Драйвер mosfet на полевых транзисторах. Использование драйвера ключей нижнего и верхнего уровней IR2110 — объяснение и примеры схем

21.04.2019

Всем хороши мощные полевые транзисторы MOSFET, кроме одного маленького нюанса, — подключить их напрямую к выводам микроконтроллера зачастую оказывается невозможно.

Это, во-первых, связано с тем, что допустимые токи для микроконтроллерных выводов редко превышают 20 мА, а для очень быстрых переключений MOSFET-ов (с хорошими фронтами), когда нужно очень быстро заряжать или разряжать затвор (который всегда обладает некоторой ёмкостью), нужны токи на порядок больше.

И, во-вторых, питание контроллера обычно составляет 3 или 5 Вольт, что в принципе позволяет управлять напрямую только небольшим классом полевиков (которые называют logic level — с логическим уровнем управления). А учитывая, что обычно питание контроллера и питание остальной схемы имеет общий минусовой провод, этот класс сокращается исключительно до N-канальных «logic level»-полевиков.

Одним из выходов, в данной ситуации, является использование специальных микросхем, — драйверов, которые как раз и предназначены для того, чтобы тягать через затворы полевиков большие токи. Однако и такой вариант не лишён недостатков. Во-первых, драйверы далеко не всегда есть в наличии в магазинах, а во-вторых, они достаточно дороги.

В связи с этим возникла мысль сделать простой, бюджетный драйвер на рассыпухе, который можно было бы использовать для управления как N-канальными, так и P-канальными полевиками в любых низковольтных схемах, скажем вольт до 20. Ну, благо у меня, как у настоящего радиохламера, навалом всякой электронной рухляди, поэтому после серии экспериментов родилась вот такая схема:

  1. R 1 =2,2 кОм, R 2 =100 Ом, R 3 =1,5 кОм, R 4 =47 Ом
  2. D 1 — диод 1N4148 (стеклянный бочонок)
  3. T 1 , T 2 , T 3 — транзисторы KST2222A (SOT-23, маркировка 1P)
  4. T 4 — транзистор BC807 (SOT-23, маркировка 5C)

Ёмкость между Vcc и Out символизирует подключение P-канального полевика, ёмкость между Out и Gnd символизирует подключение N-канального полевика (ёмкости затворов этих полевиков).

Пунктиром схема разделена на два каскада (I и II). При этом первый каскад работает как усилитель мощности, а второй каскад — как усилитель тока. Подробно работа схемы описана ниже.

Итак. Если на входе In появляется высокий уровень сигнала, то транзистор T1 открывается, транзистор T2 закрывается (поскольку потенциал на его базе падает ниже потенциала на эмиттере). В итоге транзистор T3 закрывается, а транзистор T4 открывается и через него происходит перезаряд ёмкости затвора подключенного полевика. (Ток базы транзистора T4 течёт по пути Э T4 ->Б T4 ->D1->T1->R2->Gnd).

Если на входе In появляется низкий уровень сигнала, то всё происходит наоборот, — транзистор T1 закрывается, в результате чего вырастает потенциал базы транзистора T2 и он открывается. Это, в свою очередь, приводит к открытию транзистора T3 и закрытию транзистора T4. Перезаряд ёмкости затвора подключенного полевика происходит через открытый транзистор T3. (Ток базы транзистора T3 течёт по пути Vcc->T2->R4->Б T3 ->Э T3).

Вот в общем-то и всё описание, но некоторые моменты, наверное, требуют дополнительного пояснения.

Во-первых, для чего нужны транзистор T2 и диод D1 в первом каскаде? Тут всё очень просто. Я не зря выше написал пути протекания токов базы выходных транзисторов для разных состояний схемы. Посмотрите на них ещё раз и представьте что было бы, если бы не было транзистора T2 с обвязкой. Транзистор T4 отпирался бы в этом случае большим током (имеется ввиду ток базы транзистора), протекающим с выхода Out через открытый T1 и R2, а транзистор T3 отпирался бы маленьким током, протекающим через резистор R3. Это привело бы к сильно затянутому переднему фронту выходных импульсов.

Ну и во-вторых, наверняка многих заинтересует, зачем нужны резисторы R2 и R4. Их я воткнул для того, чтобы хоть немного ограничить пиковый ток через базы выходных транзисторов, а также окончательно подравнять передний и задний фронты импульсов.

Собранное устройство выглядит вот так:

Разводка драйвера сделана под smd-компоненты, причём таким образом, чтобы его можно было легко подключать к основной плате устройства (в вертикальном положении). То есть на основной плате у нас может быть разведён полумост, или что-то ещё, а уже в эту плату останется только вертикально воткнуть в нужных местах платы драйверов.

Разводка имеет некоторые особенности. Для радикального уменьшения размеров платы пришлось «слегка неправильно» сделать разводку транзистора T4. Его перед припаиванием на плату нужно перевернуть лицом (маркировкой) вниз и выгнуть ножки в обратную сторону (к плате).

Как видите, длительности фронтов практически не зависят от уровня питающего напряжения и составляют чуть больше 100 нс. По-моему, довольно неплохо для такой бюджетной конструкции.

Драйверы полевых транзисторов

Драйверы MOSFET- и IGBT-транзисторов - устройства для управления мощными полупроводниковыми приборами в выходных каскадах преобразователей электрической энергии. Они используются в качестве промежуточного звена между управляющей схемой (контроллером или цифровым сигнальным процессором) и мощными исполнительными элементами.

Этапы развития энергетической (силовой) электроники определяются достижениями в технологиях силовых ключей и их схем управления. Доминирующим направлением в энергетической электронике является повышение рабочих частот конверторов, входящих в состав импульсных источников питания. Преобразование электроэнергии на более высоких частотах позволяет улучшить удельные массогабаритные характеристики импульсных трансформаторов, конденсаторов и дросселей фильтров. Динамические и статические параметры силовых приборов постоянно улучшаются, но мощными ключами надо еще и эффективно управлять. Для сбалансированного взаимодействия между управляющей схемой и выходными каскадами и предназначены мощные высокоскоростные драйверы MOSFET- и IGBT-транзисторов. Драйверы имеют высокие выходные токи (до 9 А), малые длительности фронта, спада, задержки и другие интересные отличительные особенности. Классификация драйверов приведена на рисунке 2.15.

Рисунок 2.15 -Классификация драйверов

Драйвер должен иметь, по крайней мере, один внешний вывод (в двухтактных схемах два), который относится к обязательным. Он может служить как предварительным импульсным усилителем, так непосредственно ключевым элементом в составе импульсного источника питания.

В качестве управляемого прибора в силовых схемах различного назначения могут применяться биполярные транзисторы, МОП – транзисторы и приборы триггерного типа (тиристоры, симисторы). Требования, предъявляемые к драйверу, осуществляющему оптимальное управление в каждом из этих случаев различны. Драйвер биполярного транзистора должен управлять током базы при включении и обеспечивать рассасывание неосновных носителей в базе на этапе выключения. Максимальные значения тока управления при этом мало отличаются от усредненных на соответствующем интервале. МОП – транзистор управляется напряжением, однако в начале интервалов включения и выключения драйвер должен пропускать большие импульсные токи заряда и разряда емкостей прибора. Приборы же триггерного типа требуют формирования короткого импульса тока только в начале интервала включения, поскольку выключение (коммутация) у наиболее распространенных приборов происходит по основным, а не управляющим электродам. Всем этим требованиям в той или иной степени должны удовлетворять соответствующие драйверы.

