Характеристика первого поколения эвм. Реферат: Основные характеристики ЭВМ различных поколений

27.01.2019


Электронная вычислительная машина — комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей. Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы. Как правил?, время подготовки задач во много раз превышает время их решения.

По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:

1-е поколение, 50-е гг.: ЭВМ на электронно-вакуумных лампах;

2-е поколение, 60-е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);

3-е поколение, 70-е гг.: ЭВМ на полупроводниковых интегральных микросхемах с малой и средней степенью интеграции (сотни, тысячи транзисторов в одном корпусе);

4-е поколение, 80-е гг.: ЭВМ на больших и сверхбольших интегральных схемах-микропроцессорах (десятки тысяч — миллионы транзисторов в одном кристалле);

5-е поколение, 90-е гг.: ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

6-е и последующие поколения: оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой — с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Каждое следующие поколение ЭВМ имеет по сравнению с предшествующим существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличиваются, как правило, больше чем на порядок.

Разнообразие современных компьютеров очень велико. Но их структуры основаны на общих логических принципах, позволяющих выделить в любом компьютере следующие главные устройства:

    память (запоминающее устройство, ЗУ), состоящую из перенумерованных ячеек;

    процессор, включающий в себя устройство управления (УУ) и арифметико-логическое устройство (АЛУ);

    устройство ввода;

    устройство вывода.

    Эти устройства соединены каналами связи, по которым передается информация.

    Функции памяти:

    приём информации из других устройств;

    запоминание информации;

    – выдача информации по запросу в другие устройства машины.

    Функции процессора:

    обработка данных по заданной программе путем выполнения арифметических и логических операций;

    программное управление работой устройств компьютера.



    Рис. 1. Общая схема компьютера

    Та часть процессора, которая выполняет команды, называется арифметико-логическим устройством (АЛУ), а другая его часть, выполняющая функции управления устройствами, называется устройством управления (УУ).

    Обычно эти два устройства выделяются чисто условно, конструктивно они не разделены.

    В составе процессора имеется ряд специализированных дополнительных ячеек памяти, называемых регистрами. Регистр выполняет функцию кратковременного хранения числа или команды.

    Первым человеком сформулировавшим основные принципы функционирования универсальных вычислительных устройств, т.е. компьютеров, был знаменитый математик Джон фон Нейман.

    Прежде всего, современный компьютер должен иметь следующие устройства:

    арифметическо-логическое устройство, выполняющее арифметические и логические операции;

    устройства управления, которое организует процесс выполнения программ;

  • запоминающее устройство, или память для хранения программ и данных;

    внешние устройства для ввода-вывода информации

    Первые электронные вычислительные машины (ЭВМ) появились всего лишь 50 лет тому назад. За это время микроэлектроника, вычислительная техника и вся индустрия информатики стали одними из основных составляющих мирового научно-технического прогресса. Влияние вычислительной техники на все сферы деятельности человека продолжает расширяться вширь и вглубь. В настоящее время ЭВМ используются не только для выполнения сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.д. Это объясняется тем, что ЭВМ способны обрабатывать любые виды информации: числовую, текстовую, табличную, графическую, видео, звуковую.

    Электронная вычислительная машина — комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей. Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы. Как правило, время подготовки задач во много раз превышает время их решения.

    Требования пользователей к выполнению вычислительных работ удовлетворяются специальным подбором и настройкой технических и программных средств. Обычно эти средства взаимосвязаны и объединяются в одну структуру.

    Структура — совокупность элементов и их связей. Различают структуры технических, программных и аппаратурно-программных средств. Выбирая ЭВМ для решения своих задач, пользователь интересуется функциональными возможностями технических и программных модулей (как быстро может быть решена задача, насколько ЭВМ подходит для решения данного круга задач, какой сервис программ имеется в ЭВМ, возможности диалогового режима, стоимость подготовки и решения задач и т.д.). При этом пользователь интересуется не конкретной технической и программной реализацией отдельных модулей, а более общими вопросами возможности организации вычислений. Последнее включается в понятие архитектуры ЭВМ, содержание которого достаточно обширно.

    Архитектура ЭВМ — это многоуровневая иерархия аппаратурно-программных средств, из которых строится ЭВМ. Каждый из уровней допускает многовариантное построение и применение. Конкретная реализация уровней определяет особенности структурного построения ЭВМ. В последующих разделах учебника эти вопросы подробно рассматриваются.

    Детализацией архитектурного и структурного построения ЭВМ занимаются различные категории специалистов вычислительной техники. Инженеры-схемотехники проектируют отдельные технические устройства и разрабатывают методы их сопряжения друг с другом. Системные программист создают программы управления техническими средствами, информационного взаимодействия между уровнями, организации вычислительного процесса. Программисты-прикладники разрабатывают пакеты программ более высокого уровня, которые обеспечивают взаимодействие пользователей с ЭВМ и необходимый сервис при решении ими своих задач.

    Самого же пользователя интересуют обычно более общие вопросы, касающиеся его взаимодействия с ЭВМ (человеко-машинного интерфейса), начиная со следующих групп характеристик ЭВМ, определяющих ее структуру:

    – технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.);

    – характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств; возможность изменения структуры;

    – состав программного обеспечения ЭВМ и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

    Одной из важнейших характеристик ЭВМ является ее быстродействие, которое характеризуется числом команд, выполняемых ЭВМ за одну секунду. Поскольку в состав команд ЭВМ включаются операции, различные по длительности выполнения и по вероятности их использования, то имеет смысл характеризовать его или средним быстродействием ЭВМ, или предельным (для самых «коротких» операций типа «регистр-регистр»). Современные вычислительные машины имеют очень высокие характеристики по быстродействию, измеряемые десятками и сотнями миллионов операций в секунду. Например, в ближайшее время ожидается появление микропроцессора совместного производства фирм Intel и Hewlett-Packard (шифр Р7), быстродействие которого должно достичь миллиарда операций в секунду.

    Реальное или эффективное быстродействие , обеспечиваемое ЭВМ, значительно ниже, и оно может сильно отличаться в зависимости от класса решаемых задач. Сравнение по быстродействию различных типов ЭВМ, резко отличающихся друг от друга своими характеристиками, не обеспечивает достоверных оценок. Поэтому очень часто вместо характеристики быстродействия используют связанную с ней характеристику производительности -объем работ, осуществляемых ЭВМ в единицу времени. Например, можно определять этот параметр числом задач, выполняемых за определенное время. Однако сравнение по данной характеристике ЭВМ различных типов может вызвать затруднения. Поскольку оценка производительности различных ЭВМ является важной практической задачей, хотя такая постановка вопроса также не вполне корректна, были предложены к использованию относительные характеристики производительности. Так, например, фирма Intel для оценки процессоров предложила тест, получивший название индекс iCOMP (Intel Comparative Microprocessor Performance). При его определении учитываются четыре главных аспекта производительности: работа с целыми числами, с плавающей точкой, графикой и видео. Данные имеют 16- и 32-разрядное представление. Каждый из восьми параметров при вычислении участвует со своим весовым коэффициентом, определяемым по усредненному соотношению между этими операциями в реальных задачах.

