Неопределенный иррациональный интеграл. Интегрирование — MT1205: Математический анализ для экономистов — Бизнес-информатика

06.04.2019

Универсального способа решения иррациональных уравнений нет, так как их класс отличается количеством. В статье будут выделены характерные виды уравнений с подстановкой при помощи метода интегрирования.

Для использования метода непосредственного интегрирования необходимо вычислять неопределенные интегралы типа ∫ k x + b p d x , где p является рациональной дробью, k и b являются действительными коэффициентами.

Пример 1

Найти и вычислить первообразные функции y = 1 3 x - 1 3 .

Решение

По правилу интегрирования необходимо применить формулу ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C , а таблица первообразных говорит о том, что имеется готовое решение данной функции. Получаем, что

∫ d x 3 x - 1 3 = ∫ (3 x - 1) - 1 3 d x = 1 3 · 1 - 1 3 + 1 · (3 x - 1) - 1 3 + 1 + C = = 1 2 (3 x - 1) 2 3 + C

Ответ: ∫ d x 3 x - 1 3 = 1 2 (3 x - 1) 2 3 + C .

Имеют место быть случаи, когда можно использовать метод подведения под знак дифференциала. Это решается по принципу нахождения неопределенных интегралов вида ∫ f " (x) · (f (x)) p d x , когда значение p считается рациональной дробью.

Пример 2

Найти неопределенный интеграл ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x .

Решение

Отметим, что d x 3 + 5 x - 7 = x 3 + 5 x - 7 " d x = (3 x 2 + 5) d x . Тогда необходимо произвести подведение под знак дифференциала с использованием таблиц первообразных. Получаем, что

∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = ∫ (x 3 + 5 x - 7) - 7 6 · (3 x 2 + 5) d x = = ∫ (x 3 + 5 x - 7) - 7 6 d (x 3 + 5 x - 7) = x 3 + 5 x - 7 = z = = ∫ z - 7 6 d z = 1 - 7 6 + 1 z - 7 6 + 1 + C = - 6 z - 1 6 + C = z = x 3 + 5 x - 7 = - 6 (x 3 + 5 x - 7) 6 + C

Ответ: ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = - 6 (x 3 + 5 x - 7) 6 + C .

Решение неопределенных интегралов предусматривает формулу вида ∫ d x x 2 + p x + q , где p и q являются действительными коэффициентами. Тогда необходимо выделить полный квадрат из-под корня. Получаем, что

x 2 + p x + q = x 2 + p x + p 2 2 - p 2 2 + q = x + p 2 2 + 4 q - p 2 4

Применив формулу, расположенную в таблице неопределенных интегралов, получаем:

∫ d x x 2 ± α = ln x + x 2 ± α + C

Тогда вычисление интеграла производится:

∫ d x x 2 + p x + q = ∫ d x x + p 2 2 + 4 q - p 2 4 = = ln x + p 2 + x + p 2 2 + 4 q - p 2 4 + C = = ln x + p 2 + x 2 + p x + q + C

Пример 3

Найти неопределенный интеграл вида ∫ d x 2 x 2 + 3 x - 1 .

Решение

Для вычисления необходимо вынести число 2 и расположить его перед радикалом:

∫ d x 2 x 2 + 3 x - 1 = ∫ d x 2 x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x 2 + 3 2 x - 1 2

Произвести выделение полного квадрата в подкоренном выражении. Получим, что

x 2 + 3 2 x - 1 2 = x 2 + 3 2 x + 3 4 2 - 3 4 2 - 1 2 = x + 3 4 2 - 17 16

Тогда получаем неопределенный интеграл вида 1 2 ∫ d x x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x + 3 4 2 - 17 16 = = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Ответ: d x x 2 + 3 x - 1 = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Интегрирование иррациональных функций производится аналогичным способом. Применимо для функций вида y = 1 - x 2 + p x + q .

Пример 4

Найти неопределенный интеграл ∫ d x - x 2 + 4 x + 5 .

Решение

Для начала необходимо вывести квадрат знаменателя выражения из-под корня.

∫ d x - x 2 + 4 x + 5 = ∫ d x - x 2 - 4 x - 5 = = ∫ d x - x 2 - 4 x + 4 - 4 - 5 = ∫ d x - x - 2 2 - 9 = ∫ d x - (x - 2) 2 + 9

Табличный интеграл имеет вид ∫ d x a 2 - x 2 = a r c sin x a + C , тогда получаем, что ∫ d x - x 2 + 4 x + 5 = ∫ d x - (x - 2) 2 + 9 = a r c sin x - 2 3 + C

Ответ: ∫ d x - x 2 + 4 x + 5 = a r c sin x - 2 3 + C .

