Разъяснение приставок мега гига микро нано. Приставки для кратных единиц

09.04.2019

Диетическое питание современного человека невозможно представить без пищевых волокон, которые еще в 70-х годах прошлого века считались абсолютно бесполезным веществом для организма. Давайте разберемся на портале «Худеем без проблем», так ли полезна на самом деле, как об этом кричит реклама некоторых сетевых компаний. Какие продукты богаты клетчаткой? И в каких случаях грубая растительная пища может навредить организму?

Что представляет собой клетчатка?

Клетчаткой называются пищевые волокна растительного происхождения, которые практически без изменений проходят через ЖКТ, т.е. не перевариваются организмом и не распадаются на составные части. Различные растения содержат разное количество пищевых волокон, но основное их сосредоточение – это стебли, семена и кожура.

Пищевые волокна подразделяются на растворимые и нерастворимые. Первые называются пектинами или альгинатами: их можно обнаружить в овсяных отрубях, некоторых фруктах и ягодах, а также в листовых .

Источники растворимой клетчатки имеют нежную мякоть и тонкую кожицу, поэтому организм по мере своих возможностей может расщепить их до желеобразного состояния.

Грубые нерастворимые пищевые волокна ЖКТ не способен переработать из-за отсутствия необходимых ферментов, поэтому они покидают организм человека в неизменном виде.

Но они способны впитывать огромное количество жидкости в связке со шлаками и набухать. Грибы, крупы, овощи и семечки содержат такие разновидности грубых волокон, как целлюлозу и лигнин.

Наиболее полезным для организма является симбиоз пектинов и грубых пищевых волокон в пропорции 3:1, поэтому рацион питания должен быть максимально разнообразен.

Полезные свойства клетчатки

  • Для пережевывания грубой пищи нам приходится прилагать немало усилий. Данный процесс сопровождается выделением большого объема слюны, которая обладает противомикробным действием, что положительным образом сказывается на общем состоянии ротовой полости.
  • , стимулируют работу ЖКТ и избавляют от запоров.
  • Растительные волокна, попадая в кишечник, очищают организм от токсических соединений, шлаков и аллергенов, а также препятствуют образованию гнилостных масс.
  • Происходит очищение организма от вредного холестерина, снижается уровень сахара в крови.
  • Еда с большим количеством клетчатки, после которой человек еще долгое время чувствует себя сытым, эффективно помогает процессу похудения.

Итак, пользу клетчатки для организма переоценить сложно, особенно в период похудения. Поэтому пищевые волокна теперь создаются и в искусственных условиях в виде БАДов, но по полезности они, естественно, уступают аналогам природного происхождения.

Взрослому человеку для обеспечения нормальной работы кишечника требуется от 25 до 35 гр. клетчатки в день. Чтобы вы с легкостью могли определить необходимое для себя количество, в данной статье продукты, богатые клетчаткой, объединены в список. При питании, скудном на пищевые волокна, диетологи советуют ежедневно принимать в пищу примерно 1 ст. л. .

Чем грозит дефицит и переизбыток клетчатки в рационе?

Долгое время волокна растительного происхождения считались учеными бесполезным балластом для организма и их роль для поддержания здоровья человека недооценивалась. Но оказалось, что их недостаток в пище может грозить такими серьезными проблемами со здоровьем, как:

  • Патологии ЖКТ, которые могут сопровождаться запорами, снижением перистальтики, дисбактериозом.
  • Геморрой.
  • Сердечно-сосудистые заболевания, угроза инсульта и инфаркта.
  • Сахарный диабет.
  • Ожирение.
  • Желчекаменная болезнь.
  • Злокачественные опухоли прямой кишки.

Неудивительно, что большинство девушек, желающих быстро скинуть лишние килограммы, резко переходят на продукты, богатые растительной клетчаткой. Такой подход в корне неверный, т.к. ее переизбыток может стать причиной таких явлений, как:

  • Запор, диарея, повышенное газообразование, боли в животе.
  • Тошнота, рвота.
  • Дисбактериоз, нарушение перистальтики кишечника.

Ищем продукты с большим содержанием клетчатки

Список таких продуктов довольно длинный, поэтому не стоит торопиться покупать в аптеке специальные биодобавки. При правильной организации рациона даже диетическое питание может быть разнообразным и вкусным, главное – вводить такие продукты поэтапно, определяя реакцию организма.

