Схема передачи информации по различным техническим каналам. Передача информации

23.08.2019

Схема передачи информации. Канал передачи информации. Скорость передачи информации.

Существуют три вида информационных процессов: хранение, передача, обработка.

Хранение информации:

· Носители информации.

· Виды памяти.

· Хранилища информации.

· Основные свойства хранилищ информации.

С хранением информации связаны следующие понятия: носитель информации (память), внутренняя память, внешняя память, хранилище информации.

Носитель информации – это физическая среда, непосредственно хранящая информацию. Память человека можно назвать оперативной памятью. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Все прочие виды носителей информации можно назвать внешними (по отношению к человеку): дерево, папирус, бумага и т.д. Хранилище информации - это определенным образом организованная информация на внешних носителях, предназначенная для длительного хранения и постоянного использования (например, архивы документов, библиотеки, картотеки). Основной информационной единицей хранилища является определенный физический документ: анкета, книга и др. Под организацией хранилища понимается наличие определенной структуры, т.е. упорядоченность, классификация хранимых документов для удобства работы с ними. Основные свойства хранилища информации: объем хранимой информации, надежность хранения, время доступа (т.е. время поиска нужных сведений), наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памяти, принято называть данными. Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами и банками данных.

Обработка информации:

· Общая схема процесса обработки информации.

· Постановка задачи обработки.

· Исполнитель обработки.

· Алгоритм обработки.

· Типовые задачи обработки информации.

Схема обработки информации:

Исходная информация – исполнитель обработки – итоговая информация.

В процессе обработки информации решается некоторая информационная задача, которая предварительно может быть поставлена в традиционной форме: дан некоторый набор исходных данных, требуется получить некоторые результаты. Сам процесс перехода от исходных данных к результату и есть процесс обработки. Объект или субъект, осуществляющий обработку, называют исполнителем обработки.

Для успешного выполнения обработки информации исполнителю (человеку или устройству) должен быть известен алгоритм обработки, т.е. последовательность действий, которую нужно выполнить, чтобы достичь нужного результата.

Различают два типа обработки информации. Первый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний (решение математических задач, анализ ситуации и др.). Второй тип обработки: обработка, связанная с изменением формы, но не изменяющая содержания (например, перевод текста с одного языка на другой).

Важным видом обработки информации является кодирование – преобразование информации в символьную форму, удобную для ее хранения, передачи, обработки. Кодирование активно используется в технических средствах работы с информацией (телеграф, радио, компьютеры). Другой вид обработки информации – структурирование данных (внесение определенного порядка в хранилище информации, классификация, каталогизация данных).

Ещё один вид обработки информации – поиск в некотором хранилище информации нужных данных, удовлетворяющих определенным условиям поиска (запросу). Алгоритм поиска зависит от способа организации информации.

Передача информации:

· Источник и приемник информации.

· Информационные каналы.

· Роль органов чувств в процессе восприятия информации человеком.

· Структура технических систем связи.

· Что такое кодирование и декодирование.

· Понятие шума; приемы защиты от шума.

· Скорость передачи информации и пропускная способность канала.

Схема передачи информации:

Источник информации – информационный канал – приемник информации.

Информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума.

Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это приведёт к задержкам и подорожанию связи.

При обсуждении темы об измерении скорости передачи информации можно привлечь прием аналогии. Аналог – процесс перекачки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются технические линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость передачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др. информационный процесс передача канал

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» аналогии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом давлении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный предел скорости передачи данных имеют и технические линии информационной связи. Причины этому также носят физический характер.

1. Классификация и характеристики канала связи
Канал связи – это совокупность средств, предназначенных для передачи сигналов (сообщений).
Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.

ИИ
ЛС
П
ПИ
П

На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи;ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).
Существуют различные типы каналов, которые можно классифицировать по различным признакам:
1. По типу линий связи: проводные; кабельные; оптико-волоконные;
линии электропередачи; радиоканалы и т.д.
2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).
3. По помехозащищенности: каналы без помех; с помехами.
Каналы связи характеризуются:
1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов

V к = T к F к D к. (1)
Условие согласования сигнала с каналом:
V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .
2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.
3.
4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).
Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.
Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.
Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.
Проводные:
1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.
2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.
3. Оптико-волоконная. Скорость передачи 1 Гбит/с.
В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).
Радиолинии:
1. Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.
2. Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.
3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.
2. Пропускная способность дискретного канала связи
Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .
Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.
При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле
I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)
где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.
При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:
I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)
Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.
Пропускная способность дискретного канала связи
. (5)
Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .
Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .
2.1 Дискретный канал связи без помех
Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.
При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно
I (X, Y) = H(X) = H(Y); H (X/Y) = 0.
Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна
(6)
где V = 1/ – средняя скорость передачи одного символа.
Пропускная способность для дискретного канала связи без помех
(7)
Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:
. (8)
Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.
, где - сколь угодно малая величина,
то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.
Теорема не отвечает на вопрос, каким образом осуществлять кодирование.
Пример 1. Источник вырабатывает 3 сообщения с вероятностями:
p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.
Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.
Решение: Энтропия источника равна

[бит/с].
Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.
Средняя скорость передачи сигнала
V =1/2 t = 500 .
Скорость передачи информации
C = vH = 500×1,16 = 580 [бит/с].
2.2 Дискретный канал связи с помехами
Мы будем рассматривать дискретные каналы связи без памяти.
Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.
При наличии помехи среднее количество информации в принятом символе сообщении – Y , относительно переданного – X равно:
.
Для символа сообщения X T длительности T, состоящегоиз n элементарных символов среднее количество информации в принятом символе сообщении – Y T относительно переданного – X T равно:
I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n = 2320 бит/с
Пропускная способность непрерывного канала с помехами определяется по формуле

=2322 бит/с.
Докажем, что информационная емкость непрерывного канала без памяти с аддитивным гауссовым шумом при ограничении на пиковую мощность не больше информационной емкости такого же канала при той же величине ограничения на среднюю мощность.
Математическое ожидание для симметричного равномерного распределения

