как бы «склеиваются», образуя поверхность цилиндра. При склеивании боковых границ получается тороидальная поверхность. Следуя изложенным рассуждениям, устанавливаем, что ячейки с координатами 1011 и 0011, изображенные на рисунке 1.14, б, являются соседними и объединяются в прямоугольник. Действительно, указанным ячейкам соответствует сумма элементарных произведений

Аналогично объединяются и остальные четыре единичные ячейки. В результате их объединения получаем элементарное произведение . Окончательно функция, соответствующая покрытию, изображенному на рисунке 1.14, б, имеет вид

Карта Карно, показанная на рисунке 1.7, в, содержит единичные ячейки, расположенные по углам. Все четыре ячейки являются соседними, и после объединения дадут элементарное произведение .

Рассмотренные выше примеры позволяют сформулировать:

Последовательность проведения минимизации логических функций с помощью карт Карно

1. Изображается таблица для п переменных и производится разметка ее сторон.

2. Ячейки таблицы, соответствующие наборам переменных, обращающих функцию в единицу, заполняются единицами, остальные ячейки - нулями.

3. Выбирается наилучшее покрытие таблицы правильными прямоугольниками, которые обводим контурами. В каждом прямоугольнике должно быть 2n ячеек.

4. Одни и те же ячейки с единицами могут входить в разные контуры.

5. Количество прямоугольников должно быть минимальным, а площадь прямоугольников максимальная.

6. Для каждого прямоугольника записываем произведение только тех переменных, которые не изменяют своего значения. Если эта переменная равна нулю, то ее записывают в инверсном виде.

7. Полученные произведения соединяем знаком логического сложения.

При использовании двоично-десятичных кодов десятичные цифры представляются в них четырьмя двоичными разрядами. Из всех возможных 16 кодовых комбинаций используются лишь 10, а остальные комбинации запрещены и никогда возникнуть не могут. Если какая-нибудь функция имеет запрещенные наборы переменных, то ее значения на указанных наборах не определены и в таблице истинности отмечаются знаком Х.

Двоичные функции, значения которых определены не для всех наборов входных переменных, называются неполностью определенными.

При минимизации неполностью определенной функции ее следует доопределить, т. е. неопределенные значения ячеек карты Карно произвольным образом заменить единицами или нулями. Желательно выбрать тот вариант, при котором формула минимизированной функции будет наиболее простая.

1.6 Синтез комбинационных логических схем

Синтез – это процесс получения функциональной схемы, которая выполняет заданную логическую функцию.

Процесс разработки логических схем предполагает следующую последовательность действий:

1) От таблицы истинности переходим к карте Карно

2) Проводим минимизацию и получаем минимизированное логическое выражение заданной функции (см. 1.5.2)

3) Преобразуем полученное логическое выражение к базису И-НЕ, используя закон инверсии

Рассмотрим пример. Построить логическую структуру, заданную таблицей истинности, показанную на рисунке 1.15 а.

Рисунок 1. 15-Таблица истинности (а) и карта Карно (б)

1) Переходим к карте Карно и обводим прямоугольными контурами соседние клетки с единицами, как показано на рисунке 1. 15 б.

2) Используя контуры, показанные на карте Карно, получаем следующее логическое выражение

3) Преобразуем полученное логическое выражение к базису И-НЕ

4) Строим логическую структуру

Рисунок 1.16 - Логическая структура, реализующая функцию, заданную таблицей истинности на рисунке 1.15 а

2 КОМБИНАЦИОННЫЕ СХЕМЫ

2.1 Основные положения

При соединении логических элементов образуются устройства, схемы которых называют логическими. Различают комбинационные и последовтельностные схемы.

Комбинационные схемы реализуют функции, значения которых в данный момент времени определяются лишь совокупностью значений входных переменных в этот же момент времени и не зависят от предыдущих значений входных переменных.

О таких схемах принято говорить, что они не обладают свойством памяти (предыстория не оказывает влияния на результат преобразования). Заметим, что каждый реальный логический элемент обладает некоторым временем задержки изменения выходного сигнала по отношению к входному. К наиболее важным комбинационным схемам относятся следующие устройства:

Дешифраторы,

Шифраторы,

Демультиплексоры,

Мультиплексоры,

Сумматоры.

2.2 Дешифраторы

Дешифратор (декодер) – это устройство, которое преобразует n – разрядный позиционный код в m – разрядный унитарный, т.е. содержащий всего лишь одну единицу или ноль.

Дешифратор имеет n входов и m (m ≤ 2n) выходов. На условных графических обозначениях дешифраторы обозначают как DC (от английского decoder).

На рисунке 2.1 показаны условное графическое обозначение (УГО) и таблица функционирования двухвходового дешифратора (2: 4).

Входы Выходы
х1 х0 0 1 2 3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Рисунок 2.1-Условное графическое обозначение и таблица функционирования двухвходового дешифратора (2: 4).

Из таблицы функционирования двухвходового дешифратора следует, что номер активного выхода, на котором присутствует единица, совпадает с двоичным кодом на входах, если его представить в виде десятичного числа. Например, 012 = 110 , 102 = 210 , 112 = 310 .

Построим схему двухвходового дешифратора, для чего запишем функции каждого выхода, используя таблицу истинности и правило записи СДНФ (см. 1.4): Выход 0 - , Выход 1 - , Выход 2 - , Выход 3 - . На основании полученных логических выражений получим схему, представленную на рисунке 2.2.

Рисунок 2.2-Схема двухвходового дешифратора (2: 4)

2.3 Шифраторы

Шифратор – это устройство, которое имеет m входов и n выходов (m ≤ 2n) и превращает m-разрядний унитарный код в n-разрядний позиционный код.

На условных графических обозначениях шифраторы обозначают как CD.

Назначение шифраторов заключается в превращении единичных входных сигналов в соответствующие кодовые комбинации на выходах, которые определяются соответствующим методом кодировки входных сигналов. Каждому единичному входу шифратора отвечает лишь один из возможных наборов выходных переменных. Соответствующая кодовая комбинация на выходах шифратора появляется тогда и только затем, когда появляется единичный сигнал на том его входе, который сопоставлен с данной выходной комбинацией.

Применяется такая нумерация входов шифратора, при которой появление единичного сигнала на і-м входе приводит к появлению выходного набора, что представляет собой число і, записанное в двоичной системе исчисления. На рисунке 2.3 представлены функциональная схема и таблица истинности шифратора на восемь входов.

Входы Выходы
Х0 Х1 Х2 Х3 Х4 Х5 Х6 Х7 У2 У1 У0
0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0

Рисунок 2.3 - Функциональная схема и таблица истинности шифратора на восемь входов.

