Вынесение корня за скобку. Вынесение общего множителя за скобки

17.07.2019

В ходе различных математических операций при работе с уравнениями и равенствами часто появляется возможность значительно упростить все действия путем вынесения некоего общего множителя за пределы самого выражения. Это позволяет не только сократить большие группы многочлена, но и упростить сам процесс решения.

Вынесение множителя позволяет также избавиться от лишних действий и оптимизировать процесс вычислений. В данном видеоуроке мы подробно изучим возможности процедуры вынесения. Например, рассмотрим выражение следующего вида:

Нам необходимо его преобразовать так, чтобы при известных значениях всех переменных было легко вычислить значение всего полинома. Положим, а=1, с=2, х=5. Обратим внимание, что у обоих членов многочлена есть общая часть - множитель-переменная х. Она легко выносится за скобки, согласно распределительному закону умножения:

ах + сх = х(а + с)

Для нахождения правой части данного равенства необходимо поделить каждый одночлен исходного полинома на утвержденный общий множитель (в этом случае - х), частное записать алгебраической суммой в скобках, а сам множитель поставить перед ними. Руководствуясь заданными значениями переменных, получаем:

ах + сх = х(а + с) = 5(1 + 2) = 15

В видеоуроке сделан акцент, что вынесение множителя за скобки в представленном примере, сократило количество действий по расчету с трех до двух. В более сложных упражнениях эффект упрощения может быть ещё более значителен. А многие уравнения без применения метода вынесения множителя вообще очень сложно решить.

В общем, вынесение общего множителя за скобки в полиномах именуется процессом разложения многочлена на отдельные множители. При этом используется следующий алгоритм для обработки данных:

  1. Выделяется рабочая группа выражения (многочлен);
  2. Осуществляется поиск подходящего множителя, на который можно было бы поделить каждый одночлен;
  3. Производится деление мономов на выделенный множитель, при этом результаты записываются вместо одночленов, как алгебраическая сумма;
  4. Получившийся многочлен заключается в скобки, общий множитель ставится перед ними.

При выборе множителя часто возникают проблемы. Во-первых, он должен отвечать максимальному количеству мономов, в идеале - делить все одночлены. Во-вторых, в комплексных задачах необходимо подбирать такой множитель, чтобы он позволял провести решение всего упражнения дальше, облегчая всю процедуру. Как правило, если нет строгого условия извне (в уравнениях, к примеру), то множитель подбирается по принципам: подходящий всем мономам и являющийся наибольшим по степени и коэффициенту при переменной. Иначе говоря, множитель должен включать все переменные, наибольшую возможную степень, а также наибольший кратный числовой коэффициент. Рассмотрим пример:

2х 2 у - 8х 2 у + 4х 2 +4х 3 у 2

Вполне очевидно, что в этом выражении для всех одночленов наиболее приемлемым множителем будет переменная х, взятая во второй степени (максимально допустимой) и с числовым коэффициентом, равным 2, т.е. 2х 2:

2х 2 у - 8х 2 у + 4х 2 +4х 3 у 2 = 2х 2 (у - 4у + 2ху 2) = 2х 2 (2ху 2 - 3у)

Производим действия в скобках, получаем итоговый ответ, представляющий собой произведение многочлена на одночлен-множитель.

Рассмотрим ещё один пример. Необходимо преобразовать выражение вида:

2х(4-у) + х(у-4)

С первого взгляда, тут трудно что-либо вынести за скобки, кроме переменной х, вынесение которой создаст двойные скобки и лишь усложнит многочлен, поэтому данный шаг нецелесообразен. Однако следуя стандартной логике и базовым правилам математического сложения, можно уверенно записать, что:

(у-4) = -(4-у)

Если минус у правого выражения внести внутрь, то все внутренние знаки сменятся на противоположные, образуя выражение, полностью идентичное левой части. Поэтому, корректно будет записать:

2х(4-у) + х(у-4) = 2х(4-у) - х(4- у)

Теперь же оба члена многочлена содержат общий множитель (4- у), который легко вынести за скобки, продолжив дальнейшие вычисления:

2х(4-у) - х(4- у) = (4- у)(2х - х) = (4- у)х = 4х - ух

Последние два этапа расчетов не относятся к общей процедуре вынесения множителя, и являются индивидуальным решением данного примера. Сам процесс вынесения дает нам произведение двух элементарных биномов.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Урок алгебры в 7 классе.

