Интегрирование иррациональных и тригонометрических функций.

23.08.2019

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача - задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \(s(t) = \frac{gt^2}{2} \). В самом деле
\(s"(t) = \left(\frac{gt^2}{2} \right)" = \frac{g}{2}(t^2)" = \frac{g}{2} \cdot 2t = gt \)
Ответ: \(s(t) = \frac{gt^2}{2} \)

Сразу заметим, что пример решен верно, но неполно. Мы получили \(s(t) = \frac{gt^2}{2} \). На самом деле задача имеет бесконечно много решений: любая функция вида \(s(t) = \frac{gt^2}{2} + C \), где C - произвольная константа, может служить законом движения, поскольку \(\left(\frac{gt^2}{2} +C \right)" = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s 0 , то из равенства s(t) = (gt 2)/2 + C получаем: s(0) = 0 + С, т. е. C = s 0 . Теперь закон движения определен однозначно: s(t) = (gt 2)/2 + s 0 .

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2) и извлечение квадратного корня (\(\sqrt{x} \)), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием , а обратную операцию, т. е. процесс нахождения функции по заданной производной, - интегрированием .

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у" = f"(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у" = f"(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \(x \in X \) выполняется равенство F"(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2)" = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3)" = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))" = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) - первообразная для f(x), то kF(x) - первообразная для kf(x).

Теорема 1. Если y = F(x) - первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \(y=\frac{1}{k}F(kx+m) \)

Теорема 2. Если y = F(x) - первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \(\textstyle \int F(x)dx \). Сделаем подстановку \(x= \varphi(t) \) где \(\varphi(t) \) - функция, имеющая непрерывную производную.
Тогда \(dx = \varphi " (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\(\int F(x) dx = \int F(\varphi(t)) \cdot \varphi " (t) dt \)

Интегрирование выражений вида \(\textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям - применение следующей формулы для интегрирования:
\(\textstyle \int u \cdot dv = u \cdot v - \int v \cdot du \)
или:
\(\textstyle \int u \cdot v" \cdot dx = u \cdot v - \int v \cdot u" \cdot dx \)

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac{x^{n+1}}{n+1} +C \;\; (n \neq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac{a^x}{\ln a} +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos^2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin^2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x^2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x^2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$

Рассмотрим интегралы с корнем от дробно-линейной функции:
(1) ,
где R - рациональная функция своих аргументов. То есть функция, составленная из входящих в нее аргументов и произвольных постоянных с помощью конечного числа операций сложения (вычитания), умножения и деления (возведения в целочисленную степень).

Примеры рассматриваемых интегралов с дробно-линейной иррациональностью

Приведем примеры интегралов с корнями вида (1) .

Пример 1

Хотя здесь под знаком интеграла входят корни различных степеней, но подынтегральное выражение можно преобразовать следующим образом:
;
;
.

Таким образом, подынтегральное выражение составлено из переменной интегрирования x и корня от линейной функции с помощью конечного числа операций вычитания, деления и умножения. Поэтому оно является рациональной функцией от x и и принадлежит рассматриваемому типу (1) со значениями постоянных n = 6 , α = β = δ = 1 , γ = 0 :
.

Пример 2

Здесь мы выполняем преобразование:
.
Отсюда видно, что подынтегральное выражение является рациональной функцией от x и . Поэтому принадлежит рассматриваемому типу.

Общий пример дробно-линейной иррациональности

В более общем случае, в подынтегральное выражение может входить любое конечное число корней от одной и той же дробно-линейной функции:
(2) ,
где R - рациональная функция своих аргументов,
- рациональные числа,
m 1 , n 1 , ..., m s , n s - целые числа.
Действительно, пусть n - общий знаменатель чисел r 1 , ..., r s . Тогда их можно представить в виде:
,
где k 1 , k 2 , ..., k s - целые числа. Тогда все входящие в (2) корни являются степенями от :
,
,
. . . . .
.

То есть все подынтегральное выражение (2) составлено из x и корня с помощью конечного числа операций сложения, умножения и деления. Поэтому оно является рациональной функцией от x и :
.

Метод интегрирования корней

Интеграл с дробно-линейной иррациональностью
(1)
сводится к интегралу от рациональной функции подстановкой
(3) .

Доказательство

Извлекаем корень степени n из обеих частей (3) :
.

Преобразуем (3) :
;
;
.

Находим производную:

;
;
.
Дифференциал:
.

Подставляем в (1) :
.

Отсюда видно, что подынтегральная функция составлена из постоянных и переменной интегрирования t с помощью конечного числа операций сложения (вычитания), умножения (возведения в целочисленную степень) и деления. Поэтому подынтегральное выражение является рациональной функцией от переменной интегрирования. Таким образом, вычисление интеграла свелось к интегрированию рациональной функции. Что и требовалось доказать.

