Файлы матлаб. Основы работы с MATLAB

05.04.2019

Работа из командной строки MatLab затруднена, если требуется вводить много команд и часто их изменять. Ведение дневника при помощи команды diary и сохранение рабочей среды лишь незначительно облегчает работу. Самым удобным способом выполнения команд MatLab является использование М-файлов, в которых можно набирать команды, выполнять их все сразу или частями, сохранять в файле и использовать в дальнейшем. Для работы с М-файлами предназначен редактор М-файлов. При помощи этого редактора можно создавать собственные функции и вызывать их, в том числе и из командной строки.

Раскройте меню File основного окна MatLab и в пункте New выберите подпункт M-file . Новый файл открывается в окне редактора М-файлов.

Наберите в редакторе команды, приводящие к построению двух графиков в одном графическом окне:

x = ;
f = exp(-x);
subplot(1, 2, 1)
plot(x, f)
g = sin(x);
subplot(1, 2, 2)
plot(x, g)

Сохраните теперь файл с именем mydemo.m в подкаталоге work основного каталога MatLab, выбрав пункт Save as меню File редактора. Для запуска на выполнение всех команд, содержащихся в файле, следует выбрать пункт Run в меню Debug. На экране появится графическое окно Figure No.1, содержащее графики функций. Если Вы решили построить график косинуса вместо синуса, то просто измените строку g = sin(x) в М-файле на g = cos(x) и запустите все команды снова.

Замечание 1

Если при наборе сделана ошибка и MatLab не может распознать команду, то происходит выполнение команд до неправильно введенной, после чего выводится сообщение об ошибке в командное окно.

Очень удобной возможностью, предоставляемой редактором М-файлов, является выполнение части команд. Закройте графическое окно Figure No.1. Выделите при помощи мыши, удерживая левую кнопку, или клавишами со стрелками при нажатой клавише , первые четыре команды программы и выполните их из пункта Evaluate Selection меню Text . Обратите внимание, что в графическое окно вывелся только один график, соответствующий выполненным командам. Запомните, что для выполнения части команд их следует выделить и нажать . Выполните оставшиеся три команды программы и проследите за состоянием графического окна. Потренируйтесь самостоятельно, наберите какие-либо примеры из предыдущих лабораторных работ в редакторе М-файлов и запустите их.

Отдельные блоки М-файла можно снабжать комментариями, которые пропускаются при выполнении, но удобны при работе с М-файлом. Комментарии в MatLab начинаются со знака процента и автоматически выделяются зеленым цветом, например:

%построение графика sin(x) в отдельном окне

В редакторе М-файлов может быть одновременно открыто несколько файлов. Переход между файлами осуществляется при помощи закладок с именами файлов, расположенных внизу окна редактора.

Открытие существующего М-файла производится при помощи пункта Open меню File рабочей среды, либо редактора М-файлов. Открыть файл в редакторе можно и командой MatLab edit из командной строки, указав в качестве аргумента имя файла, например:

Команда edit без аргумента приводит к созданию нового файла.
Все примеры, которые встречаются в этой и следующих лабораторных работах, лучше всего набирать и сохранять в М-файлах, дополняя их комментариями, и выполнять из редактора М-файлов. Применение численных методов и программирование в MatLab требует создания М-файлов.

2. Типы М-файлов

М-файлы в MatLab бывают двух типов: файл-программы (Script M-Files), содержащие последовательность команд, и файл-функции (Function M-Files), в которых описываются функции, определяемые пользователем.

Файл-программу (файл-процедуру) Вы создали при прочтении предыдущего подраздела. Все переменные, объявленные в файл-программе, становятся доступными в рабочей среде после ее выполнения. Выполните в редакторе М?файлов файл-программу, приведенную в подразделе 2.1, и наберите команду whos в командной строке для просмотра содержимого рабочей среды. В командном окне появится описание переменных:

» whos
Name Size Bytes Class
f 1x71 568 double array
g 1x71 568 double array
x 1x71 568 double array
Grand total is 213 elements using 1704 bytes

Переменные, определенные в одной файле-программе, можно использовать в других файл-программах и в командах, выполняемых из командной строки. Выполнение команд, содержащихся в файл-программе, осуществляется двумя способами:

  • Из редактора М-файлов так, как описано выше.
  • Из командной строки или другой файл-программы, при этом в качестве команды используется имя М-файла.

Применение второго способа намного удобнее, особенно, если созданная файл-программа будет неоднократно использоваться впоследствии. Фактически, созданный М-файл становится командой, которую понимает MatLab. Закройте все графические окна и наберите в командной строке mydemo, появляется графическое окно, соответствующее командам файл-программы mydemo.m. После ввода команды mydemo MatLab производит следующие действия.