Тема « Вынесение общего множителя за скобки».

Учебник Макарычев Ю.Н., Миндюк Н.Г. и др.

Цели урока:

Образовательная

    выявить уровень овладения учащимися комплекса знаний и умений по применению навыков умножения и деления степеней;

    формировать умение применять разложение многочлена на множители с помощью вынесения общего множителя за скобки;

    применять вынесение общего множителя за скобки при решении уравнений.

Развивающая

    способствовать развитию наблюдательности, умения анализировать, сравнивать, делать выводы;

    развивать навыки самоконтроля при выполнении заданий.

Воспитательная -

    воспитание ответственности, активности, самостоятельности, объективной самооценки.

Тип урока: комбинированный.

Основные результаты обучения:

    уметь выносить общий множитель за скобки;

    уметь применять данный способ при решении упражнений.

Ход урока.

1 модуль (30 мин).

1. Организационный момент.

    приветствие;

    подготовка обучающихся к работе.

2. Проверка домашнего задания.

    Проверка наличия (дежурные), обсуждение возникших вопросов.

3 . Актуализация опорных знаний.

    Н айдите НОД (15,6), (30,60), (24,8), (4,3), (20,55) , (16, 12).

    Что такое НОД?

Как выполняется деление степеней с одинаковыми основаниями?

Как выполняется умножение степеней с одинаковыми основаниями?

Для данных степеней (c 3) 7 ,b 45 ,c 5 , a 21 , a 11 b 7 ,d 5 Назовите степень с наименьшим показателем, одинаковыми основаниями, одинаковыми показателями

Повторим распределительный закон умножения. Запишите его в буквенной форме

а (в + с)= ав + ас

* - знак умножения

Выполнить устные задания на применение распределительного свойства. (Подготовить на доске).

1) 2*(а + в) 4) (х – 6)*5

2) 3*(х – у) 5) -4*(у + 5)

3) а*(4 + х) 6) -2*(в – а)

На закрытой доске записаны задания, ребята решают и записывают на доске результат. Задания на умножения одночлена на многочлен.

Для начала я предлагаю вам пример на умножение одночлена на многочлен:

2 х (х 2 +4 х у – 3)= 2х 3 + 8х 2 у – 6х Не стираем!

Написать правило умножения одночлена на многочлен в виде схемы.

На доске появляется запись:

Я могу написать это свойство в виде:

В таком виде мы уже использовали запись для простого способа вычисления выражений.

а) 23 * 15 + 15 * 77 = (23 + 77) * 15 = 100 * 15 = 1500

Остальные устно, проверить ответы:

е) 55*682 – 45*682 = 6820

ж) 7300*3 + 730*70 = 73000

з) 500*38 – 50*80 = 15000

Какой закон помог вам найти простой способ вычислений? (Распределительный)

Действительно – распределительный закон помогает упрощать выражения.

4 . Постановка цели и темы урока. Устный счет. Отгадайте тему урока.

Работа в парах.

Карточки для пар.

Оказывается, что разложение на множители выражения – это операция, обратная почленному умножению одночлена на многочлен.

Рассмотрим тот же самый пример, который решал учащийся, но в обратном порядке. Разложить на множители – значит вынести за скобки общий множитель.

2 х 3 + 8 х 2 у – 6 х = 2 х (х 2 + 4 ху – 3).

Сегодня на уроке мы рассмотрим понятия разложение многочлена на множители и вынесение общего множителя за скобки, научимся применять эти понятия при выполнении упражнений.

Алгоритм вынесения общего множителя за скобки

    Наибольший общий делитель коэффициентов.

    Одинаковые буквенные переменные.

    Проставить наименьшую степень к вынесенным переменным.

    Затем в скобках записывается оставшиеся одночлены многочлена.

Наибольший общий делитель находили в младших класса, общую переменную в наименьшей степени можно сразу увидеть. А чтобы быстро находить оставшийся в скобках многочлен надо потренироваться по номеру №657.

5. Первичное усвоение с проговариванием вслух.

№657 (1 столбик)

2 модуль (30 мин).

1. Итог первой 30-минутки.

А) Какое преобразование называется разложением многочлена на множители?

Б) На каком свойстве основано вынесение общего множителя за скобки?

В) Как выносится общий множитель за скобки?

2. Первичное закрепление.