На рисунках 2.16…2.18 представлены типовые схемы включения биполярного и полевого МОП – транзисторов с использованием одного транзистора в драйвере. Это так называемые схемы с пассивным выключением силового транзистора. Как видно из рисунка, по структуре драйвера схемы эти вполне идентичны, что позволяет использовать одни и те же схемы для управления транзисторами обоих типов. В этом случае рассасывание носителей, накопленных в структуре транзистора, происходит через пассивный элемент – внешний резистор. Сопротивление его, шунтирующее управляющий переход не только при выключении, но и на интервале включения, не может быть выбрано слишком малым, что ограничивает скорость рассасывания заряда.

Для увеличения быстродействия транзистора и создания высокочастотных ключей необходимо снизить сопротивление цепи сброса заряда. Это осуществляется с помощью транзистора сброса, включаемого только на интервале паузы. Соответствующие схемы управления биполярным и МОП – транзисторами представлены на рисунке 2.17.

Силовые транзисторы IGBT и MOSFET стали основными элементами, применяемыми в мощных импульсных преобразователях. Их уникальные статические и динамические характеристики позволяют создавать устройства, способные отдать в нагрузку десятки и даже сотни киловатт при минимальных габаритах и КПД, превышающем 95 %.

Общим у IGBT и MOSFET является изолированный затвор, в результате чего эти элементы имеют схожие характеристики управления. Благодаря отрицательному температурному коэффициенту тока короткого замыкания появилась возможность создавать транзисторы, устойчивые к короткому замыканию. Сейчас транзисторы с нормированным временем перегрузки по току выпускаются практически всеми ведущими фирмами.

Отсутствие тока управления в статических режимах позволяет отказаться от схем управления на дискретных элементах и создать интегральные схемы управления - драйверы. В настоящее время ряд фирм, таких как International Rectifier, Hewlett-Packard, Motorola, выпускает широкую гамму устройств, управляющих одиночными транзисторами, полумостами и мостами - двух- и трехфазными. Кроме обеспечения тока затвора, они способны выполнять и ряд вспомогательных функций, таких как защита от перегрузки по току и короткого замыкания (Overcurrent Protection, Short Circuit Protection ) и падения напряжения управления (Under Voltage LockOut - UVLO). Для ключевых элементов с управляющим затвором падение напряжения управления является опасным состоянием. При этом транзистор может перейти в линейный режим и выйти из строя из-за перегрева кристалла.

Пользователям бывает нелегко разобраться в широкой гамме микросхем, выпускаемых сейчас для использования в силовых схемах, несмотря на схожесть их основных характеристик. В данной статье рассматриваются особенности использования наиболее популярных драйверов, выпускаемых различными фирмами.

Основной вспомогательной функцией драйверов является защита от перегрузки по току. Для лучшего понимания работы схемы защиты необходимо проанализировать поведение силовых транзисторов в режиме короткого замыкания (или КЗ - привычная для разработчиков аббревиатура).

Причины возникновения токовых перегрузок разнообразны. Чаще всего это аварийные случаи, такие как пробой на корпус или замыкание нагрузки.

Перегрузка может быть вызвана и особенностями схемы, например переходным процессом или током обратного восстановления диода оппозитного плеча. Такие перегрузки должны быть устранены схемотехническими методами: применением цепей формирования траектории (снабберов), выбором резистора затвора, изоляцией цепей управления от силовых шин и др.

Включение транзистора при коротком замыкании в цепи нагрузки

Принципиальная схема и эпюры напряжения, соответствующие этому режиму, приведены на рис. 1 а и 2. Все графики получены при анализе схем с помощью программы PSpice. Для анализа были использованы усовершенствованные модели транзисторов MOSFET фирмы International Rectifier и макромодели IGBT и драйверов, разработанные автором статьи.

Рис. 2

Короткое замыкание нагрузки у включенного транзистора

Рис. 3

Как было отмечено, установившееся значение тока КЗ определяется напряжением на затворе. Однако уменьшение этого напряжения приводит к повышению напряжения насыщения и, следовательно, к увеличению потерь проводимости. Устойчивость к КЗ тесно связана и с крутизной транзистора. Транзисторы IGBT с высоким коэффициентом усиления по току имеют низкое напряжение насыщения, но небольшое допустимое время перегрузки. Как правило, транзисторы, наиболее устойчивые к КЗ, имеют высокое напряжение насыщения и, следовательно, высокие потери.

Допустимый ток КЗ у IGBT гораздо выше, чем у биполярного транзистора. Обычно он равен 10-кратному номинальному току при допустимых напряжениях на затворе. Ведущие фирмы, такие как International Rectifier, Siemens, Fuji, выпускают транзисторы, выдерживающие без повреждения подобные перегрузки. Этот параметр оговаривается в справочных данных на транзисторы и называется Short Circuit Ration, а допустимое время перегрузки - tsc - Short Circuit Withstand Time .

Быстрая реакция схемы защиты вообще полезна для большинства применений. Использование таких схем в сочетании с высокоэкономичными IGBT повышают эффективность работы схемы без снижения надежности.

Применение драйверов для защиты от перегрузок

Рассмотрим методы отключения транзисторов в режиме перегрузки на примере драйверов производства фирм International Rectifier, Motorola и Hewlett-Packard, так как эти микросхемы позволяют реализовать функции защиты наиболее полно.

Драйвер верхнего плеча

Рис. 4. Структура драйвера IR2125

На рис. 4 приведена структурная схема, а на рис. 5 - типовая схема подключения драйвера IR2125 с использованием функции защиты от перегрузки. Для этой цели используется вывод 6 - CS. Напряжение срабатывания защиты - 230 мВ. Для измерения тока в эмиттере установлен резистор RSENSE, номинал которого и делителя R1, R4 определяют ток защиты.

Рис. 5. Схема включения IR2125

Как было указано выше, если при появлении перегрузки уменьшить напряжение на затворе, период распознавания аварийного режима может быть увеличен. Это необходимо для исключения ложных срабатываний. Данная функция реализована в микросхеме IR2125. Конденсатор С1, подключенный к выводу ERR, определяет время анализа состояния перегрузки. При С1 = 300 пФ время анализа составляет около 10 мкс (это время заряда конденсатора до напряжения 1,8 В - порогового напряжения компаратора схемы ERROR TIMING драйвера). На это время включается схема стабилизации тока коллектора, и напряжение на затворе снижается. Если состояние перегрузки не прекращается, то через 10 мкс транзистор отключается полностью.

Отключение защиты происходит при снятии входного сигнала, что позволяет пользователю организовать триггерную схему защиты. При ее использовании особое внимание следует уделить выбору времени повторного включения, которое должно быть больше тепловой постоянной времени кристалла силового транзистора. Тепловая постоянная времени может быть определена по графику теплового импеданса Zthjc для одиночных импульсов.

Рис. 6

Для анализа состояния перегрузки по напряжению насыщения измерительный резистор не требуется. При подаче положительного управляющего сигнала на затвор на входе защиты драйвера SC появляется напряжение, определяемое суммой падения напряжения на открытом диоде VD2 и на открытом силовом транзисторе Q1 и делителем R1, R4, который задает ток срабатывания. Падение напряжения на диоде практически неизменно и составляет около 0,5 В. Напряжение открытого транзистора при выбранном токе короткого замыкания определяется из графика Von = f(Ic). Диод VD4, как и VD1, должен быть быстродействующим и высоковольтным.