Средний квадрат для симметричного равномерного распределения

Дисперсия для симметричного равномерного распределения

При этом, для равномерно-распределенного процесса .
Дифференциальная энтропия сигнала с равномерным распределением
.
Разность дифференциальных энтропий нормального и равномерно распределенного процесса не зависит от величины дисперсии
= 0,3 бит/отсч.
Таким образом, пропускная способность и емкость канала связи для процесса с нормальным распределением выше, чем для равномерного.
Определим емкость (объем) канала связи
V k = T k C k = 10×60×2322 = 1,3932 Мбит.
Определим количество информации, которое может быть передано за 10 минут работы канала
10× 60× 2322=1,3932 Мбит.
Задачи

1. В канал связи передаются сообщения, составленные из алфавита x 1, x 2 и x 3 с вероятностями p(x 1)=0,2;p(x 2) =0,3 и p(x 3)=0,5 .
Канальная матрица имеет вид:
при этом .
Вычислить:
1. Энтропию источника информации H(X) и приемника H(Y) .
2. Общую и условную энтропию H (Y/X).
3. Потери информации в канале при передаче к символов (к = 100 ).
4. Количество принятой информации при передаче к символов.
5. Скорость передачи информации, если время передачи одного символа t = 0,01 мс .
2. По каналу связи передаются символы алфавита x 1 , x 2 , x 3 и x 4 с вероятностями . Определить количество информации принятой при передаче 300 символов, если влияние помех описывается канальной матрицей:
.
3. Определить потери информации в канале связи при передаче равновероятных символов алфавита, если канальная матрица имеет вид
.
t = 0,001 сек.
4.Определить потери информации при передаче 1000 символов алфавита источника x 1 , x 2 и x 3 с вероятностями p =0,2; p =0,1 и p()=0,7 , если влияние помех в канале описывается канальной матрицей:
.
5. Определить количество принятой информации при передаче 600 символов, если вероятности появления символов на выходе источника X равны: а влияние помех при передаче описывается канальной матрицей:
.
6. В канал связи передаются сообщения, состоящие из символов алфавита , при этом вероятности появления символов алфавита равны:
Канал связи описан следующей канальной матрицей:
.
Определить скорость передачи информации, если время передачи одного символа мс .
7.По каналу связи передаются сигналы x 1 , x 2 и x 3 с вероятностями p =0,2; p =0,1 и p()=0,7. Влияние помех в канале описывается канальной матрицей:
.
Определить общую условную энтропию и долю потерь информации, которая приходится на сигнал x 1 (частную условную энтропию).
8. По каналу связи передаются символы алфавита x 1 , x 2 , x 3 и x 4 с вероятностями .
Помехи в канале заданы канальной матрицей
.
Определить пропускную способность канала связи, если время передачи одного символа t = 0,01 сек.
Определить количество принятой информации при передаче 500 символов, если вероятности появления символов на входе приемника Y равны: , а влияние помех при передаче описывается канальной матрицей:
.

Пропускная способность непрерывного канала связи
(14)
Для дискретного канала связи максимальное значение скорости передачи соответствует равновероятным символам алфавита. Для непрерывного канала связи, когда заданной является средняя мощность сигнала, максимальная скорость обеспечивается при использовании нормальных центрированных случайных сигнала.
Если сигнал центрированный (m x = 0 ) т.е. без постоянной составляющей при этом мощность покоя равна нулю (P 0 = 0 ). Условие центрированности обеспечивает максимум дисперсии при заданной средней мощности сигнала
Если сигнал имеет нормальное распределение, то априорная дифференциальная энтропия каждого отсчета максимальна.
Поэтому при расчете пропускной способности непрерывного канала считаем, что по каналу передается непрерывный сигнал с ограниченной средней мощностью – P c и аддитивная помеха (y = x+f ) также с ограниченной средней мощностью – P n типа белого (гауссова) шума.

Канал связи представляет собой совокупность технических средств для передачи сообщений из одной точки пространства в другую. С точ­ки зрения теории информации физическое устройство канала несуще­ственно. Источник сообщений(ИС) имеет выходной алфавит символовA ={а i },i= 1.. n - количество информации, приходящееся в среднем на один символ источника:

где p i , - вероятность появления символаa i , на выходе источника, символы источника считаются независимыми. Канал связи имеет алфавит символовB={b j },j= 1.. m, среднее количество информации в одном символе канала

где q j - вероятность появления символаb i , в канале.

Техническими характеристиками канала связи являются:

    техническая производительность источника  A - среднее число символов, выдаваемых источником в единицу времени;

    техническая пропускная способность канала связи  B - среднее число символов, передаваемое по каналу в единицу времени.

Информационной характеристикой источника является инфор­мационная производительность. По определению, информационная производительность - это среднее количество информации, выдава­емое источником в единицу времени.

В канале без помех информационными характеристиками являются:

1) скорость передачи информации по каналу

2) пропускная способность канала

где {P } - множество всех возможных распределений вероятностей символов алфавитаВ канала. С учетом свойств энтропии

C K = B . log 2 m.

В канале с помехами в общем случае входной и выходной алфа­виты не совпадают. Пусть

B ВХ =X={x 1 ,x 2 ,…,x n };

B ВЫХ =Y={y 1 ,y 2 ,…,y m }.

Если отправленный на входе канал символ х к опознан в приемнике какy i иi K , то при передаче произошла ошибка. Свойства канала описываются матрицей переходных вероятностей (вероятность приема символау i , при условии, что посланх k ):

|| P(yi|xk) ||, k=1..n, i=1..m.

Справедливо соотношение:

Среднее количество информации на один входной символ канала:

p i =p(x i ) .

Среднее количество информации на выходной символ канала:

Информация, которую несет выход канала о входе:

I(Y,X)=H(X)-H Y (X)=H(Y)-H X (Y).

Здесь Ну (Х ) - условная энтропия входного символа канала при на­блюдении выходного символа (ненадежность канала),Н х (Y ) - услов­ная энтропия выходного символа канала при наблюдении входных символов (энтропия шума).

Скорость передачи информации по каналу с помехами:

dI(B)/dt= B I(X,Y).

Пропускная способность канала с помехами:

где { р} - множество всех возможных распределений вероятностей входного алфавита символов канала.

Рассмотрим пример

Найти пропускную способность двоичного симметричного канала (канала с двухсимвольными входными и выходными алфавитами) и одинаковыми вероятностями ошибок (рис.1), если априорные вероят­ности появления входных символов:P(x 1 )=P 1 =P, P(x 2 )=P 2 =1-P .