    Другой важнейшей характеристикой ЭВМ является емкость запоминающих устройств. Емкость памяти измеряется количеством структурных единиц информации, которое может одновременно находиться в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

    Наименьшей структурной единицей информации является бит — одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения — байтах (байт равен восьми битам). Следующими единицами измерения служат 1 Кбайт = 210 1024 байта, 1 Мбайт = 210Kбaйтa = = 220 байта, 1 Гбайт = 210 Мбайта = 2м Кбайта = 230 байта.

    Обычно отдельно характеризуют емкость оперативной памяти и емкость внешней памяти. В настоящее время персональные ЭВМ могут иметь емкость оперативной памяти, равную 4-32 Мбайтам и даже больше. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

    Емкость внешней памяти зависит от типа носителя. Так, емкость одной дискеты составляет 0,3-3 Мбайта в зависимости от типа дисковода и характеристик дискет. Емкость жесткого диска может достигать нескольких Гбайтов, емкость компакт-диска (CD ROM) — сотни Мбайтов (640 Мбайт и выше) и т.д. Емкость внешней памяти характеризует объем программного обеспечения и отдельных программных продуктов, которые могут устанавливаться в ЭВМ. Например, для установки операционной среды Windows 95 требуется объем памяти жесткого диска более 100 Мбайт и не менее 8-16 Мбайт оперативной памяти ЭВМ.

    Надежность — это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени (стандарт ISO (Международная организация стандартов) 23 82/14-78).

    Высокая надежность ЭВМ закладывается в процессе ее производства. Переход на новую элементную базу — сверхбольшие интегральные схемы (СБИС) резко сокращает число используемых интегральных схем, а значит, и число их соединений друг с другом. Хорошо продуманы компоновка компьютера и обеспечение требуемых режимов работы (охлаждение, защита от пыли). Модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранение неисправностей.

    Точность — возможность различать почти равные значения (стандарт ISO — 2382/2-76). Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

    Во многих применениях ЭВМ не требуется большой точности, например, при обрабатывании текстов и документов, при управлении технологическими процессами. В этом случае достаточно использовать 8-и, 16- разрядные двоичные коды.

    При выполнении сложных расчетов требуется использовать более высокую разрядность (32, 64 и даже более). Поэтому все современные ЭВМ имеют возможность работы с 16- и 32- разрядными машинными словами. С помощью средств программирования языков высокого уровня этот диапазон может быть увеличен в несколько раз, что позволяет достигать очень высокой точности.

    Достоверность — свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратурно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

    2. Графический редактор операционной системы Windows

    Paint – простейший графический редактор, встроенный в операционную систему Windows и предназначенный для создания и редактирования растровых графических изображений в основном формате Windows (BMP) и форматах GIF, JPEG. Он приемлем для создания простейших графических иллюстраций: схем, диаграмм и графиков, которые можно встраивать, например, в текстовые документы. Кроме того, редактор позволяет вводить тексты, используя набор шрифтов Windows.

    Графический редактор Paint ориентирован на процесс «рисования» изображения и комбинирования готовых фрагментов, и не предназначен для серьезных графических работ, например, технического проектирования (деталей, машин, домов), для редактирования фотоиллюстраций и т. д.

    Основные возможности редактора:

    одновременная работа только с одним файлом;

    проведение прямых и кривых линий различной толщины и цвета;

    использование кистей различной формы, ширины и цвета;

    построение различных фигур — прямоугольников, многоугольников, овалов, эллипсов — закрашенных и не закрашенных;

    помещение текста на рисунок;

    использование преобразований — поворотов, отражений, растяжений и наклона.

    Для запуска графического редактора Paint необходимо выполнить: Пуск _
    Программы
    } Стандартные } Графический редактор Paint . После запуска окно графического редактора Paint имеет вид, представленный на 1.

    Элементы окна редактора Paint:

    1 – строка заголовка (имя файла рисунка и затем название редактора);

    2 – строка меню (команды Файл , Правка , Вид , Рисунок , Палитра и Справка) ;



    Рис. 1. Окно графического редактора Paint

    3 — панель инструментов;

    4 — палитру цветов;

    5 — поле выбора ширины линии;

    6 — горизонтальную и вертикальную полосы прокрутки;

    7 — рабочее поле (рабочая область).

    Управлять работой в графическом редакторе Paint можно посредством выбора команд из меню и пиктограмм панели инструментов. Существуют команды, вызываемые или только через меню, или только через панель инструментов.

    Основные действия с рисунком

    Для создания нового рисунка применяют последовательность: Файл _
    Создать . После этого в рабочей области окна появится белый прямоугольник, на фоне которого и работают.

    Для изменения стандартного размера рисунка следует установить курсор в правый нижний угол белого прямоугольника (при этом курсор поменяет свой вид на две диагональные стрелки) и переместить курсор при нажатой левой кнопке мыши на новое место. Другой способ задания размеров рисунка выполняется посредством выбора из пункта меню Рисунок пункта Атрибуты и вводом в поля Ширина и Высота нужных значений. Также есть возможность выбрать Единицы измерения и Тип цветовой палитры (цветная или черно-белая). Следует отметить, что если текущие размеры рисунка превышают новые размеры, то рисунок обрезается по правому и нижнему краю. Если новые размеры больше текущих размеров, то добавленная область получает текущий фоновый цвет.

    Для сохранения рисунка используют последовательность Файл _
    Сохранить (Сохранить как ). При этом необходимо задать имя файла, выбрать тип файла (BMP, JPG или GIF) и каталог для сохранения. Выполнение сохранения производится выбором мышкой действия Сохранить .

    Если рисунок, который ранее находился в рабочей области, не был сохранен, но дана команда закрыть редактор, то будет задан вопрос: Сохранять изменения в файле …? с вариантами ответа Да , Нет и Отмена . Выбор варианта Отмена приведет к отмене команды выхода и возврату к редактированию рисунка.

    Для удаления всего нарисованного с рабочей области используют пункты меню Рисунок _ Очистить .

    Для загрузки рисунка с диска используется последовательность Файл _ Открыть . После чего надо выбрать место расположения файла на диске (каталог), тип файла, и имя файла из списка. Действие подтверждается нажатием кнопки Открыть .

    Панель инструментов

    Для того чтобы рисовать, закрашивать, менять цвет, делать надписи, стирать и т.д. в Paint необходимо выбрать нужный инструмент. Для этого используется панель инструментов (рис. 2). Необходимо щелкнуть на кнопке с нужным инструментом. После этого выбранная кнопка будет находиться в нажатом состоянии, сообщая пользователю о выбранном действии. Курсор мыши также изменит свою форму в зависимости от выбора. Перемещение курсора по рабочей области при нажатой левой кнопке мыши приводит к использованию инструмента и изменению рисунка. При отжатой кнопке мыши происходит просто перемещение курсора (без изменения рисунка).


    Рис. 2. Панель инструментов Paint

    (1) и Выделение (2)– позволяют выделить часть рисунка произвольной формы или весь рисунок для последующего копирования, удаления и т.д.

    Ластик (3)- стирание части рисунка. Можно менять размер ластика. Удаленный участок рисунка будет иметь цвет фона.

    Заливка (4)- позволит закрасить выбранным цветом внутреннюю часть произвольной замкнутой области. Для этого требуется выполнить щелчок в любой точке внутри области. Если область не является замкнутой, то закрасится вся рабочая область.

    Выбор цвета из имеющегося на рисунке (5)– для последующего рисования, например, карандашом или кистью.