Кроме защиты от перегрузки по току драйвер анализирует напряжение питания входной части VСС и выходного каскада VB, отключая транзистор при падении VB ниже 9 В, что необходимо для предотвращения линейного режима работы транзистора. Такая ситуация может возникнуть как при повреждении низковольтного источника питания, так и при неправильном выборе емкости С2. Величина последней должна вычисляться исходя из значений заряда затвора, тока затвора и частоты следования импульсов. Для расчета значения бутстрепной емкости Cb в документации фирмы International Rectifier рекомендуются следующие формулы:

Cb = 15*2*(2*Qg + Igbs/f + It)/(Vcc – Vf – Vls),

It = (Ion + Ioff)*tw.

где
Ion и Ioff - токи включения и выключения затвора, tw = Qg/Ion - время коммутации, Qg - заряд затвора, f - частота следования импульсов, Vcc - напряжение питания, Vf - прямое падение напряжения на диоде зарядового насоса (VD1 на рис. 6), Vls - прямое падение напряжения на оппозитном диоде (VD3 на рис. 6), Igbs - ток затвора в статическом режиме.

При невозможности питания драйвера от бутстрепной емкости необходимо использовать «плавающий» источник питания.

Драйвер трехфазного моста

На рис. 7 приведена схема подключения драйвера трехфазного моста IR213* с использованием функции защиты от перегрузки. Для этой цели используется вход ITR. Напряжение срабатывания защиты - 500 мВ. Для измерения полного тока моста в эмиттерах установлен резистор RSENSE, номинал которого вместе с делителем R2, R3 определяет ток защиты.

Рис. 7. Схема включения IR2130

Драйвер IR2130 обеспечивает управление MOSFET и IGBT транзисторами при напряжении до 600 В, имеет защиту от перегрузки по току и от снижения питающих напряжений. Схема защиты содержит полевой транзистор с открытым стоком для индикации неисправности (FAULT). Он также имеет встроенный усилитель тока нагрузки, что позволяет вырабатывать контрольные сигналы и сигналы обратной связи. Драйвер формирует время задержки (tdt - deadtime ) между включением транзисторов верхнего и нижнего плеча для исключения сквозных токов. Это время составляет от 0,2 до 2 мкс для различных модификаций.

Для правильного использования указанной микросхемы и создания на ее основе надежных схем надо учитывать несколько нюансов.

Особенностью драйверов IR213* является отсутствие функции ограничения напряжения на затворе при КЗ. По этой причине постоянная времени цепочки R1C1, предназначенной для задержки включения защиты, не должна превышать 1 мкс. Разработчик должен знать, что отключение моста произойдет через 1 мкс после возникновения КЗ, в результате чего ток (особенно при активной нагрузке) может превысить расчетное значение. Для сброса защиты необходимо отключить питание драйвера или подать на входы нижнего уровня запирающее напряжение (высокого уровня). Отметим также, что среди микросхем данной серии имеется драйвер IR2137, в котором предусмотрена защита по напряжению насыщения верхних транзисторов и формируется необходимое время задержки срабатывания этой защиты. Такая защита очень важна для драйверов, управляющих трехфазными мостовыми схемами, так как при возникновении пробоя на корпус ток КЗ течет, минуя измерительный резистор RSENSE. В этой микросхеме предусмотрено раздельное подключение резисторов затвора для включения, отключения и аварийного выключения, что позволяет реализовать наиболее полно все динамические особенности транзисторов с изолированным затвором.

Ток включения/выключения для IR213* составляет 200/420 мА (120/250 мА для IR2136). Это необходимо учитывать при выборе силовых транзисторов и резисторов затвора для них. В параметрах на транзистор указывается величина заряда затвора (обычно в нК), которая определяет при данном токе время включения/выключения транзистора. Длительность переходных процессов, связанных с переключением, должна быть меньше времени задержки tdt, формируемого драйвером. Применение мощных транзисторов может также привести к ложному открыванию и возникновению сквозного тока из-за эффекта Миллера. Уменьшение резистора затвора или использование резисторов затвора, раздельных для процессов включения и выключения, не всегда решает проблему вследствие недостаточного тока выключения самого драйвера. В этом случае необходимо использование буферных усилителей.

Преимуществом микросхем производства International Rectifier является то, что эти устройства способны выдерживать высокие перепады напряжения между входной и выходной частью. Для драйверов серии IR21** это напряжение составляет 500–600 В, что позволяет управлять транзисторами в полумостовых и мостовых схемах при питании от выпрямленного промышленного напряжения 220 В без гальванической развязки. Для управления транзисторами в схемах, рассчитанных на питание от выпрямленного напряжения 380 В, International Rectifier выпускает драйверы серии IR22**. Эти микросхемы работают при напряжении выходной части до 1200 В. Все драйверы International Rectifier выдерживают фронты наведенного напряжения до 50 В/нс. Этот параметр называется dv/dt immune. Он свидетельствует о высокой устойчивости к режиму защелкивания, который представляет исключительную опасность для импульсных высоковольтных схем.

Драйвер нижнего плеча

Для управления транзисторами нижнего плеча хорошую альтернативу представляют микросхемы, выпускаемые фирмой Motorola. Структурная схема одной из них - МС33153 приведена на рис. 8.

Рис. 8. Структурная схема MC33153

Особенностью данного драйвера является возможность использования двух способов защиты (по току и напряжению насыщения) и разделение режима перегрузки и режима короткого замыкания. Предусмотрена также возможность подачи отрицательного напряжения управления, что может быть очень полезно для управления мощными модулями с большими значениями заряда затвора. Отключение при падении напряжения управления - UVLO осуществляется на уровне 11 В.

Вывод 1 (Current Sense Input ) предназначен для подключения токового измерительного резистора. В микросхеме этот вывод является входом двух компараторов - с напряжением срабатывания 65 и 130 мВ. Таким образом, в драйвере анализируется состояние перегрузки и короткого замыкания. При перегрузке срабатывает первый компаратор (Overcurrent Comparator ) и отключает сигнал управления затвором. Сброс защиты производится при подаче запирающего сигнала (высокого уровня, так как вход Input - инвертирующий). При этом сигнал неисправности на выход (Fault Output ) не подается. Если ток превышает заданный в два раза, это расценивается как КЗ. При этом опрокидывается второй компаратор (Short Circuit Comparator ), и на контрольном выходе появляется сигнал высокого уровня. По этому сигналу контроллер, управляющий работой схемы, должен произвести отключение всей схемы. Время повторного включения должно определяться, как было сказано выше, тепловой постоянной времени силовых транзисторов.

Вывод 8 (Desaturation Input ) предназначен для реализации защиты по напряжению насыщения. Напряжение срабатывания по этому входу - 6,5 В. Этот же вход предназначен для подключения конденсатора Cblank, формирующего время задержки срабатывания защиты. Такая задержка необходима, поскольку после подачи отпирающего напряжения на затвор на транзисторе некоторое время, пока идет восстановление оппозитного диода, поддерживается высокое напряжение.