На доске записаны выражения. Найти в этих равенствах ошибки, если они имеются и исправить.

1) 2 х 3 – 3 х 2 – х =х (2 х 2 – 3 х).

2) 2 х + 6 = 2 (х + 3).

3) 8 х + 12 у = 4 (2 х - 3у).

4) а 6 – а 2 = а 2 (а 2 – 1).

5) 4 -2а = – 2 (2 – а).

3. Первичная проверка понимания.

Работа с самопроверкой. 2 чел на обратной стороне

Вынесите общий множитель за скобки:

Устно сделать проверку умножением.

4. Подготовка учащихся к обобщенной деятельности.

Выносим многочленный множитель за скобки (объяснение учителя).

Разложите на множители многочлен .

В данном выражении мы видим, присутствует один и тот же множитель , который можно вынести за скобки. Итак, получим:

Выражения и являются противоположными, поэтому в некоторых случаях можно пользоваться данным равенством . Два раза меняем знак! Разложите на множители многочлен

Здесь присутствуют противоположные выражения и , воспользовавшись предыдущим тождеством мы получим следующую запись: .

А теперь мы видим, что общий множитель можно вынести за скобки.

\(5x+xy\) можно представить как \(x(5+y)\). Это и в самом деле одинаковые выражения, мы можем в этом убедиться если раскроем скобки: \(x(5+y)=x \cdot 5+x \cdot y=5x+xy\). Как видите, в результате мы получаем исходное выражение. Значит, \(5x+xy\) действительно равно \(x(5+y)\). Кстати, это надежный способ проверки правильности вынесения общих множителей – раскрыть полученную скобку и сравнить результат с исходным выражением.


Главное правило вынесения за скобку:

К примеру, в выражении \(3ab+5bc-abc\) за скобку можно вынести только \(b\), потому что лишь оно есть во всех трех слагаемых. Процесс вынесения общих множителей за скобку представлен на схеме ниже:

Правила вынесения за скобки

    В математике принято выносить сразу все общие множители.

    Пример: \(3xy-3xz=3x(y-z)\)
    Обратите внимание, здесь мы могли бы разложить и вот так: \(3(xy-xz)\) или так: \(x(3y-3z)\). Однако это были бы неполные разложения. Выносить надо и тройку, и икс.

    Иногда общие члены сразу не видны.

    Пример: \(10x-15y=2·5·x-3·5·y=5(2x-3y)\)
    В этом случае общий член (пятерка) была скрыта. Однако разложив \(10\) как \(2\) умножить на \(5\), а \(15\) как \(3\) умножить на \(5\) – мы «вытащили пятерку на свет Божий», после чего легко смогли вынести ее за скобку.

    Если одночлен выносится полностью – от него остается единица.

    Пример : \(5xy+axy-x=x(5y+ay-1)\)
    Мы за скобку выносим \(x\), а третий одночлен и состоит только из икса. Почему же от него остается единица? Потому что если любое выражение умножить на единицу – оно не изменится. То есть этот самый \(x\) можно представить как \(1\cdot x\). Тогда имеем следующую цепочку преобразований:

    \(5xy+axy-\)\(x\) \(=5xy+axy-\)\(1 \cdot x\) \(=\)\(x\) \((5y+ay-\)\(1\) \()\)

    Более того – это единственно правильный способ вынесения, потому что если мы единицу не оставим, то при раскрытии скобок мы не вернемся к исходному выражению. Действительно, если сделать вынесение вот так \(5xy+axy-x=x(5y+ay)\), то при раскрытии мы получим \(x(5y+ay)=5xy+axy\). Третий член – пропал. Значит, такое вынесение некорректно.

    За скобку можно выносить знак «минус», при этом знаки членов с скобке меняются на противоположные.

    Пример: \(x-y=-(-x+y)=-(y-x)\)
    По сути здесь мы выносим за скобку «минус единицу», которая может быть «выделена» перед любым одночленом, даже если минуса перед ним не было. Мы здесь используем тот факт, что единицу можно записать как \((-1) \cdot (-1)\). Вот тот же пример, расписанный подробно:

    \(x-y=\)
    \(=1·x+(-1)·y=\)
    \(=(-1)·(-1)·x+(-1)·y=\)
    \(=(-1)·((-1)·x+y)=\)
    \(=-(-x+y)=\)
    \(-(y-x)\)

    Скобка тоже может быть общим множителем.