Решение. В соответствии с моделью канала условные веро­ятности

P(y 1 | x 2 ) = P(y 2 | x 1 ) = P i ,

P(y 1 | x 1 ) = P(y 2 | x 2 ) = 1-P i .

Пропускная способность канала - C K = B . max{H(Y)-H(X|Y)}. Найдем энтропию шума:

По теореме умножения: P (y j x i )=P (x i )P (y j |x i ), следовательно,

P (x 1 y 1 )=P (1-P i ), P (x 2 y 1 )=(1- P )P i ,P (x 1 y 2 )=PP i ,P (x 2 y 2 )=(1-P )(1-P i ).

Подставляя в формулу, получаем:

Таким образом, H( Y | X ) не зависит от распределения входного алфавита, следовательно:

Определим энтропию выхода:

Вероятности P (y 1 ) иP (y 2 ) получаем следующим образом:

P (y 1 )=P (y 1 x 1 )+P (y 1 x 2 )=P (1-P i )+(1-P i )P i , P (y2 )=P (y 2 x 1 )+P (y 2 x 2 )=PP i +(1-P )(1-P i ).

Варьируя Р, убеждаемся, что максимальное значение H (Y ), равное 1, получается при равновероятных входных символахP (y 1 ) иP (y 2 ). Следовательно,

Задача . Найти пропускную способность канала с трехсимвольными входными и выходными алфавитами (x 1 ,x 2 ,x 3 иy 1 ,y 2 ,y 3 соответсвенно). Интенсивность появления символов на входе канала k =V . 10 символов/с.

Вероятности появления символов:

,
, .

Вероятности передачи символов через канал связи:

,
,,

,
,,

,
,.

4. КОДИРОВАНИЕ ИНФОРМАЦИИ

4.1. Общие сведения Кодом называется:

Правило, описывающее отображение одного набора знаков в другой набор знаков или в набор слов без знаков;

Множество образов, получающихся при таком отображении.

В технических кодах буквы, цифры и другие знаки почти всегда кодируются двоичными последовательностями, называемыми двоичными кодовыми словами. У многих кодов слова имеют оди­наковую длину (равномерные коды).

Выбор кодов для кодирования конкретных типов сообщений определяется многими факторами:

Удобством получения исходных сообщений из источника;

Быстротой передачи сообщений через канал связи;

Объёмом памяти, необходимым дня хранения сообщений;

Удобством обработки данных;

Удобством декодирования сообщений приемником.

Закодированные сообщения передаются по каналам связи, хра­нятся в ЗУ, обрабатываются процессором. Объемы кодируемых данных велики, и поэтому во многих случаях важно обеспечить таксе кодирование данны:"., которое характеризуется минимальной длиной получающихся сообщений, Это проблема сжатия данных. Существуют два подхода сжатия данных:

Сжатие, основанное на анализе статистических свойств коди­руемых сообщений.

Сжатие на основе статистических свойств данных называется так же теорией экономного или эффективного кодирования. Эко­номное кодирование основано на использовании кодов с перемен­ной длиной кодового слова, например, код Шеннона-Фано, код Хафмана /31. Идея использования кодов переменной длины для сжа­тия данных состоит в том, чтобы сообщения с большей вероят­ностью появления ставить в соответствие кодовые комбинации мень­шей длины и, наоборот, сообщения с малой вероятностью появле­ния кодировать словами большей длины. Средняя длина кодового слова определяется с.о.:

где /, - длина кодового слова для кодирования i - го сообщения; p t - вероятность появления i - го сообщения.

4.2. Задания

4.2.1. Из табл.4 выбрать дня последующего кодирования ис­ходный алфавит, содержащий 10 символов, начиная с N-ro (N - порядковый номер студента в журнале группы). Пронормировать вероятности символов.

4.2.2. Пронормировать выбранный в п.4.2.1. исходный алфавит равномерным двоичным кодом, кодом Шеннона-Фано, кодом Хафмана. Для каждого варианта кодирования рассчитать мини­мальное, максимальное, среднее значение длины кодового слова. Проанализировать результаты.

4.2.3. Проделать задание 4.2.2. для троичного кода.

Таблица 4

4.3. Указания к выполнению отдельных заданий К заданию 4.2.1. Нормирование вероятностей производится по формуле:

/W-HO / *Рк " JC=AT

где Pi - вероятности появления символов, приведенные в табл.4.

К заданию 4.2.2. Правила построения двоичных кодов изло­жены в /4,6/.

К заданию 4.2.3. При построении троичного кода в качестве кодовых слов берутся слова, записанные в троичной системе счис­ления. Оптимальный троичный код строится с помощью процедуры Хафмана (с помощью процедуры Шеннона-Фано строится субоп-тимальный код). При этом разбиение алфавита ведется на три груп­пы, первой группе приписывается "О", второй - "1", третьей - "2".

Распространение информации происходит в процессе ее передачи.

При передаче информации всегда есть два объекта – источник и приемник информации. Эти роли могут меняться, например, во время диалога каждый из участников выступает то в роли источника, то в роли приемника информации.

Информация проходит от источника к приемнику через канал связи, в котором она должна быть связана с каким-то материальным носителем. Для передачи информации свойства этого носителя должны изменяться со временем. Так лампочка, которая все время горит, передает информацию только о том, что какой-то процесс идет. Если же включать и выключать лампочку, можно передавать самую разную информацию, например, с помощью азбуки Морзе.

При разговоре людей носитель информации – это звуковые волны в воздухе. В компьютерах информация передается с помощью электрических сигналов или радиоволн (в беспроводных устройствах). Информация может передаваться с помощью света, лазерного луча, системы телефонной или почтовой связи, компьютерной сети и др.

Информация поступает по каналу связи в виде сигналов, которые приемник может обнаружить с помощью своих органов чувств (или датчиков) и «понять» (раскодировать).

Сигнал – это изменение свойств носителя, которое используется для передачи информации.

Примеры сигналов – это изменение частоты и громкости звука, вспышки света, изменение напряжения на контактах и т.п.

Человек может принимать сигналы только с помощью своих органов чувств. Чтобы передавать информацию, например, с помощью радиоволн, нужны вспомогательные устройства: радиопередатчик, преобразующий звук в радиоволны, и радиоприемник, выполняющий обратное преобразование. Они позволяют расширить возможности человека.