Рис. 9. Защита по напряжению насыщения

Рис. 10. Защита по току

Драйвер с гальванической развязкой

Гальваническая развязка бывает необходима в схемах, где мощный силовой каскад питается от сетевого напряжения, а сигналы управления вырабатываются контроллером, связанным по шинам с различными периферийными устройствами. Изоляция силовой части и схемы управления в таких случаях снижает коммутационные помехи и позволяет в экстремальных случаях защитить низковольтные схемы.

Рис. 11. Структурная схема HCPL316

На наш взгляд, одной из наиболее интересных микросхем для данного применения является HCPL316 производства фирмы Hewlett-Packard. Его структура приведена на рис. 11, а схема подключения - на рис. 12.

Рис. 12. Схема подключения HCPL316

Сигнал управления и сигнал неисправности имеют оптическую развязку. Напряжение изоляции - до 1500 В. В драйвере предусмотрена защита только по напряжению насыщения (вывод 14 - DESAT). Интересной особенностью является наличие прямого и инверсного входа, что упрощает связь с различными типами контроллеров. Так же как и в случае с МС33153 микросхема может вырабатывать двуполярный выходной сигнал, причем пиковый выходной ток может достигать 3 А. Благодаря этому драйвер способен управлять IGBT транзисторами с током коллектора до 150 А, что является его большим преимуществом по сравнению с аналогичными устройствами.

Вспомогательные схемы

В высоковольтных драйверах фирмы International Rectifier благодаря низкому потреблению питание выходных каскадов может осуществляться с помощью так называемых «бутстрепных» емкостей небольших номиналов. Если такой возможности нет, необходимо использовать «плавающие» источники питания. В качестве таких источников дешевле всего применять многообмоточные трансформаторы с выпрямителем и стабилизатором на каждой обмотке. Естественно, если вы хотите иметь двуполярный выходной сигнал, то и каждый такой источник должен быть двуполярным. Однако более изящным решением является использование изолирующих DC-DC конверторов, например серии DCP01* производства Burr-Brown. Эти микросхемы рассчитаны на мощность до 1Вт и могут формировать двуполярный выходной сигнал из однополярного входного. Напряжение развязки - до 1 кВ. Изоляция осуществляется с помощью трансформаторного барьера на частоте 800 кГц. При использовании нескольких микросхем они могут синхронизироваться по частоте.

В силовых приводах часто бывает необходимо иметь сигнал, пропорциональный выходному току, для формирования обратных связей. Эта задача решается разными способами: с помощью трансформаторов тока, шунтов и дифференциальных усилителей и т. д. Все эти методы имеют свои недостатки. Для наиболее успешного решения задачи формирования токового сигнала и связи его с контроллером фирма International Rectifier разработала микросхемы - токовые сенсоры IR2171 и IR2172, в которых токовый сигнал преобразуется в ШИМ-сигнал. Схема включения IR2171 приведена на рис. 13. Микросхема выдерживает перепад напряжения до 600 В и питается от «бутстрепной» емкости. Несущая частота ШИМ - 35 кГц для IR2171 и 40 кГц для IR2172. Диапазон входных напряжений ±300 мВ. Выходное напряжение снимается с открытого коллектора, что позволяет легко подключить оптическую развязку.

Описать все микросхемы, выпускаемые сейчас в мире для использования в силовых приводах, вряд ли возможно. Однако даже приведенные сведения должны помочь разработчику сориентироваться в океане современной элементной базы. Главный вывод из всего сказанного можно сделать следующий: не пытайтесь сделать что-нибудь на дискретных элементах, пока не будете уверены в том, что никто не выпускает интегральную микросхему, решающую вашу задачу.

Литература

  1. Use Gate Charge to Design the Gate Drive Circuit for Power MOSFETs and IGBTs. AN-944.
  2. Application Characterization of IGBTs. INT990.
  3. IGBT Characteristics. AN-983.
  4. Short Circuit Protection. AN-984.
  5. HV Floating MOS-Gate Driver Ics. AN-978.
  6. Motorola MC33153 Technical Data.
  7. Hewlett Packard HCPL316 Technical Data.
  8. Burr Brown DCP011515 Technical Data.
  9. Иванов В. В., Колпаков А. Применение IGBT. Электронные компоненты, 1996, № 1.
  • 1.3.3. Динамические режимы работы силовых транзисторов
  • 1.3.4. Обеспечение безопасной работы транзисторов
  • 1.4. Тиристоры
  • 1.4.1. Принцип действия тиристора
  • 1.4.2. Статические вольт-амперные характеристики тиристора
  • 1.4.3. Динамические характеристики тиристора
  • 1.4.4. Типы тиристоров
  • 1.4.5. Запираемые тиристоры
  • 2. Схемы управления электронными ключами
  • 2.1. Общие сведения о схемах управления
  • 2.2. Формирователи импульсов управления
  • 2.3. Драйверы управления мощными транзисторами
  • 3. Пассивные компоненты и охладители силовых электронных приборов
  • 3.1. Электромагнитные компоненты
  • 3.1.1. Гистерезис
  • 3.1.2. Потери в магнитопроводе
  • 3.1.3. Сопротивление магнитному потоку
  • 3.1.4. Современные магнитные материалы
  • 3.1.5. Потери в обмотках
  • 3.2. Конденсаторы для силовой электроники
  • 3.2.1. Конденсаторы семейства мку
  • 3.2.2. Алюминиевые электролитические конденсаторы
  • 3.2.3. Танталовые конденсаторы
  • 3.2.4. Пленочные конденсаторы
  • 3.2.5. Керамические конденсаторы
  • 3.3. Теплоотвод в силовых электронных приборах
  • 3.3.1. Тепловые режимы работы силовых электронных ключей
  • 3.3.2. Охлаждение силовых электронных ключей
  • 4. Принципы управления силовыми электронными ключами
  • 4.1. Общие сведения
  • 4.2. Фазовое управление
  • 4.3. Импульсная модуляция
  • 4.4. Микропроцессорные системы управления
  • 5. Преобразователи и регуляторы напряжения
  • 5.1. Основные виды устройств преобразовательной техники. Основные виды устройств силовой электроники символически изображены на рис. 5.1.
  • 5.2. Трехфазные выпрямители
  • 5.3. Эквивалентные многофазные схемы
  • 5.4. Управляемые выпрямители
  • 5.5. Особенности работы полууправляемого выпрямителя
  • 5.6. Коммутационные процессы в выпрямителях
  • 6. Импульсные преобразователи и регуляторы напряжения
  • 6.1. Импульсный регулятор напряжения
  • 6.1.1. Импульсный регулятор с шим
  • 6.1.2. Импульсный ключевой регулятор
  • 6.2. Импульсные регуляторы на основе дросселя
  • 6.2.2. Преобразователь с повышением напряжения
  • 6.2.3. Инвертирующий преобразователь
  • 6.3. Другие разновидности преобразователей
  • 7. Инверторы преобразователей частоты
  • 7.1. Общие сведения
  • 7.2. Инверторы напряжения
  • 7.2.1. Автономные однофазные инверторы
  • 7.2.2. Однофазные полумостовые инверторы напряжения
  • 7.3. Трёхфазные автономные инверторы
  • 8. Широтно-импульсная модуляция в преобразователях
  • 8.1. Общие сведения
  • 8.2. Традиционные методы шим в автономных инверторах
  • 8.2.1. Инверторы напряжения
  • 8.2.2. Трехфазный инвертор напряжения
  • 8.3. Инверторы тока
  • 8.4. Модуляция пространственного вектора
  • 8.5. Модуляция в преобразователях переменного и постоянного тока
  • 8.5.1. Инвертирование
  • 8.5.2. Выпрямление
  • 9. Преобразователи с сетевой коммутацией
  • 10. Преобразователи частоты
  • 10.1. Преобразователь с непосредственной связью
  • 10.2. Преобразователи с промежуточным звеном
  • 10.3.1. Двухтрансформаторная схема
  • 10.3.3. Схема каскадных преобразователей
  • 11. Резонансные преобразователи
  • 11.2. Преобразователи с резонансным контуром
  • 11.2.1. Преобразователи с последовательным соединением элементов резонансного контура и нагрузки
  • 11.2.2. Преобразователи с параллельным соединением нагрузки
  • 11.3. Инверторы с параллельно-последовательным резонансным контуром
  • 11.4. Преобразователи класса е
  • 11.5. Инверторы с коммутацией в нуле напряжения
  • 12. Нормативы на показатели качества электрической энергии
  • 12.1. Общие сведения
  • 12.2. Коэффициент мощности и кпд выпрямителей
  • 12.3. Улучшение коэффициента мощности управляемых выпрямителей
  • 12.4. Корректор коэффициента мощности
  • 13. Регуляторы переменного напряжения
  • 13.1. Регуляторы напряжения переменного тока на тиристорах
  • 13.2. Регуляторы напряжения переменного тока на транзисторах
  • Вопросы для самоконтроля
  • 14. Новые методы управления люминесцентными лампами
  • Вопросы для самоконтроля
  • Заключение
  • Библиографический список
  • 620144, Г. Екатеринбург, Куйбышева,30
  • 2.3. Драйверы управления мощными транзисторами