Несомненным лидером среди продуктов по содержанию пищевых волокон являются отруби. Много их в бобовых, грибах, крупах, семечковых продуктах, орехах, фруктах, сухофруктах, овощах и ягодах. Ниже представлен список, отражающий количество клетчатки в 100 гр. продукта.

Итак, продукты питания, богатые клетчаткой – таблица 1.

Для вашего удобства содержание клетчатки в овощах, фруктах и ягодах отражено в таблице 2.

В мучных изделиях, животном жире, растительном масле, фруктовых и овощных соках, мясе и рыбе пищевых волокон практически нет. И это не повод полностью отказываться от их употребления в пользу грубой растительной пищи, но можно постепенно пшеничный хлеб заменить цельнозерновым, а вместо сладких соков делать с добавлением фруктов и ягод.

Клетчатка и белок – прямой путь к фигуре мечты

Иногда жесткая диета или желание стать обладателем рельефного тела заставляют людей ограничивать или полностью исключить потребление углеводов за счет увеличения доли белков. Это может стать причиной запоров, метеоризма и недостатка питательных веществ в организме. Чтобы продолжать худеть и нарабатывать мышцы на высокобелковой диете и при этом хорошо себя чувствовать, нужно разнообразить свое меню продуктами с высоким содержанием пищевых волокон.

Ниже мы приведем список продуктов, в которых одновременно содержится и белок, и клетчатка. У них есть одно явное преимущество для худеющих: они замедляют процесс трансформации углеводов в глюкозу. Человек дольше остается сытым, а глюкоза не откладывается на боках в виде жировых отложений.

Итак, пища, богатая клетчаткой и белком, список продуктов:

  1. Бобовые и крупы: фасоль, соя, коричневый рис, нут.
  2. Семечковые продукты и орехи: семена тыквы, грецкие орехи, миндаль, фундук, кешью.
  3. Овощи и фрукты: авокадо, бананы, шпинат.

Список можно также дополнить сыром тофу, соевой спаржей и цельнозерновыми продуктами.

Модернизация белковой диеты при помощи включения в рацион продуктов с клетчаткой не только ускоряет похудение, но и делает этот процесс комфортным для организма. Кроме того, клетчатка — это отличный инструмент для очистки организма от вредного холестерина и лишнего сахара.

Клетчатка (пищевые волокна) – это компоненты пищи, которые не перевариваются в пищеварительном тракте, но благоприятно влияют на организм: нормализуют работу кишечника, очищают его от шлаков, улучшают обменные процессы, способствуют снижению веса. Поэтому продукты, богатые клетчаткой, должны быть в ежедневном рационе каждого человека, заботящегося о своем здоровье.

К сожалению, с развитием пищевой промышленности растительных волокон в пище стало не хватать. Рацион современного человека в основном состоит из очищенных рафинированных продуктов, из которых полезная для организма клетчатка удаляется. Это улучшает вкусовые качества пищи, облегчает ее приготовление и переваривание, но отрицательно сказывается на здоровье - увеличивается риск развития диабета, болезней сердечно-сосудистой системы, ожирения. Поэтому важно знать, в каких продуктах содержится клетчатка и регулярно включать их в свое ежедневное меню питания.

Виды и польза клетчатки

Содержится клетчатка в продуктах исключительно растительного происхождения, в животных продуктах ее нет совсем. Поэтому любители молока, мяса и рыбы для получения суточной нормы пищевых волокон обязательно должны включать в свой рацион и те продукты, где содержится много клетчатки, то есть растительную пищу.

Пищевые волокна в продуктах питания бывают двух видов, каждый из которых одинаково важен для полноценной жизнедеятельности человека:

  • Растворимые волокна. К растворимой клетчатке относятся пектин, альгиназа, инулин, камеди. Она содержится в мякоти фруктов, в бобовых культурах, морских водорослях.
  • Нерастворимые волокна. Нерастворимая грубая клетчатка - целлюлоза, гемицеллюлоза и лигнин. Больше всего ее в овощах, зелени, зерновых и бобовых культурах.

Растворимая растительная клетчатка, при попадании в желудок, увеличивается в размере, преобразуется в желеобразную структуру, адсорбирует желчные кислоты и холестерин, не давая им проникнуть в кровь. Инулин нормализует деятельность кишечника, поддерживает его здоровую микрофлору.