    Пример: \(3m(n-5)+2(n-5)=(n-5)(3m+2)\)
    С такой ситуацией (вынесением за скобку скобки) чаще всего мы сталкиваемся при разложении на множители методом группировки или

Урок алгебры в 7-м классе "Вынесение общего множителя за скобки"

Комарова Галина Александровна

Цель : совершенствование практических умений и навыков учащихся при разложении многочлена множители путем вынесения общего множителя за скобки, применение его при решении уравнений. Провести диагностику усвоения системы знаний и умений и ее применение для выполнения практических заданий стандартного уровня с переходом на более высокий уровень. Развивать умения: применять правила, анализировать, сравнивать, обобщать, выделять главное.

Задачи :

    создать ситуацию успеха на уроке, условия для самостоятельной деятельности учащихся на уроке;

    способствовать пониманию учебного материала урока;

    воспитывать коммуникативность и толерантность в отношениях учащихся между собой.

Тип урока : комбинированный.

Методы: стимулирующие, поисковые, наглядные, практические, словесные, игровые, дифференцированная работа.

Формы проведения: индивидуальные, коллективные, групповые.

Оценка знаний ведется по 5-бальной системе.

Тип урока: обобщение и систематизация знаний с дидактическими играми.

Результаты обучения: Уметь выносить общий множитель за скобки, уметь применять данный способ при разложении на множители, уметь использовать вынесение за скобки общего множителя при решении уравнений.

Ход урока

1. Организационный момент.

Приветствие учащихся.

Когда ученики Пифагора просыпались, они должны были произносить такие стихи:

«Прежде чем встать от сладостных снов, навеваемых ночью,

Думой раскинь, какие дела тебе день приготовил».

2. Разминка - графический тест теоретического материала.

Верно ли утверждение, определение, свойство?

1. Одночленом называют сумму числовых и буквенных множителей. (нет -)

2. Числовой множитель одночлена, записанного в стандартном виде, называют коэффициентом одночлена. (да Λ)

3. Одинаковые или отличающиеся друг от друга только коэффициентами, называют подобными членами. (да Λ)

4. Алгебраическая сумма нескольких одночленов называется одночленом . (нет -)

5. При умножении любого числа или выражения на ноль получается ноль. (да Λ)

6. В результате умножения одночлена на многочлен получается многочлен. (да Λ)

7. Когда раскрываем скобки, перед которыми стоит знак "-”, скобки опускаем, и знаки членов, которые были заключены в скобки, не меняют на противоположные. (нет-)

8.Общий числовой множитель является наибольшим общим делителем коэффициентов одночленов. (да Λ)

9. Из одинаковых буквенных множителей одночленов выносим за скобку его наименьшую степень . (да Λ)

Проверка: ––ΛΛ- ΛΛ-ΛΛ

Выставите себе оценки:

«5» - ошибок нет «4» - две ошибки «3» - четыре ошибки «2» - больше четырех ошибок

3. Актуализация опорных знаний.

    Индивидуальная работа по карточкам №1, №2, №3 (3 учащихся).

    Фронтальная работа с классом:

Задание 1 . Продолжите фразу:

Одним из способов разложения многочлена на множители является… (вынесение общего множителя за скобки );

При вынесении общего множителя за скобки применяется… (распределительное свойство );

Если все члены многочлена содержат общий множитель, то…(этот множитель можно вынести за скобки )

Задание 2 .

    Какой числовой множитель будет общим в следующих выражениях: 12 y 3 -8 y 2 ; 15х 2 - 75х . (4у 2 ; 15х)

    Какую степень множителей а и х можно вынести за скобки

а 2 х- а 5 х 3 + 3а 3 х 2 (а 2 х )

    Сформулировать алгоритм вынесения общего множителя.

Алгоритм:

    Найти НОД для всех коэффициентов одночленов и вынести его за скобку:

2) наименьшую степень:

разделить :

4. Изучение нового материала.

Определи общий множитель в данных выражениях и вынеси его за скобку:

2а+6=

3 хy-3y=

18m-9nm=

x 2 -x 3 +x 6 =

3y+3xy=

(Работа в парах, взаимопроверка )

Используя ключ к шифру, расшифруй слово.

А

Л

Г

У

Т

3y (x -1) или

-3у(-х+1)

9m (2-n )

2(а+3)

X 2 (1-x +x 4)

3(7c 2 -5a 3)

Ответ: Галуа.