С помощью одного сигнала невозможно передать много информации. Поэтому чаще всего используется не одиночный сигнал, а последовательность сигналов, то есть сообщение. Важно понимать, что сообщение – это только «оболочка» для передачи информации, а информация – это содержание сообщения. Приемник должен сам «извлечь» информацию из полученной последовательности сигналов. Можно принять сообщение, но не принять информацию, например, услышав речь на незнакомом языке или перехватив шифровку.

Одна и та же информация может быть передана с помощью разных сообщений, например, через устную речь, с помощью записки или с помощью флажного семафора, который используется на флоте. В то же время одно и то же сообщение может нести разную информацию для разных приемников. Так фраза «В Сантьяго идет дождь», переданная в 1973 году на военных радиочастотах, для сторонников генерала А. Пиночета послужила сигналом к началу государственного переворота в Чили.

Таким образом, информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи ис­пользуются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Передача информации возможна с помощью любого языка кодирования информации, понятного как источнику, так и приёмнику.

Кодирующее устройство – устройство, предназначенное для преобразования исходного сообщения источника информации к виду, удобному для передачи.

Декодирующее устройство – устройство для преобразования кодированного сообщения в исходное.

Пример. При телефонном разговоре: источник сообщения – говорящий человек; кодирующее устройство – микрофон – преобразует звуки слов (акустические волны) в электрические импульсы; канал связи – телефонная сеть (провод); декодирующее устройство – та часть трубки, которую мы подносим к уху, здесь электрические сигналы снова преобразуются в слышимые нами звуки; приёмник информации – слушающий человек.

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: пло­хое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же ка­налам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума. Существует наука, разрабатывающая способы защиты информации – криптология, широко применяющаяся в теории связи.

Клодом Шенноном была разработана специальная теория ко­дирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части ин­формации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это при­ведёт к задержкам и подорожанию связи. Иными словами, чтобы содержание сообщения, искаженного помехами, можно было восстановить, оно должно быть избыточным, то есть, в нем должны быть «лишние» элементы, без которых смысл все равно восстанавливается. Например, в сообщении «Влг впдт в Кспск мр» многие угадают фразу «Волга впадает в Каспийское море», из которой убрали все гласные. Этот пример говорит о том, что естественные языки содержат много «лишнего», их избыточность оценивается в 60-80%.

При обсуждении темы об измерении скорости передачи инфор­мации можно привлечь прием аналогии. Аналог – процесс пере­качки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются техничес­кие линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость пе­редачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др.

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» ана­логии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом дав­лении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный пре­дел скорости передачи данных имеют и технические линии инфор­мационной связи. Причины этому также носят физический характер.

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Канал связи - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Вопрос №3 «Каналы связи. Классификация каналов связи. Параметры каналов связи. Условие передачи сигнала по каналу связи».


Канал связи

Канал связи — система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ.

Канал связи включает следующие компоненты:

  1. передающее устройство;
  2. приемное устройство;
  3. среду передачи различной физической природы (Рис.1) .

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Сигнал необходим в качестве переносчика информации, сам он информации не несет.

Рис.1. Канала связи (вариант №1)

Рис.2 Канал связи (вариант №2)

Т.е. это (канал) — техническое устройство (техника+среда).


Классификация

Классификаций будет приведено ровно три типа. Выбирайте на вкус и цвет:

Классификация №1:

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на:

  • проводные;
  • акустические;
  • оптические;
  • инфракрасные;
  • радиоканалы.

Каналы связи также классифицируют на:

  • непрерывные (на входе и выходе канала – непрерывные сигналы),
  • дискретные или цифровые (на входе и выходе канала – дискретные сигналы),
  • непрерывно-дискретные (на входе канала–непрерывные сигналы, а на выходе–дискретные сигналы),
  • дискретно-непрерывные (на входе канала–дискретные сигналы, а на выходе–непрерывные сигналы).

Каналы могут быть как линейными и нелинейными , временными и пространственно-временными .

Возможна классификация каналов связи по диапазону частот .

Системы передачи информации бывают одноканальные и многоканальные . Тип системы определяется каналом связи. Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Классификация №2 (более подробная) :

  1. Классификация по диапазону используемых частот
  • Километровые (ДВ) 1-10 км, 30-300 кГц;
  • Гектометровые (СВ) 100-1000 м, 300-3000 кГц;
  • Декаметровые (КВ) 10-100 м, 3-30 МГц;
  • Метровые (МВ) 1-10 м, 30-300 МГц;
  • Дециметровые (ДМВ) 10-100 см, 300-3000 МГц;
  • Сантиметровые (СМВ) 1-10 см, 3-30 ГГц;
  • Миллиметровые (ММВ) 1-10 мм, 30-300 ГГц;
  • Децимилимитровые (ДММВ) 0,1-1 мм, 300-3000 ГГц.
    1. По направленности линий связи
      • направленные (используются различные проводники):
  • коаксиальные,
  • витые пары на основе медных проводников,
  • волоконнооптические.
    • ненаправленные (радиолинии);
  • прямой видимости;
  • тропосферные;
  • ионосферные
  • космические;
  • радиорелейные (ретрансляция на дециметровых и более коротких радиоволнах).

    1. По виду передаваемых сообщений:
  • телеграфные;
  • телефонные;
  • передачи данных;
  • факсимильные.
    1. По виду сигналов:
  • аналоговые;
  • цифровые;
  • импульсные.
    1. По виду модуляции (манипуляции)
      • В аналоговых системах связи :
  • с амплитудной модуляцией;
  • с однополосной модуляцией;
  • с частотной модуляцией.
  • В цифровых системах связи :
  • с амплитудной манипуляцией;
  • с частотной манипуляцией;
  • с фазовой манипуляцией;
  • с относительной фазовой манипуляцией;
  • с тональной манипуляцией (единичные элементы манипулируют поднесущим колебанием (тоном), после чего осуществляется манипуляция на более высокой частоте).
    1. По значению базы радиосигнала
  • широкополосные (B>> 1);
  • узкополосные (B»1).

7. По количеству одновременно передаваемых сообщений

  • одноканальные;
  • многоканальные (частотное, временное, кодовое разделение каналов);


8. По направлению обмена сообщений

  • односторонние;
  • двусторонние.
    9. По порядку обмена сообщения
  • симплексная связь — двусторонняя радиосвязь, при которой передача и прием каждой радиостанции осуществляется поочередно;
  • дуплексная связь — передача и прием осуществляется одновременно (наиболее оперативная);
  • полудуплексная связь — относится к симплексной, в которой предусматривается автоматический переход с передачи на прием и возможность переспроса корреспондента.