Нерастворимая клетчатка проходит, как щетка через весь пищеварительный тракт, освобождает стенки кишечника от налипших шлаков, выводит токсины. Благодаря этому нормализуются обменные процессы, и стимулируется перистальтика кишечника.

Польза клетчатки

Недостаточное потребление пищевых волокон приводит к негативным последствиям для здоровья :

  • замедленному метаболизму;
  • повышению уровня сахара и холестерина в крови;
  • нарушению работы кишечника (запоры);
  • сахарному диабету;
  • атеросклерозу;
  • повышению веса и ожирению.

Пищевые волокна в три раза увеличиваются в объеме и наполняют желудок, что снижает аппетит, поэтому продукты с клетчаткой часто используются для похудения.

Диетологи рекомендуют употреблять около 30 г клетчатки ежедневно. Обычный человек, если он не вегетарианец, получает с пищей не более 5-10 г пищевых волокон в сутки. Чтобы восполнить этот дефицит и грамотно составить рацион, необходимо знать, в каких продуктах содержится клетчатка и в каком количестве.

Список продуктов, содержащих клетчатку, должен быть всегда под рукой у тех, кто стремится быть здоровым, похудеть и избавиться от запоров и нормализовать пищеварение.

Какие продукты богаты клетчаткой

В любой растительной пище есть как растворимые пищевые волокна, так и нерастворимые. Но содержание клетчатки в продуктах питания может значительно варьироваться. Например, в овсе, фасоли и фруктах больше клетчатки растворимой, а в овощах, бобах, отрубях и орехах – нерастворимой. Чтобы получить наибольшую пользу для организма, необходимо использовать в пищу разнообразные продукты с большим содержанием клетчатки.

В разных частях одного и того же продукта содержатся разные виды пищевых волокон. В мякоти фруктов, ягод овощей и бобовых находится растворимая клетчатка, а в кожуре – больше нерастворимого грубого волокна.

Нижеприведенная таблица поможет узнать, в каких продуктах больше всего содержится столь полезных для организма пищевых волокон.

Из таблицы видно, что больше всего клетчатки находится в отрубях, поэтому их рекомендуется добавлять в пищу или напитки для устранения дефицита грубых пищевых волокон при недостаточном употреблении овощей, зелени и изделий из цельных злаков. Хлеб и сдобу из муки высшего сорта полезно заменить на хлебобулочные изделия с отрубями или из цельнозерновой муки.

Перечень продуктов с высоким содержанием клетчатки

На основе приведенных в таблице данных можно составить список продуктов, в которых наибольшее количество клетчатки (на 100 г).

  1. Отруби - 40 г;
  2. Льняное семя – 24 г;
  3. Бобовые – 12 г;
  4. Крупы (гречка, пшеница твердая, пшено) – 9 – 13 г;
  5. Сухофрукты – 10 – 15 г;
  6. Цельнозерновой хлеб – 9 г;
  7. Миндаль, фундук, фисташки – 7- 10 г;
  8. Авокадо – 6 г;
  9. Овощи, особенно морковь, свекла, капуста – 3 - 4 г;
  10. Фрукты, ягоды: (больше всего в яблоках, грушах, смородине) – 2–3 г.

Употребление в пищу отрубей значительно улучшит состояние вашего организма

Таким образом, чтобы получить суточную норму клетчатки, содержащуюся в продуктах питания, за день необходимо съедать:

  • 3 фрукта среднего размера в день плюс
  • 3 порции овощей и зелени по 100 г каждая, плюс
  • 4 куска хлеба из цельнозерновой крупы плюс
  • горсть орехов или сухофруктов.

Несколько раз в неделю желательно готовить каши из цельного зерна, блюда из бобовых (отварную фасоль, чечевицу) и макаронные изделия из твердых сортов пшеницы.

Употребление клетчатки при похудении

Учеными из Франции доказано, что ежедневное употребление всего 5 г клетчатки помогает поддерживать нормальный вес (при условии правильного питания и средней физической активности). Добавление в диетический рацион суточной нормы пищевых волокон способствует:

  • снижению аппетита;
  • увеличению скорости обмена веществ;
  • понижению гликемического индекса продуктов;
  • повышению активности жиросжигающих ферментов, выделяемых печенью;
  • регулярной очистке кишечника.