    Драйверы - микросхемы управления, связывающие различные контроллеры и ло­гические схемы с мощными транзисторами выходных каскадов преобразователей или устройств управления двигателями. Драйверы, обеспечивая передачу сигналов, должны вносить по возможности небольшую временную задержку, а их выходные каскады должны выдерживать большую емкостную нагрузку, характерную для зат­ворных цепей транзисторов. Вытекающий и втекающий токи выходного каскада драйвера должны составлять от 0,5 до 2 А или более.

    Драйвер представляет собой усили­тель мощности импульсов и предна­значен для непосредственного управления силовыми ключами преобра­зователей параметров электроэнер­гии. Схема драйвера определяется ти­пом структуры ключевого транзисто­ра (биполярный, МОП или IGBТ) и ти­пом его проводимости, а также распо­ложением транзистора в схеме ком­мутатора («верхний», т.е. такой, оба силовых вывода которого в открытом состоянии имеют высокий потенци­ал, или «нижний», оба силовых выво­да которого в открытом состоянии имеют нулевой потенциал). Драйвер должен усилить управляющий сигнал по мощности и напряжению, в случае необходимости обеспечить его по­тенциальный сдвиг. На драйвер также могут быть возложены функции за­щиты ключа.

    Проектируя схему управления силовыми транзисторными сборка­ми, необходимо знать, что:

    а) необходимо обеспечивать «плавающий» потенциал управления «верхним» силовым ключом в полу мостовой схеме;

    б) крайне важно создать быстрое нарастание и спад управляющих сигналов, поступающих на затворы силовых элементов для снижения тепловых потерь на переключение;

    в) необходимо обеспечить высокую величину импульса тока управления затвором силовых элементов для быстрого перезаряда входных емкостей;

    г) в подавляющем большинстве случаев нужна электрическая совместимость входной части драйвера со стандартными цифровыми сигналами ТТЛ/КМОП (как правило, поступающих от микроконтроллеров).

    Достаточно продолжительное время разработчики были вынужде­ны проектировать схемы драйверов управления на дискретных эле­ментах. Первым важным событием на пути интеграции драйверов управления стало появление микросхем серий IR21xx и IR22xx (а за­тем их более современных модификаций IRS21xx, IRS22xx), разрабо­танных фирмой «International Rectifies». Эти микросхемы сегодня на­шли широчайшее применение в маломощной преобразовательной тех­нике, поскольку отвечают всем вышеназванным требованиям.

    Схема управления силовыми ключами всегда строится так, что ее выходной сигнал (в виде широтно-модулированных импульсов) задается относи­тельно «общего» проводника схемы. Как видно из рис. 2.12, а , на кото­ром показан полу мостовой силовой каскад, для ключевого транзистора VT 2 этого вполне достаточно - сигнал «Упр.2» можно непосредственно подавать на затвор (базу) транзистора через формирователь G2, так как его исток (эмиттер) связан с «общим» проводником схемы, и управление осуществляется относительно «общего» проводника.

    Но как быть с транзистором VT 1, который работает в верхнем плече полумоста? Если транзистор VT 2 находится в закрытом состоянии, а VT 1 открыт, на истоке VT 1 присутствует напряжение питания Е пит. По­этому для коммутации транзистора VT 1 необходимо гальванически раз­вязанное с «общим» схемы устройство G1, которое четко будет передавать импульсы схемы управления «Упр.1», не внося в сигналы искаже­ний. Классическое решение этой проблемы состоит во включении управляющего трансформатора Т1 (рис. 2.12, б ), который, с одной сто­роны, гальванически развязывает управляющие цепи, а с другой - пере­дает коммутационные импульсы. Не случайно это техническое решение считается «классикой жанра»: оно известно не одно десятилетие.

    а б

    Рис. 2.12. Силовые ключи в полумостовых схемах

    Входным сигналом служит сигнал микросхемы управления стан­дартной амплитуды логического уровня, причем с помощью напряже­ния, подаваемого на вывод Vdd, можно обеспечить совместимость с классической 5-вольтовой «логикой» и более современной 3,3-вольтовой. На выходе драйвера имеются напряжения управления «верхним» и «нижним» силовыми транзисторами. В драйвере приняты меры по обеспечению необходимых управляющих уровней, создан эквивалент гальванической развязки (псевдоразвязка), имеются дополнительные функции - вход отключения, узел защиты от понижения напряжения питания, фильтр коротких управляющих импульсов.

    Как видно из структурной схемы (рис. 2.13), драйвер состоит из двух независимых каналов, которые предназначены для управления верхним и нижним плечом полумостовых схем. На входе драйвера пре­дусмотрены формирователи импульсов, построенные на основе тригге­ров Шмита. Входы Vcc и Vdd предназначены для подключения питаю­щего напряжения силовой и управляющей частей схемы, «земляные» шины силовой части и управляющей части развязаны (разные «общие» выводы - Vss и СОМ).

    В подавляющем большинстве случаев эти выво­ды просто соединяют вместе. Предусмотрена также возможность раз­дельного питания управляющей и силовой части для согласования входных уровней с уровнями схемы управления. Вход SD - защитный. Выходные каскады построены на комплиментарных полевых транзи­сторах. В составе микросхемы имеются дополнительные устройства, обеспечивающие ее устойчивую работу в составе преобразовательных схем: это устройство сдвига уровня управляющих сигналов (Vdd/Vcc level shift), устройство подавления коротких импульсных помех (pulse filter), устройство задержки переключения (delay) и детектор понижен­ного напряжения питания (UV detect).