2.4 Демультиплексоры

Демультиплексор – это устройство, в котором сигналы с одного информационного входа распределяются в желаемой последовательности по нескольким выходам.

На условных графических обозначениях демультиплексоры обозначают DMX. На рисунке 2.3 показаны условное графическое обозначение и таблица функционирования демультиплексора.

Адрес Выходы
А1 А0 0 1 2 3
0 0 Х 0 0 0
0 1 0 Х 0 0
1 0 0 0 Х 0
1 1 0 0 0 Х

Рисунок 2.4-УГО и таблица функционирования демультиплексора 1:4

Здесь вход х - информационный вход, входы А0 А1- адресные, код на которых определяет, на каком из выходов будут формироваться сигналы, повторяющие х. Принцип определения номера выхода по адресной комбинации такой же, как у дешифратора. При т адресных входах демультиплексор может иметь в зависимости от конструкции до 2m выходов.

Если у демультиплексора 1:4 на информационном входе х поддерживать потенциал U1 (логическая единица), то он будет работать как дешифратор 2:4, входами которого будут А0 и А1. Таким образом, между дешифратором и демультиплексором нет принципиальной разницы, а различие сводится к виду сигналов на входе х: если они меняются во времени, это демультиплексор, если нет - дешифратор. У дешифраторов этот вход нередко отсутствует и выходные сигналы на активном выходе имеют одно, наперед известное значение. Сказанное подтверждается схемой демультиплексора, которая представлена на рисунке 2.5.

Рисунок 2.5-Схема демультиплексора 1:4

Действительно, если х = 1, то все вентили & открыты, и выходные сигналы в точности повторяют сигналы дешифратора, входящего в состав демультиплексора. При произвольном значении сигнала х он появится на выходе того вентиля И, который открыт сигналом «1» с выхода дешифратора, заданного кодом на входах А0 и А1.

2.5 Мультиплексоры

Мультиплексор – это устройство, в котором сигналы с одного из информационных входов поступают в желаемой последовательности на единственный выход.

На условных графических обозначениях мультиплексоры обозначают MUX. На рисунке 2.6 показаны условное графическое обозначение и таблица функционирования мультиплексора 4:1.

Адрес Выход
А1 А0 F
0 0 Вход 0
0 1 Вход 1
1 0 Вход 2
1 1 Вход 3

Рисунок 2.6-Условное графическое обозначение и таблица функционирования мультиплексора 4:1

Здесь входы 0,1,2,3 - информационные входы, А0 и А1- адресные, код на которых определяет, с какого из входов будут взяты сигналы для передачи на выход F. Принцип определения номера входа по адресной комбинации такой же, как у дешифратора и демультиплексора. При т адресных входах мультиплексор может иметь в зависимости от конструкции до 2m входов. Схема четырехвходового мультиплексора (4:1) представлена на рисунке 2.7.

Рисунок 2.7- Схема мультиплексора 4:1

Из схемы следует, что один из входных сигналов проходит через тот вентиль И, который открыт сигналом «1» с выхода дешифратора, заданного кодом на входах А0 и А1. На выходах остальных элементов И в этот момент присутствуют сигналы «0», которые не препятствуют прохождению информации с выбранного входа через элемент ИЛИ на выход.

Мультиплексор с т адресными входами можно использовать для реализации произвольной логической функции от т аргументов.

Реализация необходимой функции осуществляется на основании ее таблицы истинности. Значения наборов аргументов задаются на адресных входах. А его информационные входы подключаются к источникам сигналов «0» и «1» таким образом, чтобы на входе, который подключается к выходу на каждом из входных наборов, присутствовало значение сигнала, которое соответствует таблице истинности. В качестве примера на рисунке 2.8 приведена схема подключения мультиплексора для реализации функции, приведенной на таблице истинности.

Рисунок 2.8- Использование мультиплексора для реализации заданной логической функции

Дешифраторы и демультиплексоры, оформленные как микросхемы средней степени интеграции, широко применяются в информационно-измерительной технике. Как и мультиплексоры, они часто используются в сочетании со счетчиками и регистрами. Они служат в качестве коммутаторов-распределителей информационных сигналов и синхроимпульсов, для демультиплексирования данных и организации адресной логики в оперативных и постоянных запоминающих устройствах, а также для преобразования двоично-десятичного кода в десятичный с целью управления индикаторными и печатающими устройствами. Число выходов и распределение сигналов на них определяются характером предполагаемой нагрузки.

Дешифраторы для работы с газоразрядными индикаторными лампами имеют на выходе высоковольтные транзисторы и организацию выходов «один из десяти». Микросхемы, работающие с семисегментными индикаторами (полупроводниковыми, накальными, вакуумными), имеют семь выходов и надлежащее распределение сигналов на них при каждом сочетании входных сигналов.

Демультиплексоры-дешифраторы как самостоятельные изделия имеют 4; 8 или 16 выходов. Если потребное число выходов превышает возможности одной микросхемы, демультиплексоры (дешифраторы) наращиваются в систему. В этом отношении тут нет принципиального различия с мультиплексорами.

Для примера рассмотрим, ИМС К561КП1, которая содержит два четырехвходовых мультиплексора. Микросхема имеет два адресных входа 1 и 2, общие для обоих мультиплексоров, общий вход стробирования S , информационные входы Х0 - ХЗ первого мультиплексора, входы У0 - УЗ второго мультиплексора. Два варианта изображения КП1 приведены на рисунке 2.9.

.

Рисунок 2.9- Функциональная схема и условное графическое обозначение микросхемы К561КП1

При подаче на адресные входы 1 и 2 двоичного кода адреса и на вход S сигнала «0» выходы мультиплексоров соединяются со входами, номера которых соответствуют десятичному эквиваленту кода адреса. Если на входе S сигнал «1», выходы мультиплексоров отключаются от входов и переходят в высокоимпедансное (третье) состояние. Соединение входов Передаваемый через мультиплексор сигнал может быть как аналоговым, как и цифровым, он может передаваться как со входов на выход (микросхема работает в режиме мультиплексора), так и с выхода распределяться на входы (режим демультиплексора).

Микросхема демультиплексора-дешифратора К155ИДЗ (рисунок 2.10) имеет четыре адресных входа 1, 2, 4, 8, два инверсных входа стробирования S, объединенных по И, и 16 выходов 0-15. Если на обоих входах стробирования лог. 0, на том из выходов, номер которого соответствует десятичному эквиваленту входного кода (вход 1 - младший разряд, вход 8 -старший), будет лог. 0, на остальных выходах - лог. 1. Если хотя бы на одном из входов стробирования S лог. 1, то независимо от состояний входов на всех выходах микросхемы формируется лог. 1.