Процесс нахождения первообразных иррациональных функций вида y = M x + N x 2 + p x + q , где имеющиеся M , N , p , q являются действительными коэффициентами, причем имеют схожесть с интегрированием простейших дробей третьего типа. Это преобразование имеет несколько этапов:

подведение дифференциала под корень, выделение полного квадрата выражения под корнем, применение табличных формул.

Пример 5

Найти первообразные функции y = x + 2 x 2 - 3 x + 1 .

Решение

Из условия имеем, что d (x 2 - 3 x + 1) = (2 x - 3) d x и x + 2 = 1 2 (2 x - 3) + 7 2 , тогда (x + 2) d x = 1 2 (2 x - 3) + 7 2 d x = 1 2 d (x 2 - 3 x + 1) + 7 2 d x .

Рассчитаем интеграл: ∫ x + 2 x 2 - 3 x + 1 d x = 1 2 ∫ d (x 2 - 3 x + 1) x 2 - 3 x + 1 + 7 2 ∫ d x x 2 - 3 x + 1 = = 1 2 ∫ (x 2 - 3 x + 1) - 1 2 d (x 2 - 3 x + 1) + 7 2 ∫ d x x - 3 2 2 - 5 4 = = 1 2 · 1 - 1 2 + 1 · x 2 - 3 x + 1 - 1 2 + 1 + 7 2 ln x - 3 2 + x - 3 2 - 5 4 + C = = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C

Ответ: ∫ x + 2 x 2 - 3 x + 1 d x = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C .

Поиск неопределенных интегралов функции ∫ x m (a + b x n) p d x осуществляется при помощи метода подстановки.

Для решения необходимо ввести новые переменные:

  1. Когда число p является целым, тогда считают, что x = z N , а N является общим знаменателем для m , n .
  2. Когда m + 1 n является целым числом, тогда a + b x n = z N , а N является знаменателем числа p .
  3. Когда m + 1 n + p является целым числом, то необходим ввод переменной a x - n + b = z N , а N является знаменателем числа p .
Пример 6

Найти определенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Получаем, что ∫ 1 x 2 x - 9 d x = ∫ x - 1 · (- 9 + 2 x 1) - 1 2 d x . Отсюда следует, что m = - 1 , n = 1 , p = - 1 2 , тогда m + 1 n = - 1 + 1 1 = 0 является целым числом. Можно ввести новую переменную вида - 9 + 2 x = z 2 . Необходимо выразить x через z . На выходы получим, что

9 + 2 x = z 2 ⇒ x = z 2 + 9 2 ⇒ d x = z 2 + 9 2 " d z = z d z - 9 + 2 x = z

Необходимо произвести подстановку в заданный интеграл. Имеем, что

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9 = = 2 3 a r c t g z 3 + C = 2 3 a r c c t g 2 x - 9 3 + C

Ответ: ∫ d x x 2 x - 9 = 2 3 a r c c t g 2 x - 9 3 + C .

Для упрощения решения иррациональных уравнений применяются основные методы интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Класс иррациональных функцийочень широк, поэтому универсального способа их интегрирования просто быть не может. В этой статье попытаемся выделить наиболее характерные виды иррациональных подынтегральных функций и поставить им в соответствие метод интегрирования.

Бывают случаи, когда уместно использование метода подведения под знак дифференциала. Например, при нахождении неопределенных интегралов вида, гдеp – рациональная дробь.

Пример.

Найти неопределенный интеграл .

Решение.

Не трудно заметить, что . Следовательно, подводим под знак дифференциала и используем таблицу первообразных:

Ответ:

.

13. Дробно-линейная подстановка

Интегралы типа где а, b, с, d - действительные числа,a,b,...,d,g - натуральные числа, сводятся к интегралам от рациональной функции путем подстановкигде К - наименьшее общee кратное знаменателей дробей

Действительно, из подстановки следует, чтои

т. е. х и dx выражаются через рациональные функции от t. При этом и каждая степень дроби выражается через рациональную функцию от t.

Пример 33.4 . Найти интеграл

Решение: Наименьшее общee кратное знаменателей дробей 2/3 и 1/2 есть 6.