    Рис. 2. 13. Функциональные узлы микросхем IRS2110 и IRS2113

    Типовая схема включения драйверов приведена на рис. 2.14. Кон­денсаторы С 1 и С З - фильтрующие. Фирма-производитель рекомен­дует располагать их как можно ближе к соответствующим выводам. Конденсатор С 2 и диод VD 1 - бутстрепный каскад, обеспечивающий питание схемы управления транзистора «верхнего» плеча. Конденса­тор С 4 - фильтр в силовой цепи. Резисторы R 1 и R 2 - затворные.

    Иногда управляющий широтно-модулированный сигнал может быть сформирован не по двум управляющим входам отдельно, а подан на один вход в виде меандра с изменяющейся скважностью. Такой способ управления может встретиться, например, в преобразователях, формирующих синусоидальный сигнал заданной частоты. В этом слу­чае достаточно задать паузу «мертвое время» между закрытием одного транзистора полумоста и открытием второго.

    Рис. 2.14. Типовая схема включения IRS2110 и IRS2113

    Такой драйвер со встро­енным узлом гарантированного формирования паузы «мертвое время» в номенклатуре фирмы «International Rectifies» имеется - это микро­схема IRS2111 (рис. 2.15).

    Рис. 2.15. Функциональные узлы микросхемы IRS2111

    На структурной схеме видно, что драйвер имеет встроенные узлы формирования паузы «мертвое время» (deadtime) для верхнего и ниж­него плеч полумоста. Согласно документации производителя, величи­на «мертвого времени» задана на уровне 650 нс (типовое значение), что вполне достаточно для управления полумостами, состоящими из мощных MOSFET транзисторов.

    Драйверы для управления сложны­ми преобразовательными схемами - однофазными и трёхфазными - со­держат большое количество элемен­тов, поэтому неудивительно, что их выпускают в виде интегральных мик­росхем. Эти микросхемы, помимо собственно драйверов, содержат также цепи пре­образования уровня, вспомогатель­ную логику, цепи задержки для фор­мирования «мёртвого» времени, цепи защиты и т. д. По области применения ИМС драйверов различают: драйверы нижнего ключа; драйверы верхнего ключа; драйверы нижнего и верхнего клю­чей; полумостовые драйверы; драйверы однофазного моста; драйверы трёхфазного моста.

    Основные параметры интеграль­ных драйверов делятся на две груп­пы: динамические и эксплуатацион­ные. К динамическим относятся вре­мя задержки переключения при отпирании и запирании ключа, вре­мя нарастания и спада выходного напряжения, а также время реакции цепей защиты. Важнейшие эксплуа­тационные параметры: максималь­ное импульсное значение втекающе­го/вытекающего выходного тока, входные уровни, диапазон питаю­щих напряжений, выходное сопро­тивление.

    Часто на драйверы возлагают так­же некоторые функции защиты МОП- и JGВТ-транзисторов. В число этих функций входят следующие: защита от короткого замыкания ключа; защита от понижения напряжения питания драйвера;

    защита от сквозных токов; защита от пробоя затвора.

    Вопросы для самоконтроля

      Какие основные различия биполярных и полевых транзисторов следует учитывать при использовании их в качестве электронных ключей?

      Какие преимущества биполярных и полевых транзисторов сочетает в себе МОПБТ?

      Перечислите основные статические режимы работы транзисторов. В каких режимах следует использовать транзисторы в устройствах силовой электроники?

      Поясните по схеме Ларионова суть широтно-импульсной

    модуляции (ШИМ).

    Мощные полевые MOSFET-транзисторы и биполярные транзисторы с изолированным затвором (IGBT-транзисторы) являются базовыми элементами современной силовой электроники и используются в качестве элементов коммутации больших токов и напряжений. Однако для согласования низковольтных логических управляющих сигналов с уровнями управления затвора MOSFET- и IGBT-транзисторов требуются промежуточные устройства согласования — высоковольтные драйверы (в дальнейшем, для краткости, под «высоковольтными драйверами» будем понимать «высоковольтные драйверы MOSFET- и IGBT-транзисторов»).

    В большинстве случаев используется следующая классификация высоковольтных драйверов:

    • Независимые драйверы верхнего и драйверы нижнего плеча полумоста, интегрированные в одной микросхеме (High and Low Side Driver );
    • Драйверы верхнего и драйверы нижнего плеча, включенные по схеме полумоста (Half-Bridge Driver );
    • Драйверы верхнего плеча (High Side Driver );
    • Драйверы нижнего плеча (Low Side Driver ).

    На рис. 1 показаны соответствующие этим типам драйверов схемы управления.

    Рис. 1.

    В первом случае (рис. 1а) управление двумя независимыми нагрузками осуществляется от единых управляющих сигналов. Нагрузки, соответственно, включаются между истоком нижнего транзистора и шиной высоковольтного питания (драйвер нижнего плеча), а также между стоком верхнего транзистора и землей (драйвер верхнего плеча). Так называемые средние точки (сток верхнего транзистора и исток нижнего транзистора) не соединены между собой.

    Во втором случае (рис. 1б) средние точки соединены. Причем нагрузка может быть включена как на верхнее, так и на нижнее плечо, но подключена к средней точке аналогично полумостовой схеме (т.н. полная мостовая схема). Строго говоря, в схеме 1а ничто не мешает соединить средние точки. Но в этом случае при определенной комбинации входных сигналов возможно одновременное открытие сразу двух транзисторов и, соответственно, протекание чрезмерно большого тока от высоковольтной шины на землю, что приведет к выходу из строя одного или сразу обоих транзисторов. Исключение подобной ситуации в данной схеме является заботой разработчика. В полумостовых драйверах (схема 1б) подобная ситуация исключается на уровне внутренней логики управления микросхемы.

    В третьем случае (1в) нагрузка включается между стоком верхнего транзистора и землей, а в четвертом (1г) — между истоком нижнего транзистора и шиной высоковольтного питания, т.е. отдельно реализованы две «половинки» схемы 1а.

    Компания STMicroelectronics в последние годы ориентируется (в нише высоковольтных драйверов) только на драйверы первых двух типов (семейства L638x и L639x, которые будут рассмотрены ниже). Однако более ранние разработки содержат микросхемы драйверов, управляющих включением или выключением одиночного MOSFET- или IGBT-транзистора (категория «Single» в терминах компании STMicroelectronics). При определенной схеме включения данные драйверы могут управлять нагрузкой как верхнего, так и нижнего плеча. Отметим также микросхему TD310 — три независимых одиночных драйвера в одном корпусе. Такое решение будет эффективным при управлении трехфазной нагрузкой. Данную микросхему компания STMicroelectronics относит к драйверам категории «Multiple».


    L368x

    В таблице 1 приводятся состав и параметры микросхем семейства L368x. Микросхемы данного семейства включают в себя как независимые драйверы верхнего и нижнего плеча (H&L), так и драйверы полумостовой схемы (HB).