Эварист Галуа (1811-1832)

Галуа - гордость французской науки. Будучи еще ребёнком, он прочитал геометрию Лежандра, как увлекательную книгу. К 16 годам дарования Галуа проявились настолько, что выдвинули его в ряд величайших математиков того времени. Научные труды Галуа по теории алгебраических уравнений высших степеней положили начало развитию современной алгебры.

Всего 20 лет прожил гениальный математик, гордость мировой науки, из которых пять посвятил математике. В 2011 году исполняется 200 лет со дня его рождения.

Предлагаю вам решить уравнение, в левой части которого многочлен второй степени.
12x 2 +6 x =0. Вынесем за скобки 3х. Получим.

6х(2х+1)=0 Произведение равно нулю, когда хотя бы 6х=0 или 2х+1=0. один из множителей равен нулю.

х=0:6 2х=-1

х=0 х = -1:2

х=-0,5

и находим х=0 или х= -0,5

Ответ: х 1 =0, х 2 = -0,5

5. Физкультминутка.

Учащимся зачитываются высказывания. Если высказывание верно, то учащиеся должны поднять руки вверх, а если неверно, то присесть и хлопнуть.

7 2 =49 (Да).

30 = 3 (Нет).

Наибольшим общим множителем многочлена 5а-15в является 5 (Да).

5 2 =10 (Нет).

На руках 10 пальцев. На 10 руках 100 пальцев (Нет).

5 0 =1 (Да)

0 делится на все числа без остатка (Да).

вопрос на засыпку 5:0=0

6. Домашнее задание.

I ,II группа

Правило в тетради, № 709(д,е), 718(г,)719(г),

III группа:

Правило в тетради, № 710(а,б),715(в,г)

Дополнительное задание (по желанию)

    Известно, что при некоторых значениях а и b значение выражения а - b равно 3. Чему равно при тех же a и b значение выражения

а) 5а-5b ; б) 12b - 12а; в) (а - b ) 2 ; г) (b -а) 2 ;

7. Закрепление.

    ,II группа решают номер 710(а,в)

    III группа решает номер 709(а,в)

    Придумайте сами уравнение второй степени

    Работа учащихся по заданию карточки № 5-6 у доски и в тетрадях. (диф)

    Найди ошибку

5. Самостоятельная работа.

Учащимся предлагается выполнение самостоятельной работы обучающего характера в виде теста, с последующей самопроверкой, правильные ответы можно расположить на оборотной стороне доски.

6. Подведение итогов урока.

Рефлексия: Кто сегодня у нас работал лучше всех на уроке?

Какую оценку мы им поставим?

Я работал хорошо

Понял, как решать уравнения вынесением

Общего множителя за скобки

Доволен уроком

Нуждаюсь в помощи учителя или консультанта

МЫ А как мы вместе сегодня поработали?

Примеры карточек.

Карточка №1.

    2х-2 y

    5ab+10a

    2a 3 -a 5

    a(x-2)+b(x-2)

    -7xy+y

Карточка №2.

Вынесите общий множитель за скобки:

    5ab-10ac

    4xy-16x 2

    a 2 -4a+3a 5

    0,3a 2 b+0,6ab 2

    x 2 (y-6)-x(y-6)

Карточка №3.

Вынесите общий множитель

за скобки:

    -3x 2 y-12y 2

    5a 2 -10a 3 +15a 5

    6c 2 x 3 -4c 3 x 3 +2x 2 c

    7a 2 b 3 -1,4a 3 b 4 +2,1a 2 b 5

    3a(x-5)+7(5-x)

Карточка №5- 1

    Вынесите общий множитель за скобки:

    3x + 3y;

    5a – 15b;

    8x+12y;

    Реши уравнение

1) 2x² + 5x = 0

Карточка №5-2

1) 10 а – 10 в

2) 3 ху – х 2 у 2

3) 5 у 2 + 15 у 3

2.Реши уравнение

2x² - 9x = 0

Карточка №6

1. Вынесите общий множитель за скобки:

1) 8 а + 8 в.

2) 4 х у + х 3 у 3

3) 3 в у – 6 в.

2.Реши уравнение

2x² +7x = 0

Дополнительные задания

1.Найдите ошибку:

3х (х-3)=3х 2 -6х; 2х+3ху=х(2+у);

2.Вставьте пропущенное выражение:

5х(2х 2 -х)=10х 3 -…; -3ау-12у=-3у (а+…);

3.Вынеси общий множитель за скобки:

5a - 5b; 3x + 6 y; 15a – 25b; 2,4x + 7,2y.