    Масштаб (6)– 1, 2, 6 или 8 – кратное увеличение фрагмента рисунка.

    Карандаш (7)- при нажатой левой кнопки мыши за курсором мыши рисуется его след выбранного цвета толщиной 1 пиксель. При отпущенной левой кнопке след не рисуется.

    Кисть (8)- действие похоже на карандаш, но можно менять форму кисти — кружок, квадратик и др. и толщину кисти.

    Распылитель (9)- рисование с использованием эффекта распыления краски.

    Надпись (10)– позволяет набирать текст символами выбранного размера, начертания и гарнитуры в прямоугольном окне с непрозрачным или прозрачным фоном.

    Линия (11)- предназначена для рисования прямой линии (отрезка) выбранного цвета и толщины. Концы отрезка — места, где была нажата и отпущена левая кнопка мыши.

    Кривая (12)- предназначена для рисования гладких кривых линий, соединяющих заданные точки, выбранного цвета и толщины. Сначала проводят прямую линию, затем при нажатой левой кнопке мыши кривую можно дважды изогнуть в выбранных направлениях.

    Прямоугольник (13)- используется для рисования закрашенных и незакрашенных прямоугольников и квадратов. Требуется нажать на левую кнопку мыши, перенести курсор в иную точку и отпустить кнопку. Возможные режимы – «только рамка», «рамка и заполнение», «только заполнение».

    Многоугольник (14)- рисование многоугольников. Для рисования первой стороны требуется перетащить курсор при нажатой кнопке. Для построения следующих сторон можно щелкать мышкой в вершинах многоугольника.

    Эллипс (15)- рисование эллипса, вписанного в намеченный прямоугольник. Можно выбрать режим (см. прямоугольник).

    Скругленный прямоугольник (16)- рисование прямоугольника со скругленными вершинами.

    Редактирование рисунка

    Выбор палитры

    Для выбора цвета можно использовать два способа.

    Во-первых, существует палитра цветов с 28 предлагаемыми цветами (Рис. 3). Для выбора цвета линии и фона следует щелкнуть левой кнопкой мыши над нужным цветом. Для выбора цвета фона щелкают правой кнопкой. Используемые «по умолчанию» основной и фоновый цвета отображаются в левом нижнем углу окна Paint.


    Рис. 3. Цвета «по умолчанию» и палитра цветов

    Во-вторых, можно выбрать инструмент Выбор цвета и щелкнуть им в том месте рабочей области, которая закрашена нужным цветом.

    Для изменения палитры выберите цвет, который следует изменить. В меню Палитра выберите команду Изменить
    палитру . Нажмите кнопку Определить цвет , затем измените значения компонентов цвета, используя модель RGB (красный, зеленый, синий) или HLS (оттенок, контраст, яркость). Нажмите кнопки Добавить в набор и ОК .

    Преобразование цветного рисунка в черно-белый

    Для выполнения указанного действия в меню Рисунок выберите команду Атрибуты , затем выберите параметр палитры «черно-белая». Преобразование рисунка в черно-белый является необратимым. После возвращения к цветной палитре цветными можно будет сделать только новый объект.

    Обращение всех цветов рисунка

    Производится путем выбора в меню Рисунок команды Обратить цвета . Каждый цвет будет заменен на обратный к нему (белый станет черным, желтый – синим и т.д.).

    Вставка текста в рисунок

    Для вставки текста в рисунок используют инструмент Надпись . Для этого требуется щелкнуть мышкой на кнопке в панели инструментов. Щелчок мышью на рисунке приведет к появлению прямоугольника (рамки) для ввода текста в месте щелчка. В месте ввода появится текстовый курсор в виде буквы I. Рамка показывает границы участка рисунка, где будет размещен текст.

    Если текст достаточно длинный, то он может не уместиться в рамке и высота рамки изменится. Это связано с тем, что при вводе происходит автоматический перенос слов на следующую строку при достижении правой границы рамки. В результате текст может быть неправильно расположен. Поэтому часто требуется специально изменять размеры рамки. Для этого необходимо поместить курсор на жирные точки на границе рамки, после чего курсор поменяет свой вид на «две стрелки, направленные в разные стороны». При нажатой левой клавиши мыши можно будет передвинуть границы рамки в заданном направлении.

    Текст на рисунок можно помещать в двух режимах. В первом режиме текст закрашивается выбранным цветом, а цвет его фона совпадает с основным цветом фона (надпись непрозрачная, текст заслоняет рисунок, располагаясь поверх него). Во втором случае текст также закрашивается выбранным цветом, а фон прозрачный (текст размещается поверх рисунка). Для переключения режима на экране появляется специальная панель.

    Для набора текста можно использовать различные шрифты. Шрифт представляет собой набор букв, цифр, символов и знаков пунктуации определенного внешнего вида. Характеристики шрифта: гарнитура (Times New Roman, Arial, Courier и др.), размер и начертание (обычное, полужирное, курсив, подчеркнутый). Для изменения всех атрибутов шрифта можно использовать «панель атрибутов текста» (Рис. 4).

    Рис. 4. Панель атрибутов текста

    Включить и отключить появление панели можно в меню Вид путем выбора команды Панель атрибутов текста. Выбор гарнитуры шрифта, его размера и вида кодировки осуществляется из раскрываемых списков. Изменять шрифт можно до набора и во время набора текста. Для прекращения набора текста можно или щелкнуть мышкой на рисунке или сменить инструмент. После этого менять шрифт для ранее набранного текста нельзя.

    Изменение масштаба, просмотр рисунка

    Инструмент Масштаб служит для увеличения масштаба отображения текущего рисунка. Можно выбрать коэффициент увеличения «1х», «2х», «6х» и «8х» или можно установить появившийся прямоугольник над той областью рисунка, который хотят рассмотреть в увеличенном масштабе, и нажать на левую кнопку мыши. В увеличенном масштабе можно работать с отдельными пикселями, составляющими изображение рисунка. Чтобы восстановить исходный масштаб изображения, выбирают коэффициент «1х».

    При изменении масштаба нужная часть рисунка может пропасть с видимой части рабочего окна Paint, т.к. новый размер рисунка в несколько раз превосходит размер рабочей области. Необходимо прокрутить окно, чтобы рисунок появился в рабочей области. Для этого используются полосы вертикальной и горизонтальной прокрутки соответственно в правой и нижней сторонах рабочей области.

    Также можно изменять масштаб изображения через меню Вид , используя команду Масштаб, Другой . В этом случае коэффициент масштабирования задается в процентах: 100%, 200%, 400%, 600% и 800% .

    При выборе масштаба 400% и более имеется возможность включить сетку для более удобной работы с рисунком. Это осуществляется путем выбора из меню Вид команды Показать сетку.

    В графическом редакторе Paint существует удобный способ для просмотра всего рисунка в обычном масштабе. При этом с экрана исчезнут рамка окна, все панели инструментов, палитра и полосы прокрутки. Будет виден только редактируемый рисунок в обычном масштабе в полноэкранном изображении. В этом режиме можно только просматривать изображение с запретом редактирования. Для просмотра используют последовательность Вид , Просмотреть рисунок . Возврат в режим редактирования щелчок левой кнопкой мыши.