10. По способам защиты передаваемой информации

  • открытая связь;
  • закрытая связь (засекреченная).

11. По степени автоматизации обмена информацией

  • неавтоматизированные — управление радиостанцией и обмен сообщениями выполняется оператором;
  • автоматизированные — вручную осуществляется только ввод информации;
  • автоматические — процесс обмена сообщениями выполняется между автоматическим устройством и ЭВМ без участия оператора.

Классификация №3 (что-то может повторяться):

1. По назначению

Телефонные

Телеграфные

Телевизионные

- радиовещательные

2. По направлению передачи

- симплексные (передача только в одном направлении)

- полудуплексные (передача поочередно в обоих направлениях)

- дуплексные (передача одновременно в обоих направлениях)

3. По характеру линии связи

Механические

Гидравлические

Акустические

- электрические (проводные)

- радио (беспроводные)

Оптические

4. По характеру сигналов на входе и выходе канала связи

- аналоговые (непрерывные)

- дискретные по времени

- дискретные по уровню сигнала

- цифровые (дискретные и по времени и по уровню)

5. По числу каналов на одну линию связи

Одноканальные

Многоканальные

И еще рисунок сюда:

Рис.3. Классификация линий связи.


Характеристики (параметры) каналов связи

  1. Передаточная функция канала : представляется в виде амплитудно-частотной характеристики (АЧХ) и показывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Нормированная амплитудно-частотная характеристика канала показана на рис.4. Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники. Для экспериментальной проверки амплитудно-частотной характеристики нужно провести тестирование канала эталонными (равными по амплитуде) синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит количество экспериментов должно быть большим.

—- отношение спектра выходного сигнала к входному
— полоса пропускания

Рис.4 Нормированная амплитудно-частотная характеристика канала

  1. Полоса пропускания : является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел, то есть полоса пропускания определяет диапазон частот сигнала, при которых этот сигнал передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи.
  2. Затухание : определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле: , где

— мощность сигнала на выходе канала,

— мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике всегда пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.1 дБ/метр.

  1. Скорость передачи : характеризует количество бит, передаваемых по каналу в единицу времени. Она измеряется в битах в секунду — бит/с , а также производных единицах: Кбит/c, Мбит/c, Гбит/с . Скорость передачи зависит от ширины полосы пропускания канала, уровня шумов, вида кодирования и модуляции.
  2. Помехоустойчивость канала : характеризует его способность обеспечивать передачу сигналов в условиях помех. Помехи принято делить на внутренние (представляет собой тепловые шумы аппаратуры ) и внешние (они многообразны и зависят от среды передачи ). Помехоустойчивость канала зависит от аппаратных и алгоритмических решений по обработке принятого сигнала, которые заложены в приемо-передающее устройство. Помехоустойчивость передачи сигналов через канал может быть повышена за счет кодирования и специальной обработки сигнала.
  3. Динамический диапазон : логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.
  4. Помехозащищенность: это помехозащищенность, т. е. помехозащищенность.


Условие передачи сигналов по каналам связи.

Канал, по сути, это фильтр. Чтобы сигнал прошел через него без искажений, объем этого канала должен быть больше сигнала или равен ему (см. рис).

Математически условие можно записать так: , где

; (1)

В приведенных формулах

– полоса пропускания канала, или полоса частот, которую канал может пропустить при нормированном затухании сигнала;

– динамический диапазон, равный отношению максимально допустимого уровня сигнала в канале к уровню помех, нормированных для этого типов каналов;

– время, в течение которого канал используется для передачи данных;

– ширину спектра частот сигнала, т. е. интервал по шкале частотного спектра, занимаемый сигналом;

– динамический диапазон, равный отношению средней мощности сигнала к средней мощности помехи в канале;

– длительность сигнала, или время его существования.

Другая форма записи условия (развернутая):

P . S .: Параметр «Объем канала» в некоторых источниках так же указывается, как один из параметров канала связи, но не везде. Математическая формула приведена выше в (1).

Литература

1. http://edu.dvgups.ru/METDOC/ENF/BGD/BGD_CHS/METOD/ANDREEV/WEBUMK/frame/1.htm ;

2. http://supervideoman.narod.ru/index.htm .


А также другие работы, которые могут Вас заинтересовать

38305. Земельне право 1.82 MB
Земельне право самостійна галузь права представляє собою сукупність правових норм регулюючих: стосунки по використанню і охороні землі як природного ресурсу; умови і засоби виробництва в цілях організації раціонального використання і охорони землі; поліпшення і відтворення родючості ґрунтів; охорону прав і законних інтересів суб"єктів земельних стосунків. Таким своєрідним предметом земельного права є земельні правовідносини які мають наступні ознаки: поперше випливають із спеціальної правосуб"єктності суб"єктів земельного права із...
38307. Инвестирование. Сущность инвестиций 126.5 KB
Инвестиции представляют собой вложения капитала с целью последующего его увеличения. В коммерческой практике принято различать следующие типы инвестиций: инвестиции в физические активы; инвестиции в денежные активы; инвестиции в нематериальные незримые активы. Инвестиции в ценные бумаги принято называть портфельными инвестициями а инвестиции в физические активы чаще именуют инвестициями в реальные активы. Различают: реальные финансовые и инновационные инвестиции.
38308. Банковское инвестирование и кредитирование 96.56 KB
Инвесторы для получения кредита предоставляют в банк бизнесплан по реализации проекта 3. Вложения средств банком может осуществляться по разным схемам и на разных этапах реализации проекта 4. проекта то есть анализа техникоэкономического обоснования инвестиционного мероприятия предусмотренного проектом.
38310. ИСТОРИЯ МИРОВОЙ ЭКОНОМИКИ 4.37 MB
Хронологический и страновой подходы к изложению материала позволили представить ведущие страны Древности Средневековья Нового и Новейшего времени и отразить основные особенности и тенденции в их экономическом развитии с выявлением факторов обусловивших это развитие. Это вынуждало людей либо увеличивать добычу полезных ископаемых и развивать промышленность внутри страны либо закупать вооружение у других государств. Большую роль в экономическом развитии страны играет социальный фактор социальное положение населения. Чем раньше народ...
38311. История экономической мысли, конспект лекций 2.96 MB
Предмет истории экономической мысли. Предпосылки становления буржуазной экономической мысли. Экономические взгляды Пьера Буагильбера. Дальнейшее исследование противоречий экономики гражданского общества...
38313. Історія світової економіки 519.5 KB
Промисловий переворот в США. Промисловий переворот у США зайняв недовгий час. Промисловий переворот у США проходив пізніше ніж в Англії використавши англійський технічний досвід при цьому значно збагативши його. США знаходились у вигідному географічному положенні далеко від своїх конкурентів.