Поэтому полагаем х+2=t 6 , х=t 6 -2, dx=6t 5 dt, Следовательно,

Пример 33.5. Указать подстановку для нахождения интегралов:

Решение: Для I 1 подстановка х=t 2 , для I 2 подстановка

14. Тригонометрическая подстановка

Интегралы типа приводятся к интегралам от функций, рационально зависящих от тригонометрических функций, с помощью следующих тригонометрических подстановок: х=а sint для первого интеграла; х=а tgt для второго интеграла;для третьего интеграла.

Пример 33.6. Найти интеграл

Решение: Положим х=2 sin t, dx=2 cos tdt, t=arcsin х/2. Тогда

Здесь подынтегральная функция есть рациональная функция относительно х иВыделив под радикалом полный квадрат и сделав подстановку, интегралы указанного типа приводятся к интегралам уже pасcмoтpeннoгo типа, т. е. к интегралам типаЭти интегралы можно вычислить с помощью соответствующих тригонометрических подстановок.

Пример 33.7. Найти интеграл

Решение: Так как х 2 +2х-4=(х+1) 2 -5, то х+1=t, x=t-1, dx=dt. ПоэтомуПоложим

Замечание: Интеграл типа целессooбразно находить с помощью подстановки х=1/t.

15. Определенный интеграл

Пусть функция задана на отрезкеи имеет на нем первообразную. Разностьназываютопределенным интегралом функции по отрезкуи обозначают. Итак,

Разность записывают в виде, тогда. Числаиназываютпределами интегрирования .

Например, одна из первообразных для функции. Поэтому

16 . Если с - постоянное число и функция ƒ(х) интегрируема на , то

т. е. постоянный множитель с можно выносить за знак определенного интеграла.

▼Составим интегральную сумму для функции с ƒ(х). Имеем:

Тогда Отсюда вытекает, что функцияс ƒ(х) интегрируема на [а; b] и справедлива формула (38.1).▲

2. Если функции ƒ 1 (х) и ƒ 2 (х) интегрируемы на [а;b], тогда интегрируема на [а; b] их сумма u

т. е. интеграл от суммы равен сумме интегралов.


Свойство 2 распространяется на сумму любого конечного числа слагаемых.

3.

Это свойство можно принять по определению. Это свойство также подтверждается формулой Ньютона-Лейбница.

4. Если функция ƒ(х) интегрируема на [а; b] и а < с < b, то

т. е. интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности).

При разбиении отрезка [а;b] на части включим точку с в число точек деления (это можно сделать ввиду независимости предела интегральной суммы от способа разбиения отрезка [а; b] на части). Если с = х m , то интегральную сумму можно разбить на две суммы:

Каждая из написанных сумм является интегральной соответственно для отрезков [а; b], [а; с] и [с; b]. Переходя к пределу в последнем равенстве при n → ∞ (λ → 0), получим равенство (38.3).

Свойство 4 справедливо при любом расположении точек а, b, с (считаем, что функция ƒ (х) интегрируема на большем из получающихся отрезков).

Так, например, если а < b < с, то

(использованы свойства 4 и 3).

5. «Теорема о среднем». Если функция ƒ(х) непрерывна на отрезке [а; b], то существует тонка с є [а; b] такая, что

▼По формуле Ньютона-Лейбница имеем

где F"(x) = ƒ(х). Применяя к разности F(b)-F(a) теорему Лагранжа (теорему о конечном приращении функции), получим

F(b)-F(a) = F"(c) (b-а) = ƒ(с) (b-а).▲

Свойство 5 («теорема о среднем») при ƒ (х) ≥ 0 имеет простой геометрический смысл: значение определенного интеграла равно, при некотором с є (а; b), площади прямоугольника с высотой ƒ (с) и основанием b- а (см. рис. 170). Число

называется средним значением функции ƒ(х) на отрезке [а; b].

6. Если функция ƒ (х) сохраняет знак на отрезке [а; b], где а < b, то интегралимеет тот же знак, что и функция. Так, если ƒ(х)≥0 на отрезке [а; b], то

▼По «теореме о среднем» (свойство 5)

где с є [а; b]. А так как ƒ(х) ≥ 0 для всех х Î [а; b], то и

ƒ(с)≥0, b-а>0.

Поэтому ƒ(с) (b-а) ≥ 0, т. е.