    Работа с фрагментом рисунка

    Инструмент Выделение произвольной области позволяет выделить фрагмент — произвольную область рисунка, ограниченную построенной линией. Для этого требуется активизировать инструмент, а затем при нажатой левой кнопке нарисовать замкнутую область произвольной формы. Если область выбрана неверно, то щелкните курсором в любом месте помимо выделенной области.

    Инструмент Выделение позволяет выделить произвольную прямоугольную область. Для этого надо активизировать инструмент, переместить указатель на то место рабочей области, где будет располагаться один из углов выделяемого фрагмента, нажать левую кнопку мыши и переместить ее в желаемом направлении.

    Существует два режима выделения — прозрачное (из фрагмента исключается цвет фона) и непрозрачное (во фрагменте сохраняется цвет фона). Для выбора режима на экране появляется специальная временная панель.

    Выделенный фрагмент рисунка можно перемещать на другое место, создавать несколько копий фрагмента или передавать его в другое приложение.

    Для перемещения фрагмента на другое место нажимают левую кнопку внутри выделенной области, затем, не отпуская ее, буксируют фрагмент на другое место. Если при этом удерживать нажатой клавишу Ctrl , то будет перенесена копия фрагмента.

    Над фрагментом рисунка можно производить и другие операции: изменять размеры, растягивать, поворачивать, наклонять и отражать с помощью команд меню Рисунок .

    Использование буфера обмена

    Выделенную область можно поместить в буфер через меню Правка . Для этого используют команды Копировать или Вырезать . Также можно поместить фрагмент в файл командой Копировать в файл .

    Для вставки в рисунок готовых фрагментов из буфера обмена или файла используют меню Правка и команды Вставить или Вставить из файла соответственно. При этом вставленный фрагмент первоначально располагается в верхнем левом углу экрана и его требуется перетащить на нужное место мышкой при нажатой левой кнопке.

    Отмена выполненной операции

    Во время редактирования рисунков нельзя изменять уже законченные элементы графического изображения — можно только их удалять, или переносить, или рисовать поверх них.

    Что же делать, если случайно рисунок был испорчен? Можно отменить три последних сделанных изменения рисунка. Для этого используют меню Правка и команду Отменить .

    Если операцию отменили по ошибке, то ее можно восстановить пунктами меню Правка и Восстановить .

    Преобразование рисунка

    С помощью команд меню Рисунок можно отражать, растягивать, сжимать, увеличивать или наклонять выделенные фрагменты рисунка.

    С помощью команды Отразить/повернуть можно отразить выделенный фрагмент относительно вертикальной или горизонтальной оси. Для этого в диалоговом окне есть переключатели Отразить слева направо , Отразить сверху вниз и Повернуть на угол 90, 180 и 270 градусов .

    С помощью команды Растянуть/наклонить можно растянуть или наклонить выделенный фрагмент по вертикали или по горизонтали. Для этого в диалоговом окне есть соответствующие переключатели и поля ввода.

    Предварительный просмотр и печать рисунка

    Рисунок можно напечатать на принтере используя последовательность Файл _ Печать . Из-за различий между разрешающей способностью экрана и принтера, один и тот же рисунок на экране и на бумаге может выглядеть по-разному. Чтобы заранее проверить, как будет выглядеть рисунок в отпечатанном виде, используют меню Файл и команду Предварительный просмотр . Далее с помощью кнопок Крупнее и Мельче можно подобрать подходящий масштаб изображения. Чтобы завершить предварительный просмотр, нажмите на кнопку Закрыть .

    Используя меню Файл и команду Параметры страницы , можно изменить размер страницы, размеры полей, ориентацию рисунка и используемый принтер.

    Копирование («захват») изображения с экрана

    Для копирования в буфер обмена содержимого всего экрана необходимо нажать клавишу Print Screen . Для копирования в буфер обмена содержимого активного окна — нажать одновременно клавиши Alt+Print Screen .

    Для дальнейшей работы с рисунком используйте в меню Правка команду Вставить .

    Задание 2

    Сводка об изменении валютного вклада при ставке баланса 7,0% за период 5 лет, первоначальный вклад 1400 $.

    В финансовый отдел

    Коллекторного агентства

    ООО «Бакр» г. Краснодар

    Носову Т.А.

    Сводка

    на тему: «Сводка об изменении валютного вклада при ставке банка»

    Год

    Первоначальная сумма вклада

    2007

    2008

    2009

    2010

    2011

История зарождения и развития вычислительной техники довольно коротка. Ее принято исчислять с 1833 г., когда английский математик Чарльз Беббидж впервые проникся идеей создания механического "вычислительного помощника", в котором используется принцип программного управления. Потребовалось более 100 лет, чтобы эта идея, обогащенная американским математиком Дж.Вафон ВаНейманом в 1945-1947 гг., положила начало эры ЭВМ, базирующихся на появившихся к тому времени электронных лампах.

Первая быстродействующая ЭВМ ЭНИАК, созданная американскими специалистами в Пенсильванском университете, состояла из 18Ватыс. электронных ламп, потребляла более 100 кВт электроэнергии, весила 30 т и занимала комнату длиной 30 м. Машина была специализированной и предназначалась для решения дифференциальных уравнений в задачах расчета траекторий. С момента создания в 1947Ваг. первой программно-управляемой цифровой ЭВМ начался бурный прогресс вычислительной техники. Следующая ПЭВМ была создана в буквальном смысле в гараже двумя американцами С. Возняком и С. Джобсоном в 1976 г. Она получила название Apple-I. Весной 1977 г. ими же был изготовлен относительно дешевый и вместе с тем вполне законченный персональный компьютер Apple-II. В результате домашняя мастерская превратилась в процветающую фирму Apple Computer, которая продолжительное время занимала достойное место на рынке ПЭВМ.

В начале 80-х гг. в ряды производителей ЭВМ "ились компьютерные гиганты International Business Machine Corp (IBM), DEC и Hewlett-Packard.

Таблица 1.1Справка о смене поколений ЭВМ

Поко-ление Время Элементная база Характеристика
1-е Начало 50-х гг. Электронные лампы ЭВМ отличались большими габаритами, высоким потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах
2-е С конца 50-х гг. Полупроводни-ковые элементы Улучшились все технические характеристики. Для программирования использовались алгоритмические языки
3-е Начало 60-х гг. Интегральные схемы, многослойный печатный монтаж Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности
4-е С сере-дины 70-х гг. Микропроцессоры, большие интегральные схемы (БИС) Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направление развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ
5-е С сере-дины 80-х гг. Разработка интеллектуальных компьютеров Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных технологий

Структура персонального компьютера. Характеристика устройств системного блока компьютера.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.



Устройства системного блока:

Системная (материнская) плата

На материнской плате обычно располагаются следующие устройства:

· процессор - основная микросхема, выполняющая математические и логические операции;

· оперативное запоминающее устройство (ОЗУ) - набор микросхем, предназначенных для временного сохранения данных, пока включен компьютер;

· постоянное запоминающее устройство (ПЗУ) - микросхема, предназначенная для долговременного хранения данных, даже при отключенном компьютере;

· шина - магистраль, по которой происходит обмен сигналами между внутренними устройствами компьютера;

· разъемы для подсоединения дополнительных устройств (слоты) и др.

Процессор

Основная микросхема компьютера, в которой производятся все вычисления.