Увеличение потребления грубого волокна помогает худеть быстрее. Но следует учитывать, что при похудении повышать его количество нужно в основном за счет овощей, фруктов и бобовых, потому что орехи, хлеб и сухофрукты хоть и содержат клетчатку в большом количестве, но добавляют к суточной норме калорийности немало лишних калорий. Лишь умеренное употребление этих продуктов в качестве источника грубого волокна действительно поможет снизить вес.

Что важно знать при употреблении клетчатки

  • До суточной нормы доводить потребление таких продуктов следует в течение нескольких недель и не превышать норму. Слишком большое количество грубого волокна приведет к расстройствам пищеварения, метеоризму и вздутию.
  • Увеличение количества пищевых волокон должно обязательно сопровождаться и увеличением объема выпитой жидкости.
  • Пищу, содержащую растительные пищевые волокна, лучше всего употреблять в свежем виде. При долгой термической обработке теряется до 50% клетчатки.
  • По возможности овощи, ягоды и фрукты не очищать от кожуры, в ней содержится большая часть грубого волокна.
  • При обострениях болезней желудочно-кишечного тракта (язвах, колитах, гастритах) употребление клетчатки нужно свести к минимуму или прекратить.
  • Если нет желания или возможности в больших объемах есть продукты с содержанием растительных пищевых волокон, их можно заменить на синтезированную клетчатку. В аптеке предлагается большой выбор таких препаратов в разной форме: порошок, таблетки, гранулы. В них содержится сбалансированная комбинация растворимых и нерастворимых волокон, поэтому можно получить максимальную пользу от их употребления без значительного изменения рациона.

Продуктам, богатым пищевыми волокнами, отводится значимая роль в рационе здорового питания. Ежедневное употребление суточной нормы клетчатки позволяет поддерживать нормальный вес и является эффективным методом профилактики многих заболеваний.

Преобразовать микро в милли:

  1. Выберите нужную категорию из списка, в данном случае "Приставки СИ".
  2. Введите величину для перевода. Основные арифметические операции, такие как сложение (+), вычитание (-), умножение (*, x), деление (/, :), экспоненту (^), скобки и π (число пи), уже поддерживаются на настоящий момент.
  3. Из списка выберите единицу измерения переводимой величины, в данном случае "микро".
  4. И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае "милли".
  5. После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, "400 микро". При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуру. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае "Приставки СИ". После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: "20 микро в милли", "20 микро -> милли" или "62 микро = милли". В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как "(41 * 72) микро". Можно даже использовать несколько единиц измерения непосредственно в поле конверсии. Например, такое сочетание может выглядеть следующим образом: "400 микро + 1200 милли" или "56mm x 54cm x 22dm = ? cm^3". Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

Если поставить флажок рядом с опцией "Числа в научной записи", то ответ будет представлен в виде экспоненциальной функции. Например, 7,716 049 312 5× 1022 . В этой форме представление числа разделяется на экспоненту, здесь 22, и фактическое число, здесь 7,716 049 312 5. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 7,716 049 312 5E+22. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 77 160 493 125 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.


Калькулятор измерений, который, среди прочего, может использоваться для преобразования микро в милли : 1 микро = 0,001 милли

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 милли [м] = 1000 микро [мк]

Исходная величина

Преобразованная величина

без приставки йотта зетта экса пета тера гига мега кило гекто дека деци санти милли микро нано пико фемто атто зепто йокто

Передача данных и теорема Котельникова

Метрическая система и Международная система единиц (СИ)

Введение

В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.

Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.

Ранние системы измерений

В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами - поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.

Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.

Меры длины

В Древнем Египте длина вначале измерялась просто локтями , а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.

Локоть делили на более мелкие единицы: ладонь , рука , зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.

Меры массы и веса

Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат . Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.

Меры объема

Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема - вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.

Эволюция различных систем мер

Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.

Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.

Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система . Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.

Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.

Метрическая система

На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.

На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.

Международная система единиц (СИ)

Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.

В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.