7. Неравенство между непрерывными функциями на отрезке [а; b], (a

▼Так как ƒ 2 (х)-ƒ 1 (x)≥0, то при а < b, согласно свойству 6, имеем

Или, согласно свойству 2,

Отметим,что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М - соответственно наименьшее и наибольшее значения функции у = ƒ (х) на отрезке [а; b], (а < b), то

▼Так как для любого х є [а;b] имеем m≤ƒ(х)≤М, то, согласно свойству 7, имеем

Применяяк крайним интегралам свойство 5, получаем

Если ƒ(х)≥0, то свойство 8 иллюстрирует ся геометрически: площадь криволинейной трапеции заключена между площадями прямоугольников, основание которых есть , а высоты равны m и М (см. рис. 171).

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

▼Применяя свойство 7 к очевидным неравенствам -|ƒ(х)|≤ƒ(х)≤|ƒ(х)|, получаем

Отсюда следует, что

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, т. е.

Вычисление площади фигуры является одной из наиболее не простых проблем теории площадей. В школьном курсе геометрии мы научились находить площади основных геометрических фигур, например, круга, треугольника, ромба и т.п. Однако намного чаще приходится сталкиваться с вычислением площадей более сложных фигур. При решении подобных задач приходится прибегать к интегральному исчислению.

В этой статье мы рассмотрим задачу о вычислении площади криволинейной трапеции, причем подойдем к ней в геометрическом смысле. Это позволит нам выяснить прямую связь между определенным интегралом и площадью криволинейной трапеции.

Готовые ответы по интегрированию функций взяты из контрольной работы для студентов 1, 2 курсов математических факультетов. Чтобы формулы в задачах и ответах не повторялись условия заданий выписывать не будем. Вам и так известно, что в задачах нужно или "Найти интеграл", или "Вычислить интеграл". Поэтому если Вам нужны ответы по интегрированию то начинайте изучать следующие примеры.

Интегрирование иррациональных функций

Пример 18. Выполняем замену переменных под интегралом. Для упрощения вычислений за новую переменную выбираем не только корень, а весь знаменатель. После такой замены интеграл преобразуется к сумме двух табличных интегралов, которые и упрощать не надо

После интегрирования вместо переменной подставляем замену.
Пример 19. На интегрирования этой дробной иррациональной функции потрачено много времени и места и даже не знаем, сможете ли Вы что-то разобрать с планшета или телефона. Чтобы избавиться от иррациональности, а тут имеем дело с корнем кубическим за новую переменную выбираем корневую функцию в третьем степени. Далее находим дифференциал и заменяем предыдущую функцию под интегралом

Больше всего времени занимает расписание новой функции на степенные зависимости и дроби

После преобразований часть интегралов находим сразу, а последний расписываем на два которые превращаем согласно табличных формул интегрирования

После всех вычислений не забываем вернуться к выполненной в начале замене

Интегрирование тригонометрических функций

Пример 20. Нужно найти интеграл от синуса в 7 степени. Согласно правилам один синус нужно загнать в дифференциал (получим дифференциал косинуса), а синус в 6 степени расписать через косинус. Таким образом придем к интегрированию от функции новой переменной t = cos (x). При этом придется подносить разницу к кубу, а потом уже интегрировать



В результате получим полином 7 порядке от косинуса.
Пример 21. В этом интеграле необходимо косинус 4 степени за тригонометрическими формулами расписать через зависимость от косинуса в первой степени. Далее применяем табличную формулу интегрирования косинуса.


Пример 22. Под интегралом имеем произведение синуса на косинус. Согласно тригонометрическим формулам произведение расписываем через разницу синусов. Как получили эту дужку, можно понять из анализа коэффициентов при «икс». Далее интегрируем синусы

Пример 23. Здесь имеем в знаменателе одновременно и синус и косинус функцию. Причем тригонометрические формулы упростить зависимость не помогут. Для нахождения интеграла применим универсальную тригонометрическую замену t=tan(x/2)

Из записи видно что знаменатели сократятся и получим в знаменателе дроби квадратный трехчлен. В нем выделяем полный квадрат и свободную часть. После интегрирования придем к логарифму от разницы простых множителей знаменателя. Для упрощения записи и числитель и знаменатель под логарифмом умножили на двойку.

В конце вычислений вместо переменной подставляем тангенс половины аргумента.
Пример 24. Для интегрирования функции вынесем квадрат косинуса за скобки, а в скобках вычтем и добавим единицу чтобы получить котангенс.