В состав МП входят:

1. устройство управления (УУ) – формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы;

2. арифметико-логическое устройство (АЛУ) – предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией;

3. регистровая память (МПП)- служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. Эта память состоит из ячеек, которые называются регистрами. Регистры – быстродействующие ячейки памяти различной длины. Обработка информации происходит только в регистрах процессора.

Основными характеристиками процессоров являются: разрядность, тактовая частота, модель (тип).

Разрядность процессора показывает, сколько бит данных он может принять и обрабатывать в своих регистрах за один раз (за один такт). Чем больше это количество, тем больше информации в единицу времени может быть обработано. Разрядность процессора зависит от разрядности регистров его собственной памяти, в которых размещаются обрабатываемые данные, поступившие из внутренней памяти (информация между процессором и внутренней памятью передается целыми машинными словами).

Первые процессоры семейства х86 были 16-разрядными. Современные процессоры семейства Intel Pentium являются 32 и 64-разрядными.

Оперативное запоминающее устройство (ОЗУ)

Это устройство, предназначенное для хранения выполняющихся в текущий момент времени программ, а также данных, необходимых для их выполнения. Это набор микросхем, предназначенных для временного хранения данных, когда компьютер включен. В ОЗУ хранится текущая информация (то есть программа и данные) по решаемой задаче, причем она может как считываться, так и записываться. Зависит от источника питания, содержимое исчезает при его отключении. Объем оперативной памяти влияет на производительность компьютера. Современные программы требуют оперативной памяти сотни мегабайтов.

Постоянное запоминающее устройство (ПЗУ)

ПЗУ предназначено для хранения информации, к которой необходим быстрый доступ, но нет возможности с каждым новым включением загружать ее в ОЗУ. Такая информация записывается в ПЗУ в заводских условиях и в дальнейшем может быть только прочитана.

Кэш-память

Специальная сверхбыстродействующая память небольшого объема (128-512 Кбайт), которая располагается как бы «между» микропроцессором и оперативной памятью и хранит копии наиболее часто используемых участков оперативной памяти. При обращении микропроцессора к памяти сначала производится поиск нужных данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные уже содержатся в кэш-памяти, среднее время доступа к памяти уменьшается.

CMOS-память

Это микросхема памяти для хранения параметров конфигурации компьютера. Эта память выполнена по специальной технологии «CMOS», обладающей низким электропотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера. Микросхема памяти CMOS постоянно питается от небольшой батарейки, расположенной на материнской плате.

Параметры сравнения

Поколения ЭВМ

четвертое

Период времени

Элементная база (для УУ, АЛУ)

Электронные (или электрические) лампы

Полупроводники (транзисторы)

Интегральные схемы

Большие интегральные схемы (БИС)

Основной тип ЭВМ

Малые (мини)

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, сканер, клавиатура

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер

Внешняя память

Магнитные ленты, барабаны, перфоленты, перфокарты

Перфоленты, магнитный диск

Магнитные и оптические диски

Ключевые решения в ПО

Универсальные языки программирования, трансляторы

Пакетные операционные системы, оптимизирующие трансляторы

Интерактивные операционные системы, структурированные языки программирования

Дружественность ПО, сетевые операционные системы

Режим работы ЭВМ

Однопрограммный

Пакетный

Разделения времени

Персональная работа и сетевая обработка данных

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

Таблица - Основные характеристики ЭВМ различных поколений

Поколение

Период, гг

1980-наст. вр.

Элементная база

Вакуумные электронные лампы

Полупроводниковые диоды и транзисторы

Интегральные схемы

Сверхбольшие интегральные схемы

Архитектура

Архитектура фон Неймана

Мультипрограммный режим

Локальные сети ЭВМ, вычислительные системы коллективного пользования

Многопроцессорные системы, персональные компьютеры, глобальные сети

Быстродействие

10 – 20 тыс. оп/с

100-500 тыс. оп/с

Порядка 1 млн. оп/с

Десятки и сотни млн. оп/с

Программное обеспечение

Машинные языки

Операционные системы, алгоритмические языки

Операционные системы, диалоговые системы, системы машинной графики

Пакеты прикладных программ, базы данных и знаний, браузеры

Внешние устройства

Устройства ввода с перфолент и перфокарт,

АЦПУ, телетайпы, НМЛ, НМБ

Видеотерминалы, НЖМД

НГМД, модемы, сканеры, лазерные принтеры

Применение

Расчетные задачи

Инженерные, научные, экономические задачи

АСУ, САПР, научно – технические задачи

Задачи управления, коммуникации, создание АРМ, обработка текстов, мультимедиа

Примеры

ENIAC , UNIVAC (США);
БЭСМ - 1,2, М-1, М-20 (СССР)

IBM 701/709 (США)
БЭСМ-4, М-220, Минск, БЭСМ-6 (СССР)

IBM 360/370, PDP -11/20, Cray -1 (США);
ЕС 1050, 1066,
Эльбрус 1,2 (СССР)

Cray T3 E, SGI (США),
ПК, серверы, рабочие станции различных производителей

На протяжении 50 лет появилось, сменяя друг друга, несколько поколений ЭВМ. Бурное развитие ВТ во всем мире определяется только за счет передовых элементной базы и архитектурных решений.
Так как ЭВМ представляет собой систему, состоящую из технических и программных средств, то под поколением естественно понимать модели ЭВМ, характеризуемые одинаковыми технологическими и программными решениями (элементная база, логическая архитектура, программное обеспечение). Между тем, в ряде случаев оказывается весьма сложным провести классификацию ВТ по поколениям, ибо грань между ними от поколения к поколению становиться все более размытой.
Первое поколение.
Элементная база- электронные лампы и реле; оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках. Надежность - невысокая, требовалась система охлаждения; ЭВМ имели значительные габариты. Быстродействие- 5 - 30 тыс. арифметических оп/с; Программирование - в кодах ЭВМ (машинный код), позднее появились автокоды и ассемблеры. Программированием занимался узкий круг математиков, физиков, инженеров - электронщиков. ЭВМ первого поколения использовались в основном для научно-технических расчетов.

Второе поколение.
Полупроводниковая элементная база. Значительно повышается надежность и производительность, снижаются габариты и потребляемая мощность. Развитие средств ввода/вывода, внешней памяти. Ряд прогрессивных архитектурных решений и дальнейшее развитие технологии программирования- режим разделения времени и режим мультипрограммирования (совмещение работы центрального процессора по обработке данных и каналов ввода/вывода, а также распараллеливания операций выборки команд и данных из памяти)
В рамках второго поколения четко стала проявляться дифференциация ЭВМ на малые, средние и большие. Существенно расширилась сфера применения ЭВМ на решение задач - планово - экономических, управления производственными процессами и др.
Создаются автоматизированные системы управления (АСУ) предприятиями, целыми отраслями и технологическими процессами (АСУТП). Конец 50-х годов характеризуется появлением целого ряда проблемно-ориентированных языков программирования высокого уровня (ЯВУ): FORTRAN, ALGOL-60 и др. Развитие ПО получило в создании библиотек стандартных программ на различных языках программирования и различного назначения, мониторов и диспетчеров для управления режимами работы ЭВМ, планированием ее ресурсов, заложивших концепции операционных систем следующего поколения.