Рассмотрим каналы, отличающиеся по типу используемых в них линий связи.

1. Механические , в которых для передачи информации используется перемещение каких-либо твердых, жидких или газообразных тел. В первом случае могут использоваться рычаги или тросы (например − органы управления автомобилем), во втором – гидравлические системы (например − тормозная система автомобиля), в третьем – разного рода пневматические устройства (широко используются, например, в газовой промышленности).

2. Акустические . Используют механические колебания звуковой и ультразвуковой частоты, особенно хорошо распространяющиеся в жидких средах. Широко применяются, например, для передачи информации людям или устройствам, находящимся под водой или в другой жидкой среде, а также при проведении медицинских исследований (УЗИ). Акустический канал в газовой среде – едва ли не основной для передачи информации между людьми (речь). Акустические сигналы низкой интенсивности безвредны для здоровья человека.

4. Электрические каналы. Наиболее распространены в настоящее время при передаче информации на малые расстояния. Основа – проводные линии связи.

5. Радиоканалы. Как и оптические, используют для передачи информации электромагнитные волны. Однако намного более низкой частоты. Благодаря способности таких волн огибать препятствия и отражаться от плазменных слоев, окружающих Землю, становится возможным передача информации на большие расстояния, в том числе в масштабе всей Земли. Эти преимущества, однако, являются источником недостатков. Радиоканалы сильно подвержены влиянию помех и менее скрытны. Радиоканал, наряду с оптическим, может использоваться для подключения к компьютерной сети Интернет в районах со слаборазвитой инфраструктурой проводной электросвязи.

Конец работы -

Эта тема принадлежит разделу:

Теория информации и кодирования

Сочинский государственный университет.. туризма и курортного дела.. Факультет информационных технологий и математики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Курс лекций
Эффективная организация обмена информации приобретает все большее значение как условие успешной практической деятельности людей. Объем информации, необходимый для нормального функционирования совре

Определение понятия информация
Слово информация происходит от латинского informare – изображать, составлять понятие о чем-либо, осведомлять. Информация наряду с материей и энергией является первичны

Фазы обращения информации
Система управления состоит из объекта управления, комплекса технических средств, состоящего из компьютера, входящих в его состав устройств ввода-вывода и хранения информации, устройств сбора переда

Некоторые определения
Данные или сигналы, организованные в определенные последовательности, несут информацию не потому, что они повторяют объекты реального мира, а по общественной договоренности о кодировании, т.е. одно

Меры информации
Прежде, чем перейти к мерам информации, укажем, что источники информации и создаваемые ими сообщения разделяются на дискретные и непрерывные. Дискретные сообщения слагаются из конечно

Геометрическая мера
Определение количества информации геометрическим методом сводится к измерению длины линии, площади или объема геометрической модели данного носителя информации или сообщения. По геометрическим разм

Аддитивная мера (мера Хартли)
Аддитивную меру можно рассматривать как более удобную для ряда применений комбинаторную меру. Наши интуитивные представления об информации предполагают, чтобы количество информации увеличивалось пр

Энтропия и ее свойства
Существует несколько видов статистических мер информации. В дальнейшем будем рассматривать только одну их них ─ меру Шеннона. Мера Шеннона количества информации тесно связана с понятие

Энтропия и средняя энтропия простого события
Рассмотрим подробнее понятие энтропии в разных вариантах, так как оно используется в шенноновской теории информации. Энтропия - мера неопределенности некоторого опыта. В простейшем случае его ис

Метод множителей Лагранжа
Если нужно найти экстремум (максимум, минимум или седловую точку) функции n переменных f(x1, x2, …, xn), связанных k

Вывод формулы среднего значения энтропии на букву сообщения
Предположим, имеется сообщение, состоящее из n букв: , где j=1, 2, …, n ─ номера букв в сообщении по порядку, а i1, i2, … ,in номера букв

Энтропия сложного события, состоящего из нескольких зависимых событий
Теперь предположим, что элементы сообщения (буквы) взаимозависимы. В этом случае вероятность появления последовательности из нескольких букв не равна произведению вероятностей появ

Избыточность сообщения
Как отмечалось, энтропия максимальна, если вероятности сообщений или символов, из которых они составлены, одинаковы. Такие сообщения несут максимально возможную информацию. Если же сообщение имеет

Содержательность информации
Мера содержательности обозначается cont (от английского Content ─ содержание). Содержательность события I выражается через функцию меры содержательности его о

Целесообразность информации
Если информация используется в системах управления, то ее полезность разумно оценивать по тому эффекту, который она оказывает на результат управления. В связи с этим в 1960 г. советским ученым А.А.

Динамическая энтропия
Здесь энтропия рассматривается как функция времени. При этом преследуется цель – избавиться от неопределенности, т.е. добиться положения, когда энтропия равна 0. Такая ситуация характерна для задач

Энтропия непрерывных сообщений
Исходные данные часто представляются в виде непрерывных величин, например, температура воздуха или морской воды. Поэтому представляет интерес измерение количества содержащейся в таких сообщениях ин

Первый случай (значения сл. величины ограничены интервалом)
Случайная величина a ограничена интервалом . В этом случае определенный интеграл ее плотности распределения вероятностей (дифференциального закона распределения вероятностей) на

Второй случай (заданы дисперсия и математическое ожидание сл. величины)
Предположим теперь, что область определения значений случайной величины не ограничена, но задана ее дисперсия D и математическое ожидание M. Заметим, что дисперсия прямо пропорциональ

Квантование сигналов
Непрерывные сигналы – носители информации – представляют собой непрерывные функции непрерывного аргумента – времени. Передача таких сигналов может выполняться при помощи непрерывных каналов связи,