7a + 7b; 8x – 32a; 21a + 28b; 1,25x – 1,75a .

8x – 8y; 7a + 14b; 24x – 32a; 0,01a + 0, 03y.

4.Замените «М» одночленом так, чтобы полученное равенство было верным:

а) М × (а – b ) = 4 ac – 4 bc ;

б) М × (3а – 1) = 12а 3 – 4а 2 ;

в) М × (2а – b ) = 10а 2 – 5а b .

VIII. Фронтальная работа (на внимательность, на усвоение новых правил).

На доске записаны выражения. Найти в этих равенствах ошибки, если они имеются и исправить.

2 х 3 – 3 х 2 – х = х (2 х 2 – 3 х).

2 х + 6 = 2 (х + 3).

8 х + 12 у = 4 (2 х - 3у).

а 6 – а 2 = а 2 (а 2 – 1).

4 -2а = – 2 (2 – а).

Алгоритм:

    Найти НОД для всех коэффициентов одночленов и вынести его за скобку

2) Из одинаковых буквенных множителей одночленов вынести за скобку его наименьшую степень

3) Каждый одночлен многочлена разделить на общий множитель и результат деления записать в скобки

Лист контроля знаний ученика 7 А класса _________________________________________

    1. Графический

диктант

2.шифровка

3.Индивид. Работа по карточкам

4.тест

5.Всего баллов

6.Отметка учителя

ответ


Тест

1.Какую степень множителя а можно вынести за скобки у многочлена

a²x - аx³

а) а б) a² в) a ³

2 х³ -8x²

а) 4 б) 8 в) 2

a²+ab – ac +a

а) а(a+b-c+1) б) a (a+b-c)

в) a 2 (a+b-c+1)

7m³ + 49m²

а) 7m ² (m +7m 2) б) 7m ² (m +7)

в) 7m ² (7m +7)

5.Разложите на множители:

x(x – y) + a(x – y)

а) (x-y)(x+a) б) (y-x)(x+a)

в) (x+a)(x+y)

6. Реши уравнение

6y-(y-1)=2(2y-4)

а) -9 б) 8 в) 9

г) другой ответ

7.Вынеси общий множитель

x(x – y) + a(y- х)

а) (x-y)(x- a) б) (y-x)(x+a)

в) (x+a)(x+y)

Ответы

Тест

1.Какую степень множителя b можно вынести за скобки у многочлена

b² - a³b³

а) b б) b ² в) b ³

2.Какой числовой множитель можно вынести за скобки у многочлена

15a³ - 25a

а) 15 б) 5 в) 25

3.Вынесите за скобки общий множитель всех членов многочлена

x ² - xy + xp – x

а) x (x -y +p -1) б) x (x -y +p )

в) x 2 (x-y+p-1 )

4.Представьте в виде произведения многочлен

9b² - 81b

а) 9b(b-81) б) 9b 2 (b-9)

в) 9b(b-9)

5.Разложите на множители:

a(a + 3) – 2(a +3)

а) (a+3)(a+2) б) (a+3)(a-2)

в) (a-2)(a-3)

6 . Реши уравнение

3x-(12x-x)=4(5-x)

а) -4 б) 4 в) 2

г) другой ответ

7.Вынеси общий множитель

a (a - 3) – 2(3-а)

а) (a -3)(a+2) б) (a+3)(a-2)

в) (a-2)(a-3)

Ответы

Вариант I

    Выполнить действие:

(3х+10у) – (6х+3у)

а) 9х+7у; б) 7у-3х; в) 3х-7у; г) 9х-7у

6х 2 -3х

а) 3х(2х-1); б) 3х(2х-х); в) 3х 2 (2-х); г)3х(2х+1)

3. Привести к стандартному виду многочлен :

Х+5х 2 +4х-х 2

а) 6х 2 +3х; б) 2 +3х; в)4х 2 +5х; г) 6х 2 -3х

4. Выполнить действие:

3х 2 (2х-0,5у)

а)6х 2 -1,5х 2 у; б) 6х 2 -1,5ху; в) 3 -1,5х 2 у ; г) 6х 3 -0,5х 2 у;

5. Решить уравнение:

8х+5(2-х)=13

а) х=3; б) х=-7; в)х=-1; г) х=1;

6. Вынести общий множитель за скобки:

х(х-у)-6у(х-у)

а) (х-у)(х-6у ) ; б) (х-у)(х+6у) ;

в) (х+у)(х-6у) ; г) (х-у)(6у-х) ;

7. Решить уравнение:

Х 2 +8х=0

а) 0 и-8 б) 0и8; в) 8 и -8

Вариант II

    Выполнить действие:

(2а-1)+(3+6а)

а) 8а+3; б) 8а+4; в) 8а+2 ; г) 6а+2

    Вынести общий множитель за скобки:

7а-7в

а) 7(а-в); б) 7(а+в); в)7(в- а); г) а(7-в);

    Привести к стандартному виду многочлен:

4х 2 +3х-5х 2

а) 2 +3х ; б) 9х 2 +3х; в) 2х 2 ; г) –х 2 -3х;

    Выполнить умножение:

4а 2 (а-в)

а)4а 3 -в; б) 4а 3 -4ав; в) 3 -4а 2 в ; г) 4а 2 -4а 2 в;

    Разложить на множители:

а(в-1)-3(в-1)

а) (в-1)(а-3) ; б) (в-1)(а+3) ; в) (в+1)(а-3) ; г) (в-3)(а-1) ;

    Решить уравнение:

4(а-5)+а=5

а) а=1; б) а=-5; в) а=3; г) а=5;

7. Решить уравнение:

6х 2 -30х=0

а) 0 и 5 б) 0 и -5 в) 5 и -5

Галуа

Заходил паренек в сюртучке небогатом,

Чтобы в лавке табак и мадеру купить.

Приглашала любезно, как младшего брата,

Разбитная хозяйка и впредь заходить.

Провожала до двери, вздыхая устало,

Вслед ему разводила руками: «Чудак!

На четыре сантима опять обсчитала,

А четыре сантима теперь не пустяк!

Кто-то мне наболтал, будто видный ученый,

Математик какой-то мосье Галуа.

Как же может открыть мировые законы

Эта вот, с позволенья сказать, голова?!»

Но всходил на мансарду, обманутый ею,

Брал заветный набросок в чердачной пыли

И доказывал вновь с беспощадностью всею,

Что хозяева сытых желудков - нули. (А. Марков

Вариант 1

1 . 4-2х

А. 2(2 + х).В. 4(1 - х).

Б. 2(2-х).Г. 4(1 + х).

2. а 3 в 2 – а 4 в

А. а 4 в(в - а).В. а 3 в(в - а).

Б. а 3 в 2 (1 - а).Г. а 3 в(1 - а).

3. 15х y 2 + 5х y - 20х 2 y

А. 5хy (3y + 1 - 4х).В. 5хy (3y - 4х).

Б. 5х(3y 2 + у - 2х).Г. 5х(3у 2 + у - 4х).

4. а( b +3) +( b + 3).

А. (b + 3) (а + 1).В. (b + 3)а.

Б. (3 + b ) (a - 1).Г. (3 + b )(1-а).

5. х(y - z ) - (z - y ).

А. (х - 1) (y - z ).В. (х - 1) (z - у).

В.(х + 1)(у-z ).Т.(х + 1)(z -у).

6. Реши уравнение

3y - 12 y 2 =0

Разложение многочленов на множители

Вариант 2

1. 6а-3.

А. 3(2а-1).В. 6(а-1).

Б. 3(2а+1).Г. 3(а-1).

2. а 2 b 3 a 3 b 4

А. а 2 b 3 (1 - аb ).В. а 3 (b 3 – b 4).

Б. аb 3 (1 - а 2 b ).Г. b 3 (х 2 - х 3).

3. 12х 2 у - 6ху - 24ху 2 .

А. 6ху(2х - 1 - 4у).В. 6ху(2х - 4у).

Б. 6ху(6х - 1 - 4у).Г. 6ху(2х + 4у + 1).

4. х( y + 5) + ( y +5).

А. (х - 1) (у + 5).В. (х + 1) (у + 5).

Б.(у + 5)х.Г. (х - 1) (5 - у).

5. а(с- b )- (b -с) .

А. (а - 1) (b + с).В. (а - 1) (b - с).

Б. (а + 1) (с - b ).Г. (а + 1) (b - с).

6. Реши уравнение