Третье поколение.
Элементная база на интегральных схемах (ИС). Появляются серии моделей ЭВМ программно совместимых снизу вверх и обладающих возрастающими от модели к модели возможностями. Усложнилась логическая архитектура ЭВМ и их периферийное оборудование, что существенно расширило функциональные и вычислительные возможности. Частью ЭВМ становятся операционные системы (ОС). Многие задачи управления памятью, устройствами ввода/вывода и другими ресурсами стали брать на себя ОС или же непосредственно аппаратная часть ЭВМ. Мощным становиться программное обеспечение: появляются системы управления базами данных (СУБД), системы автоматизирования проектных работ (САПРы) различного назначения, совершенствуются АСУ, АСУТП. Большое внимание уделяется созданию пакетов прикладных программ (ППП) различного назначения.
Развиваются языки и системы программирования Примеры: -серия моделей IBM/360, США, серийный выпуск -с 1964г; -ЕС ЭВМ, СССР и страны СЭВ с 1972г.
Четвертое поколение.
Элементной базой становятся большие (БИС) и сверхбольшие (СБИС) интегральные схемы. ЭВМ проектировались уже на эффективное использование программного обеспечения (например, UNIX-подобные ЭВМ, наилучшим образом погружаемые в программную UNIX-среду; Prolog-машины, ориентированные на задачи искусственного интеллекта); современных ЯВУ. Получает мощное развитие телекоммуникационная обработка информации за счет повышения качества каналов связи, использующих спутниковую связь. Создаются национальные и транснациональные информационно-вычислительные сети, которые позволяют говорить о начале компьютеризации человеческого общества в целом.
Дальнейшая интеллектуализация ВТ определяется созданием более развитых интерфейсов "человек-ЭВМ", баз знаний, экспертных систем, систем параллельного программирования и др.
Элементная база позволила достичь больших успехов в минитюаризации, повышении надежности и производительности ЭВМ. Появились микро- и мини-ЭВМ, превосходящие по возможностям средние и большие ЭВМ предыдущего поколения при значительно меньшей стоимости. Технология производства процессоров на базе СБИС ускорила темпы выпуска ЭВМ и позволила внедрить компьютеры в широкие массы общества. С появление универсального процессора на одном кристалле (микропроцессор Intel-4004,1971г) началась эра ПК.
Первым ПК можно считать Altair-8800, созданным на базе Intel-8080, в 1974г. Э.Робертсом. П.Аллен и У.Гейтс создали транслятор с популярного языка Basic, существенно увеличив интеллектуальность первого ПК (впоследствии основали знаменитую компанию Microsoft Inc). Лицо 4-го поколения в значительной мере определяется и созданием супер-ЭВМ, характеризующихся высокой производительностью (среднее быстродействие 50 - 130 мегафлопсов. 1 мегафлопс= 1млн. операций в секунду с плавающей точкой) и нетрадиционной архитектурой (принцип распараллеливания на основе конвейерной обработки команд). Супер-ЭВМ используются при решении задач математической физики, космологии и астрономии, моделировании сложных систем и др. Так как важную коммутирующую роль в сетях играют и будут играть мощные ЭВМ, то сетевая проблематика часто обсуждается совместно с вопросами по супер-ЭВМ Среди отечественных разработок супер-ЭВМ можно назвать машины серии Эльбрус, вычислительные системы пс-2000 и ПС-3000, содержащие до 64 процессоров, управляемых общим потоком команд, быстродействие на ряде задач достигалось порядка 200 мегафлопсов. Вместе с тем, учитывая сложность разработки и реализации проектов современных супер-ЭВМ, требующих интенсивных фундаментальных исследований в области вычислительных наук, электронных технологий, высокой культуры производства, серьезных финансовых затрат, представляется весьма маловероятным создание в обозримом будущем отечественных супер-ЭВМ, по основным характеристикам не уступающим лучшим зарубежным моделям.
Следует заметить, при переходе на ИС-технологию производства ЭВМ определяющий акцент поколений все более смещается с элементной базы на другие показатели: логическая архитектура, программное обеспечение, интерфейс с пользователем, сферы приложения и т.д.
Пятое поколение.
Зарождается в недрах четвертого поколения и в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости, вполне обеспечиваемые СБИС и др. новейшими технологиями, должны удовлетворять следующим качественно новым функциональным требованиям:

· обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом; диалоговой обработки информации с использованием естественных языков; возможности обучаемости, ассоциативных построений и логических выводов;

· упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках

· улучшить основные характеристики и эксплуатационные качества ВТ для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ; обеспечить их разнообразие, высокую адаптируемость к приложениям и надежность в эксплуатации.

Учитывая сложность реализации поставленных перед пятым поколением задач, вполне возможно разбиение его на более обозримые и лучше ощущаемые этапы, первый из которых во многом реализован в рамках настоящего четвертого поколения.

Лекция 1

Основные характеристики и области применения ЭВМ различных классов

Определение ЭВМ

Определение. ЭВМ (электронно-вычислительная машина) - это комплекс технических и программных средств, предназначенные для автоматизации подготовки и решения задач пользователей.

Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ.

Определение. Архитектура ЭВМ - это многоуровневая иерархия аппаратно-программных средств, из которых строится ЭВМ. Каждый из уровней допускает многовариантное построение и применение.

Обобщенная структура ЭВМ

На рис. 1 приведена обобщенная структурная схема ЭВМ.

Рис. 1. Обобщенная структурная схема ЭВМ.

Этапы вычислений:

1. Определение и задание порядка вычислений.

2. Задание исходных данных.

3. Выполнение вычислений (для получения промежуточных результатов).

4. Получение конечного результата.

В основе функционирования любой ЭВМ лежат два фундаментальных понятия в вычислительной технике:

1. Понятие алгоритма.

2. Принцип программного управления.

Определение. Алгоритм – некоторая однозначно определенная последовательность действий, состоящая из формально заданных операций над исходными данными, приводящая к решению за определенное число шагов.

Свойства алгоритмов:

1. Дискретность алгоритма (действия выполняются по шагам, а сама информация дискретна).

2. Детерминированность (сколько бы раз один и тот же алгоритм не реализовывался для одних и тех же данных – результат один и тот же).

3. Массовость (алгоритм «решает задачу» для различных исходных данных из допустимого множества и дает всегда правильный результат).

Программа. Описание алгоритма на каком-либо языке.

Принцип программного управления был впервые сформулирован венгерским математиком и физиком Джоном фон Нейманом в 1946 году.

Принцип программного управления включает в себя несколько архитектурно-функциональных принципов:

1. Любой алгоритм представляется в виде некоторой последовательности управляющих слов – команд. Каждая отдельная команда определяет простой (единичный) шаг преобразования информации.

2. Принцип условного перехода. В процессе вычислений в зависимости от полученных промежуточных результатов возможен автоматический переход на тот или иной участок программы.

3. Принцип хранимой команды. Команды в ЭВМ представляются в такой же кодируемой форме, как и любые данные и хранятся в таком же оперативном запоминающем устройстве. Это означает, что если рассматривать содержимое памяти, то без какой-либо команды невозможно различить данные и команды. Следовательно, любые команды можно принципиально обрабатывать как данные (информация в ЭВМ отличается не представлением, а способом ее использования).

4. Принцип двоичного кодирования.

5. Принцип иерархии запоминающих устройств.