Пример интегрирования линейной иррациональности

Найти интеграл:

Решение

Поскольку в интеграл входят корни от одной и той же (дробно) линейной функции x + 1 , и подынтегральное выражение образовано с помощью операций вычитания и деления, то данный интеграл принадлежит рассматриваемому типу.

Преобразуем подынтегральное выражение, чтобы в него входили корни одной степени:
;
;
.

Делаем подстановку
x + 1 = t 6 .
Берем дифференциал:
d(x + 1) = dx = ( t 6 )′ dt = 6 t 5 dt .
Подставляем:
x = t 6 - 1 ;
;
;
.
Выделяем целую часть дроби, замечая что
t 6 - 1 = (t - 1)(t 5 + t 4 + t 3 + t 2 + t + 1) .
Тогда

.

Ответ

,
где .

Пример интегрирования дробно-линейной иррациональности

Найти интеграл

Решение

Выделим корень из дробно-линейной функции:
.
Тогда
.
Делаем подстановку
.
Берем дифференциал
.
Находим производную
.
Тогда
.
Далее замечаем, что
.
Подставляем в подынтегральное выражение


.

Ответ

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Готовые ответы по интегрированию функций взяты из контрольной работы для студентов 1, 2 курсов математических факультетов. Чтобы формулы в задачах и ответах не повторялись условия заданий выписывать не будем. Вам и так известно, что в задачах нужно или "Найти интеграл", или "Вычислить интеграл". Поэтому если Вам нужны ответы по интегрированию то начинайте изучать следующие примеры.

Интегрирование иррациональных функций

Пример 18. Выполняем замену переменных под интегралом. Для упрощения вычислений за новую переменную выбираем не только корень, а весь знаменатель. После такой замены интеграл преобразуется к сумме двух табличных интегралов, которые и упрощать не надо

После интегрирования вместо переменной подставляем замену.
Пример 19. На интегрирования этой дробной иррациональной функции потрачено много времени и места и даже не знаем, сможете ли Вы что-то разобрать с планшета или телефона. Чтобы избавиться от иррациональности, а тут имеем дело с корнем кубическим за новую переменную выбираем корневую функцию в третьем степени. Далее находим дифференциал и заменяем предыдущую функцию под интегралом

Больше всего времени занимает расписание новой функции на степенные зависимости и дроби

После преобразований часть интегралов находим сразу, а последний расписываем на два которые превращаем согласно табличных формул интегрирования

После всех вычислений не забываем вернуться к выполненной в начале замене

Интегрирование тригонометрических функций

Пример 20. Нужно найти интеграл от синуса в 7 степени. Согласно правилам один синус нужно загнать в дифференциал (получим дифференциал косинуса), а синус в 6 степени расписать через косинус. Таким образом придем к интегрированию от функции новой переменной t = cos (x). При этом придется подносить разницу к кубу, а потом уже интегрировать



В результате получим полином 7 порядке от косинуса.
Пример 21. В этом интеграле необходимо косинус 4 степени за тригонометрическими формулами расписать через зависимость от косинуса в первой степени. Далее применяем табличную формулу интегрирования косинуса.


Пример 22. Под интегралом имеем произведение синуса на косинус. Согласно тригонометрическим формулам произведение расписываем через разницу синусов. Как получили эту дужку, можно понять из анализа коэффициентов при «икс». Далее интегрируем синусы

Пример 23. Здесь имеем в знаменателе одновременно и синус и косинус функцию. Причем тригонометрические формулы упростить зависимость не помогут. Для нахождения интеграла применим универсальную тригонометрическую замену t=tan(x/2)

Из записи видно что знаменатели сократятся и получим в знаменателе дроби квадратный трехчлен. В нем выделяем полный квадрат и свободную часть. После интегрирования придем к логарифму от разницы простых множителей знаменателя. Для упрощения записи и числитель и знаменатель под логарифмом умножили на двойку.

В конце вычислений вместо переменной подставляем тангенс половины аргумента.
Пример 24. Для интегрирования функции вынесем квадрат косинуса за скобки, а в скобках вычтем и добавим единицу чтобы получить котангенс.

Дальше за новую переменную выбираем котангенс u = ctg (x) , ее дифференциал нам даст нужный для упрощения множитель. После подстановки придем к функции которая при интегрировании дает арктангенс.

Ну и не забываем поменять u на котангенс.
Пример 25. В последнем задании контрольной работы нужно проинтегрировать котангенс двойного угла в 4 степени.