Рисунок 2.10-Условное графическое обозначение демультиплексора-дешифратора К155ИДЗ

Наличие двух входов стробирования существенно расширяет возможности использования микросхем. Из двух микросхем ИДЗ, дополненных одним инвертором, можно собрать дешифратор на 32 выхода (рисунок 2.11).

Рисунок 2.11- Дешифратор на 32 выхода на основе микросхемы К155ИДЗ

2.6 Арифметические устройства

2.6.1 Общие сведения

Комбинационные устройства, которые рассматривались до сих пор, выполняют логические функции. Для описания их поведения используется аппарат алгебры логики. Входные и выходные сигналы высокого и низкого уровня оцениваются соответственно как логическая 1 и логический 0.

Дискретная техника оперирует и другим классом приборов, назначение которого состоит в выполнении арифметических действий с двоичными числами: сложения, вычитания, умножения, деления. К арифметическим устройствам относят также узлы, выполняющие специальные арифметические операции, как-то: выявление четности заданных чисел (определение паритета) и сравнение двух чисел.

Особенность арифметических устройств состоит в том, что сигналам приписываются не логические, а арифметические значения 1 и 0 и действия над ними подчиняются законам двоичной арифметики. Хотя арифметические устройства оперируют с численными величинами, для описания их работы также удобно пользоваться таблицами истинности. Арифметические устройства очень широко используются в ЦВМ и достаточно часто в аппаратуре информационно-измерительной техники.

Важнейшая из арифметических операций - сложение (суммирование). Помимо прямого назначения она используется и при других операциях: вычитание - это сложение, в котором вычитаемое вводится в обратном или дополнительном коде, а умножение и деление - это последовательное сложение и вычитание.

Сумматор – это функциональный узел, выполняющий операцию арифметического сложения чисел.

В устройствах дискретной техники суммирование осуществляется в двоичном или, реже, двоично-десятичном коде. По характеру действия сумматоры подразделяются на две категории: - комбинационные - как и все ранее рассмотренные узлы, не имеющие элементов памяти; - накопительные - сохраняющие результаты вычислений.

В свою очередь, каждый из сумматоров, оперирующий с многоразрядными слагаемыми, в зависимости от способа обработки чисел может быть отнесен к последовательному или параллельному типу.

Как последовательные, так и параллельные сумматоры строятся на основе одноразрядных суммирующих схем. Сложение чисел в последовательных сумматорах осуществляется поразрядно, последовательно во времени. В сумматорах параллельного действия сложение всех разрядов многоразрядных чисел происходит одновременно.

В дальнейшем речь будет идти только о комбинационных сумматорах.

2.6.2 Полусумматор

Простейшим суммирующим элементом является полусумматор. Происхождение этого термина станет ясным в ходе изложения. Одним из простейших суммирующих устройств является полусумматор, УГО и таблица истинности которого показаны на рисунке 2.12.

Входы Выходы
А В Р S

Рисунок 2.12-УГО и таблица истинности полусумматора

Обозначением полусумматора служат буквы HS (half sum - полусумма). Полусумматор имеет два входа А и В для двух слагаемых и два выхода: S (сумма) и Р (перенос).

Логическая структура полусумматора строится на основании таблицы истинности, из которой следует, что работа полусумматора описывается следующими уравнениями:

Выражение для выхода S, равно как и столбец S таблицы истинности, полностью совпадает с таблицей истинности для логического элемента «исключающее ИЛИ». Это обстоятельство объясняет, почему операцию «исключающее ИЛИ» называют сложением по модулю 2. Логическая структура полусумматора в общем и развернутом виде показана на рисунке 2.13.

Рисунок 2.13- Логическая структура полусумматора в общем и развернутом виде

2.6.3 Полный сумматор

Процедуру сложения двух n-разрядных двоичных чисел можно представить следующим образом (рисунок 2.14).

Рисунок 2.14-Сложение двух n-разрядных чисел

Сложение цифр А1 и В1 младшего разряда дает бит суммы S1 и бит переноса P1. В следующем (втором) разряде происходит сложение цифр Р1, А2 и В2, которое формирует сумму S2 и перенос Р2. Операция длится, пока не будет сложена каждая пара цифр во всех разрядах, результатом сложения будет число S=Pn Sn ... S1, где Рi и Si отображают 1 или 0, полученные в результате поразрядного сложения. Полусумматор имеет два входа и пригоден, поэтому для использования только в младшем разряде.

Устройство для суммирования двух многоразрядных чисел должно иметь, начиная со второго разряда, три входа: два для слагаемых Аi и Вi и один для сигнала переноса Рi-1 из предыдущего разряда. Этот узел называется полный сумматор, УГО и таблица истинности которого представлены на рисунке 2.15.

Входы Выходы
Рi-1 А В Рi S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Рисунок 2.15-УГО и таблица истинности полного сумматора

Используя таблицу истинности, можно получить следующие выражения выходных функций , . Эти выражения позволяют построить логическую структуру полного сумматора, которая представлена на рисунке 2.16

Рисунок 2.16 -Логическая структура полного сумматора

2.6.4 Многоразрядный сумматор

Для построения многоразрядного сумматора используют полусумматор и полный одноразрядный сумматор, рассмотренные выше. Соединения, показанные на рисунке 2.17, осуществляются в соответствии с алгоритмом, который представлен на рисунке 2. 14.

Рисунок 2.17-Многоразрядный (трехразрядный) сумматор

3 ТРИГГЕРНЫЕ УСТРОЙСТВА

3.1 Основные понятия

Наряду с комбинационными устройствами существуют элементы с памятью. Простейшими из них являются триггеры.

Триггер - это логический элемент, который может находиться в одном из двух устойчивых состояний: 0 или 1.

Переход в каждое последующее состояние обычно зависит не только от текущих значений входных сигналов, но и от предыдущего состояния триггера. Информация о предыдущем состоянии, поступающая с выходов триггера, вместе с внешними сигналами управляет его работой. Поэтому триггеры являются устройствами с обратными логическими связями.

Логическая функция, устанавливающая зависимость состояния, в которое переходит триггер из текущего состояния при воздействии заданных сигналов управления, называется функцией переходов триггера. Функции переходов задаются логическими формулами или в виде таблиц.

В зависимости от логики работы триггеры подразделяются на следующие основные виды RS, D, T и JK.