Поколения ЭВМ

В течение всего периода эволюции компьютерных систем прослеживается тенденция к повышению скорости обработки информации процессором, уменьшение физических размеров компонентов, росту объема памяти и повышению пропускной способности каналов ввода-вывода.

Не отрицая того факта, что одной из причин повышения производительности процессоров явился прогресс в области микроэлектроники, в частности миниатюризация электронных компонентов, все же отметим, что не меньшее, если не большее, влияние на этот процесс, особенно в последние годы, оказали новые идеи в отношении структурной организации процессора, в частности широкое использование принципов конвейерной и параллельной обработки и внедрение технологии предпочтительного выбора направления ветвления программы, т.е. выполнение условных переходов на основании прогнозных оценок еще до формирования условий перехода. Все эти идеи преследуют одну цель – максимально сократить время простоя процессора.

Важнейшей проблемой, с которой сталкивается любой конструктор компьютерных систем, является достижение баланса характеристик производительности отдельных компонентов системы, т.е. такой подбор компонентов, при котором ни один компонент не простаивает, дожидаясь, пока за ним «поспеют» другие. В частности, производительность процессора растет быстрее, чем быстродействие оперативной памяти. Конструктор имеет в своем арсенале множество методов, позволяющих свести на нет отрицательный эффект такого несоответствия, включая использование промежуточной кэш-памяти, расширение пропускной способности магистрали между процессором и памятью, применение элементов памяти с более сложной логической организацией.

Изложение материала начнем с краткого экскурса в историю развития вычислительной техники. Помимо познавательного интереса имеется еще и практический интерес к истории. Мы попытаемся, рассматривая процесс эволюции компьютерных систем, проследить за тем, как по мере совершенствования элементной базы менялись взгляды на структурную организацию и архитектуру ЭВМ.

Первые ЭВМ появились немногим более 50 лет назад. В соответствии с элементной базой и уровнем развития программных средств выделяют четыре поколения ЭВМ, краткая характеристика которых приведена в таблице:

Параметры сравнения

Поколения ЭВМ

четвертое

Период времени

Элементная база (для УУ, АЛУ)

Электронные (или электрические) лампы

Полупроводники (транзисторы)

Интегральные схемы

Большие интегральные схемы (БИС)

Основной тип ЭВМ

Малые (мини)

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, сканер, клавиатура

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер

Внешняя память

Магнитные ленты, барабаны, перфоленты, перфокарты

Перфоленты, магнитный диск

Магнитные и оптические диски

Ключевые решения в ПО

Универсальные языки программирования, трансляторы

Пакетные операционные системы, оптимизирующие трансляторы

Интерактивные операционные системы, структурированные языки программирования

Дружественность ПО, сетевые операционные системы

Режим работы ЭВМ

Однопрограммный

Пакетный

Разделения времени

Персональная работа и сетевая обработка данных

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

ЭВМ 1-го поколения

ЭВМ первого поколения обладали небольшим быстродействием в несколько десятков тыс. оп./сек. Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение.

Языков программирования как таковых еще не было, и для кодирования своих алгоритмов программисты использовали машинные команды или ассемблеры. Это усложняло и затягивало процесс программирования. К концу 50-х годов средства программирования претерпевают принципиальные изменения: осуществляется переход к автоматизации программирования с помощью универсальных языков и библиотек стандартных программ.

ЭВМ 2-го поколения

Второе поколение ЭВМ – это переход к транзисторной элементной базе, появление первых мини-ЭВМ. Один транзистор уже способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а магнитную ленту начали использовать как для ввода, так и для вывода информации. В середине 60-х годов получило распространение хранение информации на дисках.

Получает дальнейшее развитие принцип автономии – он реализуется уже на уровне отдельных устройств, что выражается в их модульной структуре. Устройства ввода-вывода снабжаются собственными устройствами управления (УУ) (называемыми контроллерами), что позволило освободить центральное УУ от управления операциями ввода-вывода. В ЭВМ 2-го поколения добавился алфавитно-цифровой дисплей, появилась клавиатура.

Принципиальным изменением в структуре ЭВМ стало добавление аппаратного блока обработки чисел в формате с плавающей запятой.

Начинается разработка программного обеспечения на базе библиотек стандартных программ, обладающих свойством переносимости, т.е. функционирования на ЭВМ разных марок. Наиболее часто используемые программные средства выделяются в пакеты прикладных программ для решения задач определенного класса. Создаются специальные программные средства - системное программное обеспечение, изначально предназначенное для ускорения и упрощения перехода процессором от одной задачи к другой.

ЭВМ 3-го поколения

В 70-х годах возникают и развиваются ЭВМ третьего поколения. Данный этап - переход к интегральной элементной базе. Одна интегральная схема способна заменить тысячи транзисторов. В результате быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.

ЭВМ этого поколения создавались на основе принципа унификации, что позволило использовать вычислительные комплексы в различных сферах деятельности.

Расширение функциональных возможностей ЭВМ увеличило сферу их применения, что вызвало рост объема обрабатываемой информации и поставило задачу хранения данных в специальных базах данных и их ведения. Так появились первые системы управления базами данных – СУБД.

Изменились формы использования ЭВМ: введение удаленных терминалов (дисплеев) позволило широко и эффективно внедрить режим разделения времени и за счет этого приблизить ЭВМ к пользователю и расширить круг решаемых задач.

Обеспечить режим разделения времени позволил новый вид операционных систем, поддерживающих многозадачность - способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ. Пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при последовательном выполнении программ (однопрограммный режим), а выполняет другую программу (многопрограммный режим).

В развитии отечественной вычислительной техники особое место занимает машина БЭСМ-6. Машина вступила в строй в 1967 г. Ее быстродействие - около 1 млн. операций/сек. Здесь впервые в отечественной практике и независимо от зарубежных разработок был применен принцип конвейерного выполнения команд. На БЭСМ-6

Рис. 2. ЭВМ БЭСМ-6

ЭВМ 4-го поколения

В конце 70-х годов развитие микроэлектроники привело к созданию возможности размещать на одном кристалле тысячи интегральных схем. Так появились большие интегральные схемы и 4-е поколение ЭВМ, для которого характерны создание серий недорогих микро-ЭВМ, разработка супер-ЭВМ для высокопроизводительных вычислений.

Наиболее значительным стало появление персональных ЭВМ, что позволило приблизить ЭВМ к своему конечному пользователю. Компьютеры стали широко использоваться неспециалистами, что потребовало разработки "дружественного" программного обеспечения. Возникают операционные системы, поддерживающие графический интерфейс, интеллектуальные пакеты прикладных программ. В связи с возросшим спросом на ПО совершенствуются технологии его разработки – появляются развитые системы программирования, инструментальные среды пользователя.

В середине 80-х стали бурно развиваться сети персональных компьютеров, работающие под управлением сетевых или распределенных ОС.

Основные характеристики ЭВМ

Каждая ЭВМ имеет свои технические и эксплуатационные характеристики: быстродействие, производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.

Быстродействие - одна из важнейших характеристик ЭВМ, которая характеризуется числом команд, выполняемых ЭВМ за одну секунду. Поскольку в состав команд ЭВМ включаются операции, различные по длительности выполнения и по вероятности их использования, то имеет смысл характеризовать его или средним быстродействием ЭВМ, или предельным (для самых “коротких” операций типа “регистр-регистр”). Современные вычислительные машины имеют очень высокие характеристики по быстродействию, измеряемые миллиардами операций в секунду.