На этом контрольная работа на интегрирование решена, причем ни один преподаватель к ответам и обоснованию преобразований не придерется.
Если научитесь так интегрировать, то тесты или срезы по теме интегралы для Вас не страшны. Все остальные имеют возможность научиться или заказать решения интегралов у нас (или наших конкурентов :))) .

Определение 1

Совокупность всех первообразных заданной функции $y=f(x)$, определенной на некотором отрезке, называется неопределенным интегралом от заданной функции $y=f(x)$. Неопределенный интеграл обозначается символом $\int f(x)dx $.

Замечание

Определение 2 можно записать следующим образом:

\[\int f(x)dx =F(x)+C.\]

Не от всякой иррациональной функции можно выразить интеграл через элементарные функции. Однако большинство таких интегралов с помощью подстановок можно привести к интегралам от рациональных функций, которые можно выразить интеграл через элементарные функции.

    $\int R\left(x,x^{m/n} ,...,x^{r/s} \right)dx $;

    $\int R\left(x,\left(\frac{ax+b}{cx+d} \right)^{m/n} ,...,\left(\frac{ax+b}{cx+d} \right)^{r/s} \right)dx $;

    $\int R\left(x,\sqrt{ax^{2} +bx+c} \right)dx $.

I

При нахождении интеграла вида $\int R\left(x,x^{m/n} ,...,x^{r/s} \right)dx $ необходимо выполнить следующую подстановку:

При данной подстановке каждая дробная степень переменной $x$ выражается через целую степень переменной $t$. В результате чего подынтегральная функция преобразуется в рациональную функцию от переменной $t$.

Пример 1

Выполнить интегрирование:

\[\int \frac{x^{1/2} dx}{x^{3/4} +1} .\]

Решение:

$k=4$ - общий знаменатель дробей $\frac{1}{2} ,\, \, \frac{3}{4} $.

\ \[\begin{array}{l} {\int \frac{x^{1/2} dx}{x^{3/4} +1} =4\int \frac{t^{2} }{t^{3} +1} \cdot t^{3} dt =4\int \frac{t^{5} }{t^{3} +1} dt =4\int \left(t^{2} -\frac{t^{2} }{t^{3} +1} \right)dt =4\int t^{2} dt -4\int \frac{t^{2} }{t^{3} +1} dt =\frac{4}{3} \cdot t^{3} -} \\ {-\frac{4}{3} \cdot \ln |t^{3} +1|+C} \end{array}\]

\[\int \frac{x^{1/2} dx}{x^{3/4} +1} =\frac{4}{3} \cdot \left+C\]

II

При нахождении интеграла вида $\int R\left(x,\left(\frac{ax+b}{cx+d} \right)^{m/n} ,...,\left(\frac{ax+b}{cx+d} \right)^{r/s} \right)dx $ необходимо выполнить следующую подстановку:

где $k$ - общий знаменатель дробей $\frac{m}{n} ,...,\frac{r}{s} $.

В результате данной подстановки подынтегральная функция преобразуется в рациональную функцию от переменной $t$.

Пример 2

Выполнить интегрирование:

\[\int \frac{\sqrt{x+4} }{x} dx .\]

Решение:

Сделаем следующую подстановку:

\ \[\int \frac{\sqrt{x+4} }{x} dx =\int \frac{t^{2} }{t^{2} -4} dt =2\int \left(1+\frac{4}{t^{2} -4} \right)dt =2\int dt +8\int \frac{dt}{t^{2} -4} =2t+2\ln \left|\frac{t-2}{t+2} \right|+C\]

Сделав обратную замену, получим окончательный результат:

\[\int \frac{\sqrt{x+4} }{x} dx =2\sqrt{x+4} +2\ln \left|\frac{\sqrt{x+4} -2}{\sqrt{x+4} +2} \right|+C.\]

III

При нахождении интеграла вида $\int R\left(x,\sqrt{ax^{2} +bx+c} \right)dx $ выполняется так называемая подстановка Эйлера (используется одна из трех возможных подстановок).

Первая подстановка Эйлера

Для случая $a>

Взяв перед $\sqrt{a} $ знак «+», получим

Пример 3

Выполнить интегрирование:

\[\int \frac{dx}{\sqrt{x^{2} +c} } .\]

Решение:

Сделаем следующую подстановку (случай $a=1>0$):

\[\sqrt{x^{2} +c} =-x+t,\, \, x=\frac{t^{2} -c}{2t} ,\, \, dx=\frac{t^{2} +c}{2t^{2} } dt,\, \, \sqrt{x^{2} +c} =-\frac{t^{2} -c}{2t} +t=\frac{t^{2} +c}{2t} .\] \[\int \frac{dx}{\sqrt{x^{2} +c} } =\int \frac{\frac{t^{2} +c}{2t^{2} } dt}{\frac{t^{2} +c}{2t} } =\int \frac{dt}{t} =\ln |t|+C\]