Виды дискретизации (квантования)
Наиболее простыми и часто используемыми видами квантования являются: · квантование по уровню (будем говорить просто квантование); · квантование по времени (будем называть

Критерии точности представления квантованного сигнала
В результате обратного преобразования из непрерывно-дискретной формы в непрерывную получается сигнал, отличающийся от исходного на величину ошибки. Сигнал называется воспроизводящей функц

Элементы обобщенной спектральной теории сигналов
Обобщенная спектральная теория сигналов объединяет методы математического описания сигналов и помех. Эти методы позволяют обеспечить требуемую избыточность сигналов с целью уменьшения влияния помех

О практическом использовании теоремы Котельникова
Возможную схему квантования-передачи-восстановления непрерывного сигнала можно представить в виде, изображенном на рис. 2.5. Рис. 2.5. Возможная схема квантования-передачи-

Выбор периода дискретизации (квантования по времени) по критерию наибольшего отклонения
В результате квантования по времени функции x(t) получается ряд значений x(t1), x(t2), … квантуемой величины x(t) в дискретные моменты времени t

Интерполяция при помощи полиномов Лагранжа
Воспроизводящая функция в большинстве случаев рассчитывается по формуле: , где − некоторые функции. Эти функции обычно стремятся выбрать так, чтобы. (2.14) В этом случае,

Оценка максимального значения ошибки при получении воспроизводящей функции на основе полинома Лагранжа
Найдем погрешность интерполяции. Представим ее виде: , (2.16) где K(t) – вспомогательная функция, которую надо найти. Для произвольного t* имеем: (

Обобщение на случай использования полиномов Лагранжа произвольного порядка
Интерполяция полиномами n-го порядка рассматривается аналогично предыдущим случаям. При этом наблюдается значительное усложнение формул. Обобщение приводит к формуле следующего вида:

Выбор интервала дискретизации по критерию среднеквадратического отклонения
Рассмотрим случай дискретизации случайного стационарного эргодического процесса x(t) с известной корреляционной функцией. Восстанавливать будем при помощи полиномов Лагранжа. Наиболее часто

Оптимальное квантование по уровню
Рисунком 2.13 иллюстрируется принцип квантования по уровню. Рис. 2.13. Квантование по уровню. Это квантование сводится к замене значения исходного сигнала уровн

Расчет неравномерной оптимальной в смысле минимума дисперсии ошибки шкалы квантования
Рис. 2.19. Обозначения Зададимся теперь числом шагов квантования n, границами интервала (xmin, xmax

Общие понятия и определения. Цели кодирования
Кодирование − операция отождествления символов или групп символов одного кода с символами или группами символов другого кода. Код (франц. code), совокупность зна

Элементы теории кодирования
Некоторые общие свойства кодов. Рассмотрим на примерах. Предположим, что дискретный источник без памяти, т.е. дающий независимые сообщения – буквы – на выходе, име

Неравенство Крафта
Теорема 1. Если целые числа n1, n2, …, nk удовлетворяют неравенству, (3.1) существует префиксный код с алфавитом объемом m,

Теорема 2.
Формулировка. Пусть задан код с длинами кодовых слов n1, n2, … , nk и с алфавитом объема m. Если код однозначно декодируем, неравенство Крафта удовле

Теорема 3.
Формулировка. При заданной энтропии H источника и объеме m вторичного алфавита существует префиксный код с минимальной средней длиной nср min

Теорема о минимальной средней длине кодового слова при поблочном кодировании (теорема 4)
Рассмотрим теперь случай кодирования не отдельных букв источника, а последовательностей из L букв. Теорема 4. Формулировка. Для данного дискретного источника

Оптимальные неравномерные коды
Определения. Неравномерными называют коды, кодовые слова которых имеют различную длину. Оптимальность можно понимать по-разному, в зависимости о

Лемма 1. О существовании оптимального кода с одинаковой длиной кодовых слов двух наименее вероятных кодируемых букв
Формулировка. Для любого источника с k>=2 буквами существует оптимальный (в смысле минимума средней длины кодового слова) двоичный код, в котором два наименее вероятных сло

Лемма 2. Об оптимальности префиксного кода нередуцированного ансамбля, если префиксный код редуцированного ансамбля оптимален
Формулировка. Если некоторый префиксный код редуцированного ансамбля U"является оптимальным, то соответствующий ему префиксный код исходного ансамбля т



Особенности эффективных кодов
1. Букве первичного алфавита с наименьшей вероятностью появления ставится в соответствие код с наибольшей длиной (лемма 1), т.е. такой код является неравномерным (с разной длиной кодовых слов). В р

Помехоустойчивое кодирование
Как следует из названия, такое кодирование предназначено для устранения вредного влияния помех в каналах передачи информации. Уже сообщалось, что такая передача возможна как в пространстве, так и в

Простейшие модели цифровых каналов связи с помехами
Свойство помехоустойчивых кодов обнаруживать и исправлять ошибки в сильной степени зависит от характеристик помех и канала передачи информации. В теории информации обычно рассматривают две простые

Расчет вероятности искажения кодового слова в ДСМК
Положим, кодовое слово состоит из n двоичных символов. Вероятность неискажения кодового слова, как несложно доказать, равна: . Вероятность искажения одного символа (однокра

Общие принципы использования избыточности
Для простоты рассмотрим блоковый код. С его помощью каждым k разрядам (буквам) входной последовательности ставится в соответствие n-разрядное кодовое слова. Количество разного вида

Граница Хэмминга
Граница Хэмминга Q, определяет максимально возможное количество разрешенных кодовых слов равномерного кода при заданных длине n кодового слова и корректирующей способности кода КСК

Избыточность помехоустойчивых кодов
Одной из характеристик кода является его избыточность. Увеличение избыточности в принципе нежелательно, т.к. увеличивает объемы хранимых и передаваемых данных, однако для борьбы с искажениями избыт

Линейные коды
Рассмотрим класс алгебраических кодов, называемых линейными. Определение: Линейными называют блоковые коды, дополнительные разряды которых образуются

Определение числа добавочных разрядов m
Для определения числа добавочных разрядов можно воспользоваться формулой границы Хэмминга: . При этом можно получить плотноупакованный код, т.е. код с минимальной при заданных пар

Построение образующей матрицы
Линейные коды обладают следующим свойством: из всего множества 2k разрешенных кодовых слов, образующих, кстати, группу, можно выделить подмножества из k слов, обладающих св

Порядок кодирования

Порядок декодирования

Двоичные циклические коды
Вышеприведенная процедура построения линейного кода имеет ряд недостатков. Она неоднозначна (МДР можно задать различным образом) и неудобна в реализации в виде технических устройств. Этих недостатк

Некоторые свойства циклических кодов
Все свойства циклических кодов определяются образующим полиномом. 1. Циклический код, образующий полином которого содержит более одного слагаемого, обнаруживает все одиночные ошибки.