В зависимости от способа записи информации триггеры подразделяются на асинхронные и синхронные. Асинхронные триггеры переходят в новое состояние сразу после подачи управляющих сигналов, а синхронные требуют для этого еще подачи синхронизирующего сигнала на вход синхронизации С.

3.2 Асинхронный RS-триггер

Асинхронный RS-триггер служит основным элементом памяти в составе триггеров любых типов. Он может строиться как на элементах И-НЕ, так и ИЛИ-НЕ. Оба способа и их условные графические обозначения представлены и на рисунке 3.1.

Рисунок 3.1- Реализации асинхронного RS-триггера на элементах И-НЕ и ИЛИ-НЕ и их условные графические обозначения

RS-триггер имеет два входа: установочный S (от английского Set: установка) и вход сброса R (от английского Reset: сброс).

Выходные сигналы Q и , определяют состояние триггера.

Если Q = 0, то триггер в нулевом состоянии, если Q = 1, то в единичном.

На рисунке 3.2 содержатся таблицы переходов, отражающие порядок функционирования RS-триггера на элементах И-НЕ и ИЛИ-НЕ соответственно.

Qn Qn+1 Режим работы
0 0 0 х Запрещенный
0 0 1 х Запрещенный
0 1 0 1 Установка
0 1 1 1 Установка
1 0 0 0 Сброс
1 0 1 0 Сброс
1 1 0 0 Хранение
1 1 1 1 Хранение
S R Q Qn+1 Режим работы
0 0 0 0 Хранение
0 0 1 1 Хранение
0 1 0 0 Сброс
0 1 1 0 Сброс
1 0 0 1 Установка
1 0 1 1 Установка
1 1 0 х Запрещенный
1 1 1 х Запрещенный

Рисунок 3.2-Таблицы переходов RS-триггера на элементах И-НЕ (слева) и ИЛИ-НЕ

В таблицах приняты следующие обозначения: Qn – исходное состояние, Qn+1 – новое состояние триггера, х – неопределенное состояние.

Триггер на элементах ИЛИ-НЕ управляется единичными сигналами, поступающими на один из его входов. При подаче единичного сигнала на вход R триггер устанавливается в нулевое состояние (Qn+1 = 0 - режим «сброса»), а при поступлении такого же сигнала на вход S - в единичное состояние (Qn+1 = 1).

Подача единичных сигналов одновременно на оба входа запрещена, т.к. состояние Qn+1, в которое переходит триггер, не определено – на выходах Q и устанавливаются нулевые логические значения сигналов. R S = 1 является запрещенной комбинацией.

При поступлении на оба входа триггера сигналов нулевого логического уровня его состояние остается неизменным (Qn+1= Qn).

Триггер на элементах И-НЕ управляется нулевыми сигналами, что отражено на его условном обозначении в виде инвертирующих входов. Запрещенным состоянием является такое, при котором на оба его входа подаются нулевые логические сигналы.

3.3 Синхронные триггеры

3.3.1 RS-триггер

Важнейшую роль в цифровых устройствах играют триггеры с синхронизирующими (тактовыми) и информационными (программирующими) входами. Условное графическое изображение и функциональная схема синхронного RS-триггера представлены на рисунке 3.3

Рисунок 3.3- УГО и функциональная схема синхронного RS-триггера

Изменение состояния триггера возможно лишь при наличии единичного сигнала на синхронизирующем входе С. При нулевом значении сигнала C информация на управляющих входах R и S не воспринимается, и триггер сохраняет свое предыдущее состояние для любых значений сигналов на управляющих входах R и S. Запрещенной комбинацией является R S С = 1.

Кроме синхронных RS-триггеров, применяются еще три вида триггеров: D-,Т-, и JK- типов.

3.3.2 D-триггер

Условное графическое обозначение и функциональная схема D-триггера показаны на рисунке 3.4

Рисунок 3.4-Условное графическое обозначение и функциональная схема D-триггера

Логика работы D-триггера: после окончания очередного синхронизирующего импульса триггер принимает состояние сигнала на его информационном входе D. Поэтому D-триггер называют триггером задержки (от английского Delay – задержка).

3.3.3 Т-триггер

Т-триггер имеет только синхронизирующий вход и не имеет информационных входов. Условное графическое обозначение Т-триггера показано на рисунке 3.5.

Рисунок 3.5 - Условное графическое обозначение Т-триггера

Логика работы Т-триггера: при подаче каждого тактового импульса меняет свое состояние на противоположное.

Он является основным элементом делителей частоты, хотя отдельно не выпускается. Однако этот триггер легко реализовать на основе D-триггера, как показано на рис 3.6.

Рисунок 3.6- Реализация Т-триггера на основе D-триггера

3.3.4 JK-триггер

Условное графическое обозначение JK-триггера представлено рисунке 3.7.

Рисунок 3.7 - Условное графическое обозначение JK-триггера

Работу JK-триггера иллюстрирует таблица переходов RS-триггера с прямыми входами, показанная на рисунке 3.2. Причем входу S соответствует вход J, а входу R – вход K.

Из таблицы следует, что JК-триггер не изменяет своего состояния при воздействии тактового импульса, если J = К = 0. В отличие от RS-триггера сигналы J = К= 1 не являются запрещенными и вызывают изменение состояния триггера на противоположное, т.е. триггер работает как Т-триггер.

Если J = 1 и К = 0, то тактовый импульс устанавливает триггер в единичное состояние (Qn+1= 1), а при J = 0 и K = 1 - в нулевое состояние (Qn+1= 0). Триггер не изменяет своего состояния, если тактирующий сигнал С = 0.

Т-триггер легко реализовать из JK-триггера объединением управляющих входов J и K, как показано на рисунке 3.8. JK-триггер является универсальным, поскольку из него легко получаются RS и Т-триггеры.

Рисунок 3.8-Схема включения JK-триггера в режиме Т-триггера

3.3.5 Двухступенчатые синхронные триггеры

3.3.5.1 Двухтактный R-S триггер M-S-типа

Особенностью ранее рассмотренных триггеров является то, что если во время действия тактового импульса на информационных входах синхронного триггера произойдет даже кратковременное изменение сигнала, приводящее к изменению состояния триггера, то это немедленно скажется на его выходе. Несколько иначе работают двухступенчатые синхронные триггеры, которые называют MS-триггерами (от английского Master – Slave: Хозяин – Раб). Эти триггеры состоят из двух элементов памяти, соединенных так, как это, например, показано на рисунке 3.9. Этот триггер имеет два входа синхронизации С1 и С2. Запись осуществляется путем последовательной подачи двух синхронизирующих сигналов сначала на вход С1, а затем на С2. Поэтому такой триггер называется двухтактным.