Десятичные приставки

Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:

Приставка Символ Численное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель - точка. Экспоненциальная запись
йотта Й 1 000 000 000 000 000 000 000 000 10 24
зетта З 1 000 000 000 000 000 000 000 10 21
экса Э 1 000 000 000 000 000 000 10 18
пета П 1 000 000 000 000 000 10 15
тера Т 1 000 000 000 000 10 12
гига Г 1 000 000 000 10 9
мега М 1 000 000 10 6
кило к 1 000 10 3
гекто г 100 10 2
дека да 10 10 1
без приставки 1 10 0
деци д 0,1 10 -1
санти с 0,01 10 -2
милли м 0,001 10 -3
микро мк 0,000001 10 -6
нано н 0,000000001 10 -9
пико п 0,000000000001 10 -12
фемто ф 0,000000000000001 10 -15
атто а 0,000000000000000001 10 -18
зепто з 0,000000000000000000001 10 -21
йокто и 0,000000000000000000000001 10 -24

Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. Интересно отметить, что, несмотря на наличие приставки в единице килограмм, она является базовой единицей СИ. Поэтому указанные выше приставки применяются с граммом, как будто он является базовой единицей.

На момент написания этой статьи остались только три страны, которые не приняли систему СИ: США, Либерия и Мьянма. В Канаде и Великобритании традиционные единицы все еще широко используются, несмотря на то, что система СИ в этих странах является официальной системой единиц. Достаточно зайти в магазин и увидеть ценники за фунт товара (так ведь дешевле получается!), или попытаться купить стройматериалы, измеряемые в метрах и килограммах. Не выйдет! Не говоря уже об упаковке товаров, где все подписано в граммах, килограммах и литрах, но не в целых, а переведенных из фунтов, унций, пинт и кварт. Место для молока в холодильниках тоже рассчитывается на полгаллона или галлон, а не на литровую молочную упаковку.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер десятичных приставок » выполняются с помощью функций unitconversion.org .

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 мега [М] = 0,001 гига [Г]

Исходная величина

Преобразованная величина

без приставки йотта зетта экса пета тера гига мега кило гекто дека деци санти милли микро нано пико фемто атто зепто йокто

Метрическая система и Международная система единиц (СИ)

Введение

В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.

Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.

Ранние системы измерений

В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами - поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.

Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.

Меры длины

В Древнем Египте длина вначале измерялась просто локтями , а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.

Локоть делили на более мелкие единицы: ладонь , рука , зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.

Меры массы и веса

Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат . Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.

Меры объема

Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема - вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.

Эволюция различных систем мер

Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.

Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.

Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система . Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.

Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.

Метрическая система

На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.

На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.

Международная система единиц (СИ)

Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.

В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.

Десятичные приставки

Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:

Приставка Символ Численное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель - точка. Экспоненциальная запись
йотта Й 1 000 000 000 000 000 000 000 000 10 24
зетта З 1 000 000 000 000 000 000 000 10 21
экса Э 1 000 000 000 000 000 000 10 18
пета П 1 000 000 000 000 000 10 15
тера Т 1 000 000 000 000 10 12
гига Г 1 000 000 000 10 9
мега М 1 000 000 10 6
кило к 1 000 10 3
гекто г 100 10 2
дека да 10 10 1
без приставки 1 10 0
деци д 0,1 10 -1
санти с 0,01 10 -2
милли м 0,001 10 -3
микро мк 0,000001 10 -6
нано н 0,000000001 10 -9
пико п 0,000000000001 10 -12
фемто ф 0,000000000000001 10 -15
атто а 0,000000000000000001 10 -18
зепто з 0,000000000000000000001 10 -21
йокто и 0,000000000000000000000001 10 -24

Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. Интересно отметить, что, несмотря на наличие приставки в единице килограмм, она является базовой единицей СИ. Поэтому указанные выше приставки применяются с граммом, как будто он является базовой единицей.

На момент написания этой статьи остались только три страны, которые не приняли систему СИ: США, Либерия и Мьянма. В Канаде и Великобритании традиционные единицы все еще широко используются, несмотря на то, что система СИ в этих странах является официальной системой единиц. Достаточно зайти в магазин и увидеть ценники за фунт товара (так ведь дешевле получается!), или попытаться купить стройматериалы, измеряемые в метрах и килограммах. Не выйдет! Не говоря уже об упаковке товаров, где все подписано в граммах, килограммах и литрах, но не в целых, а переведенных из фунтов, унций, пинт и кварт. Место для молока в холодильниках тоже рассчитывается на полгаллона или галлон, а не на литровую молочную упаковку.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер десятичных приставок » выполняются с помощью функций unitconversion.org .