    Таблица 1. Параметры драйверов семейства L638x

    Наименование Voffcet, В Io+, мА Io-, мА Ton, нс Toff, нс Tdt, нс Тип Управление
    L6384E 600 400 650 200 250 Prog. HB IN/-SD
    L6385E 600 400 650 110 105 H&L HIN/LIN
    L6386E 600 400 650 110 150 H&L HIN/LIN/-SD
    L6387E 600 400 650 110 105 H&L HIN/LIN
    L6388E 600 200 350 750 250 320 HB HIN/LIN

    Поясним некоторые параметры:

    V OFFSET — максимально возможное напряжение между истоком верхнего транзистора и землей;

    I O+ (I O-) — максимальный выходной ток при открытом верхнем (нижнем) транзисторе выходного каскада микросхемы;

    T ON (T OFF) — задержка распространения сигнала от входов HIN и LIN до выходов HO и LO при включении (выключении);

    T DT — время паузы — параметр, имеющий отношение к драйверам полумостовой схемы. При смене активных состояний логическая схема принудительно вводит паузы, позволяющие избегать включения верхнего и нижнего плеча одновременно. Например, если выключается нижнее плечо, то какое-то время оба плеча выключены и только потом включается верхнее. И, наоборот, если выключается верхнее плечо, то какое-то время оба плеча выключены и затем включается нижнее. Это время может быть либо фиксированным (как в L6388E ), либо задаваться путем выбора номинала соответствующего внешнего резистора (как в L6384E ).

    Управление. Микросхемы независимых драйверов верхнего и нижнего плеча управляются по входам HIN и LIN. Причем высокий уровень логического сигнала включает, соответственно, верхнее или нижнее плечо драйвера. В микросхеме L6386E помимо этого используется дополнительный вход SD, отключающий оба плеча независимо от состояния на входах HIN и LIN.

    В микросхеме L6384E применяются сигналы SD и IN. Сигнал SD отключает оба плеча независимо от состояния на входе IN. Сигнал IN = 1 эквивалентен комбинации сигналов {HIN = 1, LIN = 0} и, наоборот, IN = 0 эквивалентен комбинации сигналов {HIN = 0, LIN = 1}. Таким образом, одновременное включение транзисторов верхнего и нижнего плеча невозможно в принципе.

    В микросхеме L6388E управление осуществляется по входам HIN и LIN, поэтому принципиально возможно подать на входы комбинацию {HIN = 1, LIN = 1}, однако внутренняя логическая схема преобразует ее в комбинацию {HIN = 0, LIN = 0}, исключив, таким образом, одновременное включение обоих транзисторов.

    Что касается параметров, начнем с микросхем типа H&L.

    Значение V OFFSET , равное 600 Вольт, является в каком-то смысле стандартом для микросхем данного класса.

    Значение выходного тока I O+ (I O-), равное 400/650 мА, является показателем средним, ориентированным на типовые транзисторы общего назначения. Если сравнивать с микросхемами семейства IRS (поколение G5 HVIC), то компания International Rectifier предлагает, главным образом, микросхемы с параметром 290/600 мА. Однако в линейке International Rectifier есть также модели с параметрами 2500/2500 мА (IRS2113) и несколько меньшим быстродействием или микросхемы с выходными токами до 4000/4000 мА (IRS2186). Правда, в этом случае время переключения по сравнению с L6385E увеличивается до значения 170/170 нс.

    Время переключения. Значения T ON (T OFF), равные 110/105 нс (для L6385E), превышают аналогичные значения микросхем семейства IRS (пусть и не очень значительно). Лучших показателей (60/60 нс) компания International Rectifier добилась в модели IRS2011, но за счет снижения напряжения VOFFSET до 200 В.

    Однако отметим, что компания STMicroelectronics предлагает драйверы, в которых общий провод входного (низковольтного) и выходного (высоковольтного) каскадов — единый. Компания International Rectifier, помимо микросхем с аналогичной архитектурой, предлагает драйверы с раздельными общими шинами для входного и выходного каскадов.

    Сравнивая параметры драйвера полумостовой схемы L6384E с изделиями International Rectifier, можно сделать вывод, что он уступает (и по выходным токам, и по быстродействию) только модели IRS21834, в которой реализована входная логика HIN/-LIN. Если критичной является входная логика IN/-SD, то драйвер L6384E превосходит по своим параметрам изделия International Rectifier.

    Более подробно рассмотрим микросхему драйвера L6385E, структура и схема включения которой приведена на рис. 2.


    Рис. 2.

    Микросхема содержит два независимых драйвера верхнего (выход HVG) и нижнего плеча (выход LVG). Реализация драйвера нижнего плеча достаточно тривиальна, поскольку потенциал на выводе GND постоянен и, следовательно, задача состоит в преобразовании входного низковольтного логического сигнала LIN до уровня напряжения на выходе LVG, необходимого для открытия транзистора нижнего плеча. В верхнем плече потенциал на выводе OUT изменяется в зависимости от состояния нижнего транзистора. Существуют различные схемотехнические решения, применяемые для построения каскада верхнего плеча. В данном случае применяется относительно простая и недорогая бутстрепная схема управления (схема с «плавающим» источником питания). В такой схеме длительность управляющего импульса ограничена величиной бутстрепной емкости. Кроме того, необходимо обеспечить условия для ее постоянного заряда с помощью высоковольтного быстродействующего каскада сдвига уровня. Этот каскад обеспечивает преобразование логических сигналов до уровней, необходимых для устойчивой работы схемы управления транзистора верхнего плеча.

    При падении напряжения управления ниже определенного предела выходные транзисторы могут перейти в линейный режим работы, что, в свою очередь, приведет к перегреву кристалла. Для предотвращения этого должны использоваться схемы контроля напряжения (UVLO — Under Voltage LockOut ) и для верхнего (контроль потенциала V BOOT), и для нижнего (контроль V CC) плеча.

    Для современных высоковольтных драйверов характерна тенденция интегрировать бутстрепный диод в корпус интегральной схемы. Благодаря этому отпадает необходимость в применении внешнего диода, который является достаточно громоздким по сравнению с самой микросхемой драйвера. Встроенный бутстрепный диод (точнее, бутстрепная схема) применен не только в драйвере L6385E, но и во всех остальных микросхемах этого семейства.

    Микросхема L6386E является вариантом L6385E с дополнительными функциями. Ее структура и схема включения приведены на рис. 3.


    Рис. 3.

    Основные отличия L6386E от L6385E. Во-первых, добавлен дополнительный вход SD, низкий уровень сигнала на котором выключает оба транзистора независимо от состояния входов HIN и LIN. Часто используется как сигнал аварийного отключения, не связанный со схемой формирования входных управляющих сигналов. Во-вторых, добавлен каскад контроля тока, протекающего через транзистор нижнего каскада. Сравнивая с предыдущей схемой, видим, что сток транзистора нижнего плеча подключен к земле не непосредственно, а через токовый резистор (токовый датчик). Если падение напряжения на нем превышает пороговое значение V REF , то на выходе DIAG формируется низкий уровень. Отметим, что данное состояние не влияет на работу схемы, а является только индикатором.

    Несколько слов о применении микросхем семейства L638x. Ограниченный объем статьи не позволяет рассмотреть примеры применения, однако в документе «L638xE Application Guide» компании STMicroelectronics приведены примеры схемы управления трехфазным двигателем, схемы балласта люминесцентной лампы с диммированием, DC/DC-преобразователей с различной архитектурой и ряд других. Также приведены схемы демонстрационных плат для всех микросхем данного семейства (в том числе и топология печатных плат).

    Подводя итог анализа семейства L638x, отметим: не обладая уникальными характеристиками по каким-то отдельным параметрам, драйверы данного семейства относятся к одним из лучших в отрасли как по совокупности параметров, так и по примененным техническим решениям.

    Семейство высоковольтных драйверов
    полумостовой схемы L639x

    На первый взгляд, микросхемы этого семейства можно считать развитием микросхемы L6384E. Однако анализируя функциональные возможности драйверов семейства L639x, признать L6384E в качестве прототипа весьма сложно (разве что за отсутствием других драйверов полумоста в линейке STMicroelectronics). В таблице 2 приводятся состав и параметры микросхем семейства L639x.