Рисунок 3.9 -Двухтактный R-S триггер M-S-типа

Однако управление двухтактным триггером требует усложнения схемы управления. Поэтому применяются двухступенчатые однотактные триггеры, которые строятся с использованием различных схемотехнических приемов задержки переключения второго триггера.

3.3.5.2 Однотактные двухступенчатые триггеры

Двухступенчатая структура триггера отображается на условном графическом обозначении в виде двух букв Т, как показано на рисунке 3.10.

Рисунок 3.10 - Условное графическое обозначение двухступенчатых триггеров

О двухступенчатых триггерах говорят также, что они управляются импульсом. Действительно, для полного цикла работы двухступенчатого триггера необходимо два перепада синхронизирующего сигнала.

На рисунке 3.11 представлен RS-триггер с запрещающими связями, а на рисунке 3.12 с инвертором.

Рисунок 3.11 - Однотактный RS-триггер M-S-типа с запрещающими связями

Рисунок 3.12 - Однотактный R-S триггер M-S-типа с инвертором

логический схема регистр триггер

Передним фронтом тактового импульса записывается информация, определяемая уровнем сигналов на информационных входах триггера, в первый элемент памяти, называемый управляющим (М). Спад тактового импульса вызывает перезапись информации из управляющего элемента в управляемый (S). После окончания тактового импульса изменения информации на входах R и S управляющего триггера не воспринимаются. Процесс записи проиллюстрирован на рисунке 3.13.

Рисунок 3.13 - Временне диаграммы процесса записи в однотактный R-S триггер M-S-типа

Пунктирными линиями на рисунках 3.11 и 3.12 показаны обратные связи, превращающие RS-триггер в Т-триггер, временные диаграммы работы которого показаны на рисунке 3.14.

Рисунок 3.14 - Временные диаграммы работы Т-триггера

Двухступенчатые синхронные триггеры выпускаются в виде отдельных ИМС. На рисунке 3.15 показаны условные графические обозначения ИМС типов 155ТМ2 и 155ТВ1.

155ТМ2 155ТВ1

Рисунок 3.15 - Условные графические обозначения ИМС типов 155ТМ2 и 155ТВ1

ИМС 155ТМ2 содержит два синхронных D-триггера, управляемых передним фронтом синхронизирующего импульса. Триггеры имеют внутренние управляющие R и S входы, функционирующие независимо от синхронизирующих сигналов.

Синхронный JK-триггер 155ТВ1, изображенный на рисунке 3.15, также имеет независимое управление по входам S и R. Триггер тактируется спадом импульса и имеет по три информационных входа J и К. Одноименные входы объединены в нем по схеме И.

Обычно в сериях ИМС, выпускаемых промышленностью, D-триггеры переключаются фронтом импульса, а JK-триггеры - импульсом.

Отметим, что двухступенчатые синхронные триггеры реагируют на изменения информационных сигналов во время действия тактовых импульсов. Если перед приходом тактового импульса информационные входы имели состояние, при котором триггер не должен изменить свое состояние, а во время действия тактового импульса информационные входы даже на короткое время воспримут сигналы, приводящие к изменению состояния триггера, то это изменение произойдет обязательно. Поэтому рассматриваемые триггеры следует применять лишь там, где исключена возможность изменения информационных сигналов во время действия синхронизирующего импульса.

Несколько иначе работают двухступенчатые синхронные триггеры, переключаемые фронтом или спадом импульса. Такие триггеры реагируют лишь на сигналы, которые имеются на информационных входах в момент действия активного фронта или спада синхронизирующего импульса. В остальные моменты времени информационные входы триггера заблокированы, и сигналы на них не воспринимаются. Поэтому триггеры, переключаемые фронтом или спадом импульса, имеют более высокую помехозащищенность по сравнению с триггерами, переключаемыми импульсом.

4 РЕГИСТРЫ

4.1 Общие сведения о регистрах

Регистры - это устройства, предназначенные для записи, хранения, выдачи и преобразования информации, представленной в виде двоичных кодов.

Области применения: устройства памяти, элементы задержки, преобразователи последовательных кодов в параллельный и наоборот, кольцевые распределители сигналов и т.д. В зависимости от функциональных свойств и схемной реализации подразделяются на:

Регистры памяти;

Регистры сдвига;

Универсальные регистры.

4.2 Регистры памяти

Назначение регистров памяти – сохранять двоичный код на протяжении некоторого промежутка времени. Они состоят из набора триггеров, каждый из которых сохраняет один разряд кода. Следовательно, для хранения n-разрядного двоичного кода регистр должен иметь n триггеров. Структуру и работу такого триггера поясняет схема на рисунке 4.1.

Рисунок 4.1- Структура регистра памяти

Двоичный код поступает в параллельной форме на входы Х0, Х1, Х2, после чего на вход С подается тактирующий импульс, которым производится запись в соответствующий триггер.

4.3 Сдвигающие регистры

Сдвигающий регистр - это группа триггеров, соединенных таким образом, что информация из каждого триггера может передаваться в следующий триггер, сдвигая код, записанный в регистре. В зависимости от направления сдвига различают регистры:

Со сдвигом вправо (в сторону младших разрядов),

Со сдвигом влево (в сторону старших разрядов),

Реверсивные (сдвигающие и вправо и влево).

Условное графическое обозначение сдвигающего вправо регистра показано на рисунке 4.2. Здесь стрелкой показано направление сдвига.

Рисунок 4.2-Условное графическое обозначение сдвигающего регистра

На рисунке 4.3 показан сдвигающий регистр, состоящий из соединенных последовательно D-триггеров, а на рисунке 4.4 функциональная схема сдвигающего регистра основе RS-триггеров. Важной особенностью сдвигающих регистров является их исполнение на триггерах исключительно двухступенчатой MS-структуры.

Рисунок 4.3 - Функциональная схема сдвигающего регистра основе D-триггеров

Рисунок 4.4- Функциональная схема сдвигающего регистра основе RS-триггеров

По переднему фронту синхронизирующего импульса С информация со входа записывается в М-часть первого триггера, а с выхода первого – в М-часть второго, со второго – в третий и так далее. По спаду синхронизирующего импульса С информация переписывается и М-части в S-часть. Таким образом, информация сдвигается на один разряд после каждого синхронизирующего импульса.

Такой регистр сдвигает коды в одном направлении. Информация, поступившая на вход во время какого-либо такта, появится на выходе Qn сдвигающего регистра через n тактов.

В рассмотренном регистре запись информации производится по входу последовательным кодом (разряд за разрядом).