Построение кода с заданной корректирующей способностью
Существует несложная процедура построения кода с заданной корректирующей способностью. Она состоит в следующем: 1. По заданному размеру информационной составляющей кодового слова длиной

Матричное описание циклических кодов
Циклические коды можно, как и любые линейные коды, описывать с помощью матриц. Вспомним, что KC(X) = gm(X)*И(Х) . Вспомним также на примере порядок умножения пол

Выбор образующего полинома
Ясно, что полиномы кодовых слов КС(Х) должны делиться на образующий полином g(X) без остатка. Циклические коды относятся к классу линейных. Это означает, что для этих кодов существует

Пропускная способность каналов связи
Эта тема является одной из центральных в теории информации. В ней рассматриваются предельные возможности каналов связи по передаче информации, определяются характеристики каналов, влияющие на эти в

Пропускная способность дискретного канала связи с шумом
Исследуем теперь пропускную способность дискретного канала связи с шумом. Существует большое количество математических моделей таких каналов. Простейшей из них является канал с независимой

Типичные последовательности и их свойства
Будем рассматривать последовательности статистически независимых букв. Согласно закону больших чисел, наиболее вероятными будут последовательности длиной n, в которых при количества N

Основная теорема Шеннона для дискретного канала с шумом
Формулировка Для дискретного канала в шумом существует такой способ кодирования, при котором может быть обеспечена безошибочная передача все информации, поступающей от источ

Обсуждение основной теоремы Шеннона для канала с шумом
Теорема Шеннона для канала с шумом не указывает на конкретный способ кодирования, обеспечивающий достоверную передачу информации со скоростью, сколь угодно близкой с пропускной способности канала с

Пропускная способность непрерывного канала при наличии аддитивного шума
Рассмотрим следующую модель канала: 1. Канал способен пропускать колебания с частотами ниже Fm. 2. В канале действует помеха n(t), имеющая нормальный (гау

Шаг 2. Ввод текстовых файлов в Excel-таблицу с разбиением каждой строки текста на отдельные символы
При вводе ранее сохраненного текстового файла следует указать тип файла *.*. Это позволит во время выбора видеть в списке все файлы. Укажите свой файл. После этого на экран будет выведено окно М

Шаг 4. Находим среднюю энтропию, приходящуюся на 1 букву сообщения
Как описано в теоретическом введении, средняя энтропия находится по формулам 1 и 2. В обоих случаях нужно найти вероятности появления букв или двухбуквенных комбинаций.. Вероятности можно

Шаг 8. Напишем отчет о выполненной работе с описанием всех вычислений и о том, как они выполнялись. Прокомментируйте результаты
Результаты вычислений представьте в виде таблицы: <Язык 1> <Язык

Подключение возможности использования нестандартных функций
Программное управление приложениями, входящими в состав Microsoft Office, осуществляется при помощи так называемых макросов. Слово Макрос – греческого происхождения. В перево

Создание нестандартной функции
Перед созданием нестандартных функций нужно открыть файл в рабочей книгой, содержащей информацию, которую нужно обработать с применением этих нестандартных функций. Если ранее эта рабочая книга был

Запись голоса и подготовка сигнала
Запись начинается и заканчивается нажатием кнопки Record (рис. 5), помеченной красный кружком. В процессе записи кнопка Recоrd выглядит вдавленной и более светлой (подсвеченной).

Импорт текстовых данных в Excel
Двойным кликом откройте текстовый файл с экспортированные из программы Wavosaur данными (рис. 23). Рис. 23. Примерный вид данных Видно, что экспортированные

Квантование по уровню сводится к замене значения исходного сигнала уровнем того шага, в пределы которого это значение попадает
Квантование по уровню – необходимое условие преобразования непрерывного сигнала в цифровую форму. Однако одного лишь квантования по уровню для этого недостаточно – для преобразования в цифровую фор

Коды Хаффмена
На этом алгоритме построена процедура построения оптимального кода, предложенная в 1952 году доктором Массачусетского технологического института (США) Дэвидэм Хаффменом: 5) буквы перви

Процесс повторяется до тех пор, пока в каждой подгруппе останется по одной букве
Рассмотрим алфавит из восьми букв. Ясно, что при обычном (не учитывающем статистических характеристик) кодировании для представления каждой буквы требуется три символа. Наибольший эффек

Параметры эффективности оптимальных кодов
Таких параметров 2: коэффициент статистического сжатия и коэффициент относительной эффективности. Оба параметра характеризуют степень уменьшения средней длины кодового слова. При этом средняя длина

Особенности эффективных кодов
5. Букве первичного алфавита с наименьшей вероятностью появления ставится в соответствие код с наибольшей длиной (лемма 1), т.е. такой код является неравномерным (с разной длиной кодовых слов). В р

Выполнение работы
Лабораторная работа №4 выполняется под управлением специально написанной управляющей программы. Эта управляющая программа написана на языке Visual Basic 6. Исполняемый файл программы носит и

Построение образующей матрицы
Линейные коды обладают следующим свойством: из всего множества 2k разрешенных кодовых слов можно выделить подмножества из k слов, обладающих свойством линейной независимост

Порядок кодирования
Кодовое слово КС получается путем умножения матрицы информационной последовательности ||X|| на образующую матрицу ||OM||: ||KC1*n|| = ||X

Порядок декодирования
В результате передачи кодового слова через канал оно может быть искажено помехой. Это приведет к тому, что принятое кодовое слово ||ПКС|| может не совпасть с исходным ||КС||.

Выполнение работы
Лабораторная работа №5, как и работа №4, выполняется под управлением управляющей программы, написанной на алгоритмическом языке Visual Basic 6. Исполняемый файл программы носит имя Помехо