Сделав обратную замену, получим окончательный результат:

\[\int \frac{dx}{\sqrt{x^{2} +c} } =\ln |\sqrt{x^{2} +c} +x|+C.\]

Вторая подстановка Эйлера

Для случая $c>0$ необходимо выполнить следующую подстановку:

Взяв перед $\sqrt{c} $ знак «+», получим

Пример 4

Выполнить интегрирование:

\[\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx .\]

Решение:

Сделаем следующую подстановку:

\[\sqrt{1+x+x^{2} } =xt+1.\]

\ \[\sqrt{1+x+x^{2} } =xt+1=\frac{t^{2} -t+1}{1-t^{2} } \] \

$\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx =\int \frac{(-2t^{2} +t)^{2} (1-t)^{2} (1-t^{2})(2t^{2} -2t+2)}{(1-t^{2})^{2} (2t-1)^{2} (t^{2} -t+1)(1-t^{2})^{2} } dt =\int \frac{t^{2} }{1-t^{2} } dt =-2t+\ln \left|\frac{1+t}{1-t} \right|+C$Сделав обратную замену, получим окончательный результат:

\[\begin{array}{l} {\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx =-2\cdot \frac{\sqrt{1+x+x^{2} } -1}{x} +\ln \left|\frac{x+\sqrt{1+x+x^{2} } -1}{x-\sqrt{1+x+x^{2} } +1} \right|+C=-2\cdot \frac{\sqrt{1+x+x^{2} } -1}{x} +} \\ {+\ln \left|2x+2\sqrt{1+x+x^{2} } +1\right|+C} \end{array}\]

Третья подстановка Эйлера

Продолжаем рассматривать интегралы от дробей и корней. Не все они суперсложные, просто по тем или иным причинам примеры были немного «не в тему» в других статьях.

Пример 9

Найти неопределенный интеграл

В знаменателе под корнем находится квадратный трехчлен плюс за пределами корня «довесок» в виде «икса». Интеграл такого вида решается с помощью стандартной замены.

.

Замена тут простая:

Смотрим на жизнь после замены:

(1) После подстановки приводим к общему знаменателю слагаемые под корнем.

(2) Выносим из-под корня.

(3) Числитель и знаменатель сокращаем на . Заодно под корнем мы переставили слагаемые в удобном порядке. При определенном опыте шаги (1), (2) можно пропускать, выполняя прокомментированные действия устно.

(4) Полученный интеграл, как вы помните, решается методом выделения полного квадрата . Выделяем полный квадрат.

(5) Интегрированием получаем заурядный «длинный» логарифм.

(6) Проводим обратную замену. Если изначально , то обратно: .

(7) Заключительное действие направлено на прическу результата: под корнем снова приводим слагаемые к общему знаменателю и выносим из-под корня .

Пример 10

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Здесь к одинокому «иксу» добавлена константа, и замена почти такая же:

.

Единственное, что нужно, - это дополнительно выразить «икс» из проводимой замены:

.

Полное решение и ответ в конце урока.

Иногда в таком интеграле под корнем может находиться квадратный двучлен, это не меняет способ решения, оно будет даже еще проще. Почувствуйте разницу:

Пример 11

Найти неопределенный интеграл

Пример 12

Найти неопределенный интеграл

Краткие решения и ответы в конце урока. Следует отметить, что Пример 11 является в точности биномиальным интегралом , решение которого рассматривалось на уроке Интегралы от иррациональных функций .

Интеграл от неразложимого в знаменателе многочлена 2-ой степени в степени



Более редкий, но, тем не менее, встречающий в практических примерах вид интеграла.

Пример 13

Найти неопределенный интеграл

В знаменателе подынтегральной функции находится неразложимый на множители квадратный двучлен. Подчеркиваем, что неразложимость на множители является существенной особенностью. Если многочлен раскладывается на множители, то всё намного понятнее, например:

Вернёмся к примеру со счастливым номером 13. Этот интеграл тоже из разряда тех, с которыми можно изрядно промучиться, если не знаешь, как решать.

Решение начинается с искусственного преобразования:

Как почленно разделить числитель на знаменатель, думаю, уже все понимают.

Полученный интеграл берётся по частям:

Для интеграла вида

где (k ≥ 2) – натуральное число, выведена рекуррентная формула понижения степени:

; – это интеграл степенью ниже на 1.

Что делать, если дополнительно в числителе есть многочлен? В этом случае используется метод неопределенных коэффициентов, и подынтегральная функция раскладывается в сумму дробей. Если такой интеграл встретится, смотрите учебник – там всё просто.