4.4 Реверсивные регистры

Существуют регистры, которые могут сдвигать данные в обоих направлениях. Такие регистры называются реверсивными. Принцип построения реверсивных регистров показан на схеме, изображенной на рисунке 4.5.

Рисунок 4.5- Функциональная схема реверсивного регистра на основе D-триггеров

Направление сдвига задается сигналом, подаваемым на вход V. Если V=1, то открыты нижние по схеме вентили & элементов 2И-ИЛИ, на управляющие входы которых поступает сигнал «1», и происходит сдвиг вправо. Если V=0, то открыты верхние по схеме вентили & элементов 2И-ИЛИ, т.к. сигнал управления поступает на них через инвертор; происходит сдвиг влево.

4.5 Универсальные регистры

Часто требуются более сложные регистры: с параллельной синхронной записью информации, реверсивные, с параллельно-последовательной синхронной записью. Такие регистры называются универсальными.

Примером универсального регистра служит ИМС типа К155ИР1, условное графическое обозначение которого показано на рисунке 4.6.

Рисунок 4.6-Условное графическое обозначение универсального регистра типа К155ИР1

Это четырехразрядный сдвигающий регистр с возможностью последовательной и параллельной записи информации. Его функциональная схема показана на рисунке 4.7.

Регистр выполнен на четырех RS-триггерах и имеет два тактирующих входа СІ, С2 и один вход V2, управляющий режимом работы регистра. Информационный вход V1 служит для занесения данных в последовательном коде, а входы D1-D4 - для занесения данных в параллельном коде.

Регистр может работать в четырех различных режимах, при которых выполняются: сдвиг кодов вправо, сдвиг кодов влево, параллельное занесение данных, хранение информации. Выбор того или иного из них осуществляется подачей соответствующего уровня логического сигнала на управляющий вход V2. При V2 = О производится сдвиг кодов в сторону старших разрядов. Если V2 = 1, то происходит параллельное занесение информации по входам D1-D4.

Рисунок 4.7-Функциональная схема универсального регистра типа К155ИР1

При работе регистра в режиме преобразования последовательного кода в параллельный со сдвигом в сторону старших разрядов (V2 = 0) отключаются входы параллельной записи D1- D4, разрешаются занесение данных в регистр по входу V1 в последовательном коде и прохождение тактирующих сигналов по входу С1, а также устанавливаются связи выхода каждого младшего разряда со входом последующего старшего. Сдвиг на один разряд вправо осуществляется при каждом спаде тактирующего импульса на входе С1. Информация в виде четырехразрядного параллельного кода появится на выходах Q1,Q2,Q3,Q4 через четыре такта входного импульса.

Параллельное занесение данных происходит через входы D1-D4 при наличии управляющего сигнала V2=1 с приходом спада импульса на вход С2. При этом вход последовательного занесения V1 и вход тактирующих сигналов С1 отключаются.

При организации сдвига кодов в сторону младших разрядов необходимо выполнить внешние соединения, показанные на рисунке 4.8.

Рисунок 4.8-Схема внешних соединений для сдвига в сторону младших разрядов

Последовательная запись в регистр осуществляется по входу D4 при управляющем сигнале V2=1. Сдвиг кодов влево осуществляется при каждом спаде тактирующего импульса С2. Параллельная запись при сдвиге кодов влево невозможна, поскольку каналы параллельного занесения используются для передачи данных от младших разрядов к старшим. Заметим, что в случае соединений, показанных на рисунке 4.8, отсутствует возможность лишь параллельного занесения данных. Сдвиг кодов в сторону старших разрядов возможен и, как и прежде, осуществляется подачей тактирующих сигналов на вход С1 при V2=0. Следовательно, сдвигающий регистр, изображенный на рисунке 4.8, является реверсивным.

5 СЧЕТЧИКИ

5.1 Общие сведения о счетчиках

Счетчиками называют устройства, ведущие счет числа импульсов.

Счетчики применяют не только для счета, но и для выполнения иных операций, которые можно свести к счету импульсов, а именно: преобразование количества импульсов в определенный код, деление частоты, суммирование или вычитание количества сигналов, распределение сигналов и т.д.

Основным параметром счетчика является коэффициент (модуль) счета Ксч.

Коэффициент счета равен количеству различных состояний счетчика. Именно столько необходимо импульсов, чтобы счетчик вернулся в исходное состояние. При использовании счетчика в качестве делителя частоты частота следования выходных импульсов меньше частоты входных в Ксч раз. Максимальное число, которое может отобразить счетчик на единицу меньше, чем Ксч. Основным элементом счетчиков является Т-триггер. На практике T-триггеры получают из D- или JK-триггеров.

В зависимости от направления счета различают суммирующие, вычитающие и реверсивные счетчики.

В суммирующем счетчике каждый счетный сигнал увеличивает число, записанное в счетчик на единицу (прямой счет), в вычитающем каждый счетный сигнал уменьшает содержимое счетчика на единицу (обратный счет). Реверсивный счетчик – может выполнять как прямой, так и обратный счет.

В таблицах 5.1 и 5.2 отображена последовательность изменения кодов в суммирующем и вычитающем счетчиках соответственно.

Таблица 5.1- Коды состояний суммирующего счетчика

Номер сигнала Разряды Число в счетчике
Q2 Q1 Q0
0 0 0 0 0
1 0 0 1 1
2 0 1 0 2
3 0 1 1 3
4 1 0 0 4
5 1 0 1 5
6 1 1 0 6
7 1 1 1 7
8 0 0 0 0

Таблица 5.2- Коды состояний вычитающего счетчика

Номер сигнала Разряды Число в счетчике
Q2 Q1 Q0
0 0 0 0 0
1 1 1 1 7
2 1 1 0 6
3 1 0 1 5
4 1 0 0 4
5 0 1 1 3
6 0 1 0 2
7 0 0 1 1
8 0 0 0 0

Если в качестве исходного состояния вычитающего счетчика выбрать десятичное число 7 (двоичный код 111), то последовательность входных импульсов уменьшает содержимое счетчика вплоть до 000, после чего наступает переполнение, т. е. возврат к исходному состоянию 111.

Если в качестве исходного состояния счетчика принять число 000, то состояния выходов триггеров счетчика отображают отрицательное число сосчитанных импульсов, представленное в дополнительном коде.

В зависимости от способа построения цепей переноса различают счетчики с последова- тельным и параллельным переносом.

5.2 Счетчики с последовательным переносом

5.2.1 Последовательный суммирующий счетчик

Как следует из таблицы 5.1 самый младший разряд Q0 меняет свое состояние с каждым счетным импульсом, смена состояния каждого последующего разряда происходит, если предыдущий переходит из единичного в нулевое состояние. Если использовать Т-триггеры, соединенные так, как показано на рисунке 5.1, то получим именно такую последовательность смены состояний триггеров.