    Таблица 2. Параметры драйверов семейства L639x

    Наименование Voffcet, В Io+, мА Io-, мА Ton, нс Toff, нс Tdt, мкс Тип Smart SD ОУ Комп. Управление
    L6390 600 270 430 125 125 0,15…2,7 HB есть есть есть HIN/-LIN/-SD
    L6392 600 270 430 125 125 0,15…2,7 HB есть HIN/-LIN/-SD
    L3693 600 270 430 125 125 0,15…2,7 HB есть PH/-BR/-SD

    Основная особенность микросхем данного семейства — наличие дополнительных встроенных элементов: операционного усилителя или компаратора (для L6390 — и того, и другого). На рис. 4 показана структура и схема включения микросхемы L6390.


    Рис. 4.

    Какие преимущества дают дополнительные элементы в практических приложениях? Операционные усилители (в L6390 и L6392 ) предназначены для измерения тока, протекающего через нагрузку. Причем, поскольку доступны оба вывода (OP+ и OP-), возникает возможность формировать на соответствующем выходе микросхемы и абсолютное значение, и отклонение от некоторого опорного напряжения (соответствующего, например, максимально допустимому значению). В драйвере L6390 компаратор выполняет вполне конкретную функцию «интеллектуального отключения» (Smart Shutdown ) — т.е. при превышении максимально допустимого тока в нагрузке компаратор начинает влиять на логику работы драйвера и обеспечивает плавное отключение нагрузки. Скорость отключения задается RC-цепью, подключенной к выводу SD/OD. Причем, поскольку данный вывод является двунаправленным, то он может являться как выходом индикации ошибки для управляющего микроконтроллера, так и входом для принудительного отключения.

    Все микросхемы содержат логику защиты от одновременного открытия транзисторов верхнего и нижнего плеча и, соответственно, формирования паузы при изменении состояния выхода. Время паузы T DT для всех микросхем семейства программируемое и определяется номиналом резистора, подключенного к выводу DT.

    Логика управления в микросхемах L6390 и L6392 однотипная — сигналы HIN, LIN и SD.

    Отличие микросхемы L6393 от L6390 и L6392 заключается не только в отсутствии операционного усилителя. Компаратор в L6393 независим от остальных элементов схемы и, в принципе, может быть использован в произвольных целях. Однако наиболее разумное применение — контроль тока и формирование признака превышения (по аналогии с выводом DIAG в микросхеме L6386E, рассмотренной выше). Основное отличие заключается в логике управления — комбинация управляющих сигналов PHASE, BRAKE и SD является достаточно редкой (если не уникальной) для микросхем данного класса. Циклограмма управления представлена на рис. 5.


    Рис. 5.

    Циклограмма ориентирована на управление непосредственно от сигналов двигателя, например, постоянного тока и реализует т.н. механизм отложенного останова. Предположим, что BRAKE — это сигнал на исполнительный механизм, т.е. его низкий уровень включает двигатель независимо от состояния сигнала PHASE. Опять же предположим, что PHASE — это сигнал с датчика обратной связи, например, с частотного датчика, установленного на валу двигателя, или концевого датчика, обозначающего точку останова. Тогда высокий уровень сигнала BRAKE остановит двигатель не немедленно, а только по положительному перепаду сигнала PHASE. Скажем, если речь идет о приводе каретки, то сигнал останова (высокий уровень BRAKE) может быть подан заблаговременно, но останов произойдет только в конкретной точке (при срабатывании датчика PHASE).

    На рис. 6 показана структура и схема включения микросхемы L6393.


    Рис. 6.

    О параметрах. Значения выходных токов I O+ (I O-), равные 270/430 мА, уступают микросхемам компании International Rectifier (у которых, как отмечалось выше, типичными являются 290/600 мА). Тем не менее, динамические параметры T ON /T OFF (125/125 нс) превосходят (и часто существенно) все микросхемы семейства IRS.

    Выводы по семейству L639x. При достаточно высоких количественных характеристиках, что само по себе позволяет отнести семейство L639x к группе лидеров отрасли, дополнительные функции придают качественный скачок, поскольку позволяют реализовать в одной микросхеме те функции, которые ранее реализовывались с использованием ряда дополнительных компонентов.

    Заключение

    Безусловно, номенклатуру высоковольтных драйверов компании STMicroelectronics нельзя признать очень широкой (хотя бы в сравнении с аналогичными изделиями компании International Rectifier). Тем не менее, количественные и качественные характеристики рассмотренных семейств не уступают лучшим изделиям IR.

    Говоря о драйверах MOSFET- и IGBT-транзисторов, нельзя не упомянуть и сами транзисторы; компания STMicroelectronics выпускает достаточно широкую линейку полевых (например MDMESH V и SuperMesh3) и биполярных транзисторов с изолированным затвором. Поскольку эти электронные компоненты совсем недавно освещались в данном журнале , то они оставлены за рамками данной статьи.

    И наконец, как упоминалось выше, линейка драйверов MOSFET- и IGBT-транзисторов компании STMicroelectronics не исчерпывается драйверами полумостовой схемы. С номенклатурой драйверов категорий «Single» и «Multiple» и их параметрами можно ознакомиться на официальном сайте компании STMicroelectronics — http://www.st.com/ .

    Литература

    1. L638xE Application Guide// документ компании ST Microelectronics an5641.pdf.

    2. Ячменников В. Повышаем эффективность с транзисторами MDmesh V// Новости электроники, №14, 2009.

    3. Ильин П., Алимов Н. Обзор MOSFET и IGBT компании STMicroelectronics// Новости электроники, №2, 2009.

    4. Меджахед Д. Высокоэффективные решения на базе транзисторов SuperMESH3 // Новости электроники, №16, 2009.

    MDMEDH V в корпусе PowerFlat

    STMicroelectronics, мировой лидер в области силовых МОП транзисторов, разработала для транзисторов семейства MDMESH V новый корпус PowerFlat с улучшенными характеристиками, специально предназначенный для поверхностного монтажа. Размеры корпуса 8х8 мм при высоте 1 мм (PowerFlat 8×8 HV). Его малая высота позволяет создавать более тонкие блоки питания, а также — снизить размер печатной платы или увеличить плотность монтажа. Контактом стока в корпусе PowerFlat является большая открытая металлическая поверхность, которая способствует улучшению теплоотвода и, соответственно, повышению надежности. Данный корпус способен работать в диапазоне температур -55…150°C.

    Транзисторы семейства MDMESH V — это лучшие транзисторы в мире с точки зрения сопротивления открытого канала в области рабочих напряжений 500…650 В. Например, транзисторы серии STW77N65M5 из семейства MDMESH V имеют для рабочего напряжения 650 В максимальное значение Rdson на уровне 0,033 Ом и максимальный статический ток 69 А. При этом заряд затвора такого транзистора составляет всего 200 нК. STL21N65M5 — это первый транзистор из семейства MDMESH V в корпусе PowerFlat. При рабочем напряжении 650 В транзистор STL21N65M5 имеет сопротивление открытого канала на уровне 0,190 Ом и максимальный статический ток на уровне 17 А, при этом заряд его затвора составляет 50 нК.

    О компании ST Microelectronics