Дальше за новую переменную выбираем котангенс u = ctg (x) , ее дифференциал нам даст нужный для упрощения множитель. После подстановки придем к функции которая при интегрировании дает арктангенс.

Ну и не забываем поменять u на котангенс.
Пример 25. В последнем задании контрольной работы нужно проинтегрировать котангенс двойного угла в 4 степени.


На этом контрольная работа на интегрирование решена, причем ни один преподаватель к ответам и обоснованию преобразований не придерется.
Если научитесь так интегрировать, то тесты или срезы по теме интегралы для Вас не страшны. Все остальные имеют возможность научиться или заказать решения интегралов у нас (или наших конкурентов :))) .

Иррациональная функция от переменной - это функция, которая образована из переменной и произвольных постоянных с помощью конечного числа операций сложения, вычитания, умножения (возведения в целочисленную степень), деления и извлечения корней. Иррациональная функция отличается от рациональной тем, что иррациональная функция содержит операции извлечения корней.

Существует три основных типа иррациональных функций, неопределенные интегралы от которых приводятся к интегралам от рациональных функций. Это интегралы, содержащие корни произвольных целочисленных степеней из дробно-линейной функции (корни могут быть различных степеней, но от одной и той же, дробно-линейной функции); интегралы от дифференциального бинома и интегралы с квадратным корнем из квадратного трехчлена.

Важное замечание. Корни многозначны!

При вычислении интегралов, содержащих корни, часто встречаются выражения вида , где - некоторая функция от переменной интегрирования . При этом следует иметь в виду, что . То есть, при t > 0 , |t| = t . При t < 0 , |t| = - t . Поэтому, при вычислении подобных интегралов, нужно отдельно рассматривать случаи t > 0 и t < 0 . Это можно сделать, если писать знаки или там, где это необходимо. Подразумевая, что верхний знак относится к случаю t > 0 , а нижний - к случаю t < 0 . При дальнейшем преобразовании, эти знаки, как правило, взаимно сокращаются.

Возможен и второй подход, при котором подынтегральную функцию и результат интегрирования можно рассматривать как комплексные функции от комплексных переменных. Тогда можно не следить за знаками в подкоренных выражениях. Этот подход применим, если подынтегральная функция является аналитической, то есть дифференцируемой функцией от комплексной переменной. В этом случае и подынтегральная функция и интеграл от нее являются многозначными функциями. Поэтому после интегрирования, при подстановке численных значений, нужно выделить однозначную ветвь (риманову поверхность) подынтегральной функции, и для нее выбрать соответствующую ветвь результата интегрирования.

Дробно-линейная иррациональность

Это интегралы с корнями от одной и той же дробно-линейной функции:
,
где R - рациональная функция, - рациональные числа, m 1 , n 1 , ..., m s , n s - целые числа, α, β, γ, δ - действительные числа.
Такие интегралы сводится к интегралу от рациональной функции подстановкой:
, где n - общий знаменатель чисел r 1 , ..., r s .

Корни могут быть не обязательно от дробно-линейной функции, но и от линейной (γ = 0 , δ = 1 ), или от переменной интегрирования x (α = 1 , β = 0 , γ = 0 , δ = 1 ).

Вот примеры таких интегралов:
, .

Интегралы от дифференциальных биномов

Интегралы от дифференциальных биномов имеют вид:
,
где m, n, p - рациональные числа, a, b - действительные числа.
Такие интегралы сводятся к интегралам от рациональных функций в трех случаях.

1) Если p - целое. Подстановка x = t N , где N - общий знаменатель дробей m и n .
2) Если - целое. Подстановка a x n + b = t M , где M - знаменатель числа p .
3) Если - целое. Подстановка a + b x - n = t M , где M - знаменатель числа p .

В остальных случаях, такие интегралы не выражаются через элементарные функции.

Иногда такие интегралы можно упростить с помощью формул приведения:
;
.

Интегралы, содержащие квадратный корень из квадратного трехчлена

Такие интегралы имеют вид:
,
где R - рациональная функция. Для каждого такого интеграла имеется несколько методов решения.
1) С помощью преобразований привести к более простым интегралам.
2) Применить тригонометрические или гиперболические подстановки.
3) Применить подстановки Эйлера.

Рассмотрим эти методы более подробно.

1) Преобразование подынтегральной функции

Применяя формулу , и выполняя алгебраические преобразования, приводим подынтегральную функцию к виду:
,
где φ(x), ω(x) - рациональные функции.