Рисунок 5.1- Последовательный суммирующий счетчик

На рисунке 5.2 показаны временные диаграммы работы суммирующего счетчика

Рисунок 5.2- Временные диаграммы работы суммирующего счетчика

Каскадное включение п таких триггеров образует счетчик с коэффициентом счета Ксч = 2n. При этом необходимо помнить, что каждый триггер обладает Ксч = 2, а при их последовательном соединении коэффициенты счета перемножаются. На рисунке.2 видно, что период следования импульсов после каждого триггера увеличивается вдвое, и после последнего превышает период входных импульсов в Ксч раз. Соответственно частота уменьшается в такое же количество раз, т.е. делится на число, равное Ксч. Это свойство положено в основу использования счетчиков в качестве делителя частоты.

5.2.2 Последовательный вычитающий счетчик

Возможен и другой вариант последовательного включения триггеров, когда их входы соединены с инверсными выходами предшествующих триггеров, как показано на рисунке 5.3. Так получают двоичный вычитающий счетчик, смена состояний которого показана в таблице 5.2.

Рисунок 5.3 - Последовательный вычитающий счетчик

На рисунке 5.4 показаны временные диаграммы работы вычитающего счетчика.

Рисунок 5.4- Временные диаграммы работы вычитающего счетчика

На рисунках 5.1 и 5.3 показаны схемы двоичных последовательных счетчиков, т. е. таких счетчиков, в которых при изменении состояния определенного триггера возбуждается последующий триггер, причем триггеры меняют свои состояния последовательно.

Если в данной ситуации должны изменить свои состояния п триггеров, то для завершения этого процесса потребуется п интервалов времени, соответствующих времени изменения состояния каждого из триггеров. Такой последовательный характер работы является причиной двух недостатков последовательного счетчика:

Меньшая скорость счета по сравнению с параллельными счетчиками,

Возможность появления ложных сигналов на выходе схемы.

Допустимая скорость счета в счетчиках обоих типов определяется максимальной скоростью переключения одного триггера.

Определяя максимальную скорость счета последовательного счетчика, следует учитывать наиболее неблагоприятный случай изменения состояния всех т триггеров. Суммарную продолжительность переходного процесса можно определить как сумму времен запаздывания отдельных элементов, соединяющих триггеры, и времен срабатывания всех триггеров. Найденное таким образом максимальное время перехода счетчика из одного состояния в другое следует считать предельным. Обычно реальное время перехода меньше предельного, так как в ряду последовательно включенных триггеров данный триггер начинает переход из одного состояния в другое еще до окончания переходного процесса в возбуждающем его элементе.

Последовательный характер переходов триггеров счетчика является источником ложных сигналов на его выходах. Например, в счетчике, ведущем счет в четырехразрядном двоичном коде с «весами» 8421, при переходе от числа 710 = 01112 к числу 810 = 10002 на выходе появится следующая последовательность сигналов: 0111– 0110 – 0100 – 0000 – 1000. Это означает, что при переходе из состояния 7 в состояние 8 на выходах счетчика на короткое время появятся состояния 6; 4; 0. Эти дополнительные состояния могут вызвать неправильную работу других устройств.

5.3 Счетчики с параллельным переносом

В параллельных счетчиках синхронизирующие сигналы поступают на все триггеры одновременно, что уменьшает время протекания переходных процессов. В этом случае получим параллельный счетчик. Пример схемы суммирующего счетчика приведен на рисунке 5.5.

Рисунок 5.5- Параллельный суммирующий счетчик на TV-триггерах

Здесь счетные импульсы одновременно поступают на входы синхронизации Т всех триггеров, а на разрешающие входы V подаются сигналы, определяющие конкретные триггеры, которые изменяют свое состояние при данном входном импульсе. Если V=1, то триггер работает как обычно, если V=0, то находится в режиме хранения. Принцип работы счетчика следует из таблицы.1: триггер меняет свое состояние при поступлении очередного импульса синхронизации, если все предыдущие триггеры находились в состоянии логической единицы.

В качестве Т-триггера можно использовать универсальный JK-триггер, например ИМС К155ТВ1. Параллельный суммирующий счетчик на основе JK-триггеров приведен на рисунке 5.6.

Рисунок 5.6- Параллельный суммирующий счетчик на JK-триггерах

Здесь каждый триггер может находиться только в двух режимах: счетном (режим Т-триггера) и хранения. В первом случае J=K=1, во втором – J=K=0. Логика работы полностью соответствует описанию схемы, представленной на рисунке 5.5.

5.4 Реверсивные счетчики

Иногда требуются счетчики, допускающие вести счет, как в прямом, так и обратном направлении, т.е. реверсивные. Принцип их построения основан на использовании вентильных элементов, позволяющих организовать переключение режима работы. Один из вариантов реверсивного параллельного счетчика на TV-триггерах представлен на рисунке 5.7.

Рисунок 5.7- Параллельный реверсивный счетчик на TV-триггерах

Переключение направления счета достигается подачей сигнала логической единицы “1” на один из управляющих входов. Если “1” подана на вход “+1”, то режим суммирования, если на вход “-1”, то режим вычитания. В первом случае будут открыты верхние по схеме вентили И, поэтому сигналы переноса будут браться с прямых выходов триггеров, во втором случае открыты нижние вентили, и сигналы переноса проходят с инверсных выходов триггеров.

5.5 Счетчики с произвольным коэффициентом счета не равным 2n

В некоторых устройствах требуется счетчики с коэффициентом счета не равным 2n или с переменным коэффициентом счета. Один из возможных способов его изменения заключается в изменении логической структуры схемы в зависимости от сигналов управления коэффициентом счета. Смысл изменения заключается в изменении числа состояний счетчика, т.к. Ксч равен именно этому числу.

Предположим, что необходимо разработать параллельный счетчик, ведущий счет по модулю 5. Минимальное число триггеров, обеспечивающее коэффициент счета 5, равно трем. Действительно, счетчик, содержащий три триггера, может находиться в одном из восьми состояний (включая нулевое состояние 000). Но чтобы получить Ксч =5, необходимо уменьшить количество состояний на величину 8-5=3. Три состояния счетчика должны быть запрещены.

Возможны следующие основные способы уменьшения числа состояний:

Начальная установка кода,

Принудительный насчет в процессе счета,

Принудительное обнуление.