Производительность - объем работ, осуществляемых ЭВМ в единицу времени. Реальное или эффективное быстродействие, обеспечиваемое ЭВМ, значительно ниже, и оно может сильно отличаться в зависимости от класса решаемых задач. Сравнение по быстродействию различных типов ЭВМ, резко отличающихся друг от друга своими характеристиками, не обеспечивает достоверных оценок. Поэтому очень часто вместо характеристики быстродействия используют связанную с ней характеристику производительности. Например, можно определять этот параметр числом задач, выполняемых за определенное время. Однако сравнение по данной характеристике ЭВМ различных типов может вызвать затруднения. Поскольку оценка производительности различных ЭВМ является важной практической задачей, были предложены к использованию относительные характеристики производительности, рассчитываемые на основе тестов: наборов типовых задач по работе с целыми числами, с плавающей точкой, графикой, видео. Результаты одного из таких тестов приведены на рис. 1.


Рис. 1. Сравнение процессоров на основе теста SiSoftSandra

Емкость запоминающих устройств - измеряется количеством структурных единиц информации, которое может одновременно находиться в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти. Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (восемь бит). Следующими единицами измерения служат 1 Кбайт = 1024 байта, 1 Мбайт = 1024 Кбaйтa, и т.д. 1 Мбайт, 1 Гбайт. При этом отдельно характеризуют емкость собственной памяти процессора (кэш-память), оперативной памяти и емкость внешней памяти.

Надежность - это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени. Высокая надежность ЭВМ закладывается в процессе ее производства. Переход на новую элементную базу - сверхбольшие интегральные схемы (СБИС) резко сокращает число используемых интегральных схем, а значит, и число их соединений друг с другом. В современных ЭВМ хорошо продуманы компоновка компьютера и обеспечение требуемых режимов работы (охлаждение, защита от пыли), модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранение неисправностей.

Точность - возможность различать почти равные значения. Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом (2 байта), двойным словом и т.п.). Во многих применениях ЭВМ не требуется большой точности, например, при обрабатывании текстов и документов, при управлении технологическими процессами. В этом случае достаточно использовать 8-и, 16- разрядные двоичные коды. При выполнении сложных расчетов требуется использовать более высокую разрядность (32, 64 и даже более). Поэтому все современные ЭВМ имеют возможность работы с 16- и 32- разрядными машинными словами. С помощью средств программирования языков высокого уровня этот диапазон может быть увеличен в несколько раз, что позволяет достигать еще большей точности.

Основные области применения ЭВМ различных классов

В соответствии с Законом Мура основные характеристики компьютеров улучшаются приблизительно в 2 раза каждые 2 года. В этих условиях любая предложенная классификация ЭВМ очень быстро устаревает и нуждается в корректировке. Например, в классификациях десятилетней давности широко использовались названия мини-, миди- и микроЭВМ, которые почти исчезли из обихода.

Существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ:

1. Применение ЭВМ для автоматизации вычислений. Научно-техническая революция во всех областях науки и техники постоянно выдвигает новые научные, инженерные, экономические задачи, которые требуют проведения крупномасштабных вычислений (задачи проектирования новых образцов техники, моделирования сложных процессов, атомная и космическая техника и др.). Отличительной особенностью этого направления является наличие хорошей математической основы, заложенной развитием математических наук и их приложений. Первые, а затем и последующие вычислительные машины классической структуры в первую очередь и создавались для автоматизации вычислений.

Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто математических расчетов постоянно сокращалась, и в настоящее время она составляет около 10% от всех вычислительных работ. Машины все больше стали использоваться для новых видов обработки: текстов, графики, звука и др.

2. Применение ЭВМ в системах управления. Это направление родилось примерно в 60-е годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Новое применение вычислительных машин потребовало видоизменения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки. Сопряжение с каналами связи потребовало усложнения режимов работы ЭВМ, сделало их многопрограммными и многопользовательскими.

3. Применение ЭВМ для решения задач искусственного интеллекта. Напомним, что задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много: задачи робототехники, доказательства теорем, машинного перевода текстов, планирования с учетом неполной информации, составления прогнозов, моделирования сложных процессов и явлений и т.д. Это направление все больше набирает силу. Во многих областях науки и техники создаются и совершенствуются базы данных и базы знаний, экспертные системы. Для технического обеспечения этого направления нужны качественно новые структуры ЭВМ с большим количеством вычислителей (ЭВМ или процессорных элементов), обеспечивающих параллелизм в вычислениях. По существу, ЭВМ уступают место сложнейшим вычислительным системам.

Уже это небольшое перечисление областей применения ЭВМ показывает, что для решения различных задач нужна соответственно и различная вычислительная техника. Поэтому рынок компьютеров постоянно имеет широкую градацию классов и моделей ЭВМ.

Классификация вычислительных систем

Супер ЭВМ

С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объемов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. В этом случае ЭВМ позволяет методами численного моделирования получить результаты вычислительных экспериментов, обеспечивая приемлемое время и точность решения, т.е. решающим условием необходимости разработки и применения подобных ЭВМ является экономический показатель “производительность/стоимость”. Дальнейшее развитие суперЭВМ связывается с использованием направления массового параллелизма, при котором одновременно могут работать сотни и даже тысячи процессоров.

Большие ЭВМ (mainframe)

Данные ЭВМ представляют собой многопользовательские машины с центральной обработкой, с большими возможностями для работы с базами данных, с различными формами удаленного доступа. Казалось, что с появлением быстропрогрессирующих персональных ЭВМ большие ЭВМ обречены на вымирание. Однако, они продолжают развиваться и выпуск их снова стал увеличиваться, хотя их доля в общем парке постоянно снижается. По оценкам IBМ, около половины всего объема данных в информационных системах мира должно храниться именно на больших машинах. Новое их поколение предназначено для использования в сетях в качестве крупных серверов. Большими ЭВМ комплектуются ведомственные, территориальные и региональные вычислительные центры. В России основными потребителями являются государственные организации и крупные компании федерального уровня, такие, как РЖД (система резервирования мест и продажи билетов) или АвтоВАЗ. В свое время мейнфреймы были единственной вычислительной платформой, способной обслуживать предприятия такого масштаба, и эта платформа активно развивалась. За рубежом мейнфрейм считается классическим решением для определенного круга задач, например, в финансовой сфере.

Средние ЭВМ

Средние ЭВМ используются для управления сложными технологическими производственными процессами, ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов, рабочих станций для работы с графикой. Существуют специальные ЭВМ, предназначенные в первую очередь для работы в финансовых структурах. В этих машинах особое внимание уделяется сохранности и безопасности данных.

Персональные ЭВМ

Персональные и профессиональные ЭВМ, позволяют удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ также строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня.

Встраиваемые микропроцессоры

Эти устройства, универсальные по характеру применения, могут встраиваться в отдельные машины, объекты, системы. Они находят все большее применение в бытовой технике (сотовых телефонах, телевизорах, музыкальных центрах, микроволновых печах и т.д.), в городском хозяйстве (энерго-, тепло- , водоснабжении, регулировке движения транспорта и т.д.), на производстве (робототехнике, управлении технологическими процессами).