I тип

Интеграл вида:
,
где P n (x) - многочлен степени n .

Такие интегралы находятся методом неопределенных коэффициентов, используя тождество:

.
Дифференцируя это уравнение и приравнивая левую и правую части, находим коэффициенты A i .

II тип

Интеграл вида:
,
где P m (x) - многочлен степени m .

Подстановкой t = (x - α) -1 этот интеграл приводится к предыдущему типу. Если m ≥ n , то у дроби следует выделить целую часть.

III тип

Здесь мы делаем подстановку:
.
После чего интеграл примет вид:
.
Далее, постоянные α, β нужно выбрать такими, чтобы в знаменателе коэффициенты при t обратились в нуль:
B = 0, B 1 = 0 .
Тогда интеграл распадается на сумму интегралов двух видов:
,
,
которые интегрируются подстановками:
u 2 = A 1 t 2 + C 1 ,
v 2 = A 1 + C 1 t -2 .

2) Тригонометрические и гиперболические подстановки

Для интегралов вида , a > 0 ,
имеем три основные подстановки:
;
;
;

Для интегралов , a > 0 ,
имеем следующие подстановки:
;
;
;

И, наконец, для интегралов , a > 0 ,
подстановки следующие:
;
;
;

3) Подстановки Эйлера

Также интегралы могут быть сведены к интегралам от рациональных функций одной из трех подстановок Эйлера:
, при a > 0 ;
, при c > 0 ;
, где x 1 - корень уравнения a x 2 + b x + c = 0 . Если это уравнение имеет действительные корни.

Эллиптические интегралы

В заключении рассмотрим интегралы вида:
,
где R - рациональная функция, . Такие интегралы называются эллиптическими. В общем виде они не выражаются через элементарные функции. Однако встречаются случаи, когда между коэффициентами A, B, C, D, E существуют соотношения, при которых такие интегралы выражаются через элементарные функции.

Ниже приводится пример, связанный с возвратными многочленами. Вычисление подобных интегралов выполняется с помощью подстановок:
.

Пример

Вычислить интеграл:
.

Решение

Делаем подстановку .

.
Здесь при x > 0 (u > 0 ) берем верхний знак ′+ ′. При x < 0 (u < 0 ) - нижний ′- ′.


.

Ответ

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача - задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \(s(t) = \frac{gt^2}{2} \). В самом деле
\(s"(t) = \left(\frac{gt^2}{2} \right)" = \frac{g}{2}(t^2)" = \frac{g}{2} \cdot 2t = gt \)
Ответ: \(s(t) = \frac{gt^2}{2} \)

Сразу заметим, что пример решен верно, но неполно. Мы получили \(s(t) = \frac{gt^2}{2} \). На самом деле задача имеет бесконечно много решений: любая функция вида \(s(t) = \frac{gt^2}{2} + C \), где C - произвольная константа, может служить законом движения, поскольку \(\left(\frac{gt^2}{2} +C \right)" = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s 0 , то из равенства s(t) = (gt 2)/2 + C получаем: s(0) = 0 + С, т. е. C = s 0 . Теперь закон движения определен однозначно: s(t) = (gt 2)/2 + s 0 .

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2) и извлечение квадратного корня (\(\sqrt{x} \)), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием , а обратную операцию, т. е. процесс нахождения функции по заданной производной, - интегрированием .

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у" = f"(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у" = f"(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \(x \in X \) выполняется равенство F"(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2)" = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3)" = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))" = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) - первообразная для f(x), то kF(x) - первообразная для kf(x).

Теорема 1. Если y = F(x) - первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \(y=\frac{1}{k}F(kx+m) \)

Теорема 2. Если y = F(x) - первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \(\textstyle \int F(x)dx \). Сделаем подстановку \(x= \varphi(t) \) где \(\varphi(t) \) - функция, имеющая непрерывную производную.
Тогда \(dx = \varphi " (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\(\int F(x) dx = \int F(\varphi(t)) \cdot \varphi " (t) dt \)

Интегрирование выражений вида \(\textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям - применение следующей формулы для интегрирования:
\(\textstyle \int u \cdot dv = u \cdot v - \int v \cdot du \)
или:
\(\textstyle \int u \cdot v" \cdot dx = u \cdot v - \int v \cdot u" \cdot dx \)

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac{x^{n+1}}{n+1} +C \;\; (n \neq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac{a^x}{\ln a} +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos^2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin^2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x^2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x^2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$