Под начальной установкой кода понимается предварительное занесение в счетчик перед началом счета числа, равного количеству избыточных состояний (для Ксч =5 их 3). Таким образом, количество импульсов, которые сосчитает счетчик до перехода в исходное состояние уменьшится на величину занесенного числа.

Принудительный насчет требует введения в схему счетчика дополнительных элементов, обеспечивающих в определенный момент занесение в счетчик числа равного количеству избыточных состояний. Примером построения счетчика по этому принципу может служить счетчик с Ксч=10, показанный на рисунке 5.8.

Рисунок 5.8- Счетчик с принудительным насчетом с Ксч=10

В течение первых восьми импульсов состояния счетчика изменяются обычным порядком как показано в таблице 5.3.

Таблица 5.3- Коды состояний счетчика с принудительным насчетом с Ксч=10

Номер сигнала Разряды (вес) Число в счетчике
Q3 (8) Q2 (4) Q1 (2) Q0(1)
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 2
3 0 0 1 1 3
4 0 1 0 0 4
5 0 1 0 1 5
6 0 1 1 0 6
7 0 1 1 1 7
8 1 0 0 0 8
1 1 1 0 14
1 1 1 1 15
10 0 0 0 0 0

С приходом девятого импульса (строка 9а) на входах логического элемента И появляются три единицы, а на его выходе «0», которым устанавливаются по входам S триггеры Q2 и Q1, имеющие веса 4 и 2 соответственно. Это равносильно занесению в счетчик числа 6 – именно столько избыточных состояний при Ксч=10. После окончания девятого импульса (строка 9б) Q0 переходит в единичное состояние, и в итоге в счетчике оказывается число 15 вместо числа 9. Десятым импульсом счетчик переходит в исходное нулевое состояние.

Принцип принудительного обнуления реализован в ИМС К155ИЕ5, которая представляет собой четырехразрядный последовательный двоичный счетчик с изменяемым Ксч в пределах 16. Условное графическое обозначение счетчика К155ИЕ5 представлено на рисунке 5.9.

Рисунок 5.9- Счетчик с принудительным обнулением К155ИЕ5

Структура счетчика К155ИЕ5 показана на рисунке 5.10.

Рисунок 5.10- Структура счетчика с принудительным обнулением К155ИЕ5

Счетчик К155ИЕ5 состоит из четырех счетных триггеров на основе JK-триггеров, причем он содержит две независимые части с Ксч=2 (вход С1 и выход Q1) и с Ксч=8 (вход С2 и выходы Q2, Q3, Q4). С помощью внешних соединений Q1 с С2 можно получить последовательный счетчик с Ксч=2×8=16. Входы R1 и R2 служат для сброса (обнуления) счетчика, которое произойдет, если R1 = R2 = 1.

Принцип получения произвольного коэффициента счета основан на подаче единичных сигналов с выходов счетчика на входы обнуления.

Например, для получения Ксч=10 сначала определяют количество триггеров. Их должно быть четыре, т.к. 24=16, что больше, чем 10. Производят соединение Q1 с С2. Затем записывают в двоичной форме десятичное число десять: это будет Q1=0, Q2=1, Q3=0, Q4=1. При Ксч=1010 максимальный выходной код соответствует числу 910, а следующее за ним число – 010, а не 1010. Следовательно, соединив выходы Q2 и Q4, на которых единицы одновременно появляются после десятого импульса, со входами R1 и R2, получим обнуление счетчика десятым импульсом, что и будет соответствовать Ксч=1010. На рисунке 5.11 показан счетчик с Ксч=10, построенный по описанной методике.

Рисунок 5.11-Счетчик с Ксч=10 на основе ИМС К155ИЕ5

Микросхемы К155ИЕ6, К555ИЕ6, КР1533ИЕ6 представляют собой двоично-десятичный, реверсивный счетчик, работающий в коде 1-2-4-8. Его условное графическое обозначение представлено на рисунке 5.12.

Рисунок 5.12-Счетчик К155ИЕ6, К555ИЕ6, КР1533ИЕ6

Назначение выходов и входов микросхемы К155ИЕ6, К555ИЕ6, КР1533ИЕ6:

Входы +1 и -1 служат для подачи тактовых импульсов, +1 – при прямом счете, -1 – при обратном.

Вход R служит для установки счетчика в 0,

Вход L – для записи в счетчик информации, поступающей по входам D1 - D8.

Установка триггеров счетчика в 0 происходит при подаче лог. 1 вход R, при этом на входе L должна быть лог. 1. Для предварительной записи в счетчик любого числа от 0 до 9 его код следует подать на входы D1 - D8 (D1 - младший разряд, D8 - старший), при этом на входе R должен быть лог. 0, и на вход L подать импульс отрицательной полярности.

Режим предварительной записи можно использовать для построения делителей частоты с перестраиваемым коэффициентом деления. Если этот режим не используется, на входе L должен постоянно поддерживаться уровень лог. 1.

Прямой счет осуществляется при подаче импульсов отрицательной полярности на вход +1, при этом на входах -1 и L должна быть лог. 1, на входе R – лог. 0. Переключение триггеров счетчика происходит по спадам входных импульсов, одновременно с каждым десятым входным импульсом на выходе >9 формируется отрицательный выходной импульс переполнения, который может подаваться на вход +1 следующей микросхемы многоразрядного счетчика. Уровни на выходах 1-2-4-8 счетчика соответствуют состоянию счетчика в данный момент (в двоичном коде). При обратном счете входные импульсы подаются на вход -1, выходные импульсы снимаются с выхода ≤ 0.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРИ

1. Алексенко А.Г. Микросхемотехника. - М.: Радио и связь. - 1982.

2. Бирюков С.А. Применение цифровых микросхем серий ТТЛ и КМОП. -М.: ДМК. -2000

3. Букреев Я.П. Микроэлектронные схемы цифровых устройств.- М.: Радио и связь.-1990.

4. Зельдин Е.А. Цифровые интегральные микросхемы в информационно-измерительной аппаратуре.- Л.: Энергоатомиздат.- 1986.

5. интегральные микросхемы: Справочник. Под ред. Тарабрина Б.В. -М.:Энергоатомиздат. -1985.

6. Малышев А.А. Основы цифровой техники.- М.: Радио и связь.- 1984

7. Овечкин Ю.А. микроэлектроника -М.: Радио и связь.- 1982.

8. Основи цифрових схем / І.П.Барбаш, М.П.Благодарний, В.Я.Жихарев, В.М.Ілюшко, В.С.Кривцов, П.М.Куліков, М.В.Нечипорук, Г.М.Тимонькін, В.С.Харченко.-Х.-Нац.аерокосмічний ун-т «Харк. авіац. ін-т». - 2002.