  • Проверяет, является ли введенная команда именем какой-либо из переменных, определенных в рабочей среде. Если введена переменная, то выводится ее значение.
  • Если введена не переменная, то MatLab ищет введенную команду среди встроенных функций. Если команда оказывается встроенной функцией, то происходит ее выполнение.

Если введена не переменная и не встроенная функция, то MatLab начинает поиск М-файла с названием команды и расширением m . Поиск начинается с текущего каталога (Current Directory), если М-файл в нем не найден, то MatLab просматривает каталоги, установленные в пути поиска (Path). Найденный М-файл выполняется в MatLab.

Если ни одно из вышеперечисленных действий не привело к успеху, то выводится сообщение в командное окно, например:

» mydem
??? Undefined function or variable "mydem".

Как правило, М-файлы хранятся в каталоге пользователя. Для того чтобы система MatLab могла найти их, следует установить пути, указывающие расположение М-файлов.

Замечание 2

Хранить собственные М-файлы вне основного каталога MatLab следует по двум причинам. Во-первых, при переустановке MatLab файлы, которые содержатся в подкаталогах основного каталога MatLab, могут быть уничтожены. Во-вторых, при запуске MatLab все файлы подкаталога toolbox размещаются в памяти компьютера некоторым оптимальным образом так, чтобы увеличить производительность работы. Если вы записали М-файл в этот каталог, то воспользоваться им можно будет только после перезапуска MatLab.

3. Установка путей

В MatLab версий 6.x определяется текущий каталог и пути поиска. Установка этих свойств производится либо при помощи соответствующих диалоговых окон либо командами из командной строки.

Текущий каталог определяется в диалоговом окне Current Directory рабочей среды. Окно присутствует в рабочей среде, если выбран пункт Current Directory меню View рабочей среды.
Текущий каталог выбирается из списка. Если его нет в списке, то его можно добавить из диалогового окна Browse for Folder, вызываемого нажатием на кнопку, расположенную справа от списка. Содержимое текущего каталога отображается в таблице файлов.

Определение путей поиска производится в диалоговом окне Set Path навигатора путей, доступ к которому осуществляется из пункта Set Path меню File рабочей среды.

Для добавления каталога нажмите кнопку Add Folder Browse for Path выберите требуемый каталог. Добавление каталога со всеми его подкаталогами осуществляется при нажатии на кнопку Add with Subfolders. MATLAB search path. Порядок поиска соответствует расположению путей в этом поле, первым просматривается каталог, путь к которому размещен вверху списка. Порядок поиска можно изменить или вообще удалить путь к какому-либо каталогу, для чего выделите каталог в поле MATLAB search path и определите его положение при помощи следующих кнопок:
Move to Top - поместить вверх списка;
Move Up - переместить вверх на одну позицию;
Remove - удалить из списка;
Move Down - переместить вниз на одну позицию;
Move to Bottom - поместить вниз списка.

4. Команды для установки путей.

Действия по установке путей в MatLab 6.x дублируются командами. Текущий каталог устанавливается командой cd, например cd c:\users\igor. Команда cd, вызванная без аргумента, выводит путь к текущему каталогу. Для установки путей служит команда path, вызываемая с двумя аргументами:

path (path, "c:\users\igor") - добавляет каталог c:\users\igor с низшим приоритетом поиска;
path ("с: \users\igor",path) - добавляет каталог c:\users\igor с высшим приоритетом поиска.

Использование команды path без аргументов приводит к отображению на экране списка путей поиска. Удалить путь из списка можно при помощи команды rmpath:

rmpath ("с:\users\igor") удаляет путь к каталогу c:\users\igor из списка путей.

Замечание 3

Не удаляйте без необходимости пути к каталогам, особенно к тем, в назначении которых вы не уверены. Удаление может привести к тому, что часть функций, определенных в MatLab, станет недоступной.

Пример. Создайте в корневом каталоге диска D (или любом другом диске или каталоге, где студентам разрешено создавать свои каталоги) каталог со своей фамилией, например, WORK_IVANOV, и запишите туда М-файл mydemo.m под именем mydemo3.m. Установите пути к файлу и продемонстрируйте доступность файла из командной строки. Результаты приведите в отчете по лабораторной работе.

Вариант решения:

1. В корневом каталоге диска D создается каталог WORK_IVANOV.
2. В каталог WORK_IVANOV записывается М-файл mydemo.m под именем mydemo3.m.
3. Открывается диалоговое окно Set Path меню File рабочей среды MatLab.
4. Нажимается кнопка Add Folder и в появившемся диалоговом окне Browse for Path выбирается каталог WORK_IVANOV.
5. Добавление каталога со всеми его подкаталогами осуществляется при нажатии на кнопку Add with Subfolders. Путь к добавленному каталогу появляется в поле MATLAB search path.
6. Для запоминания пути нажимается клавиша Save диалогового окна Set Path.
7. Выполняется проверка правильности всех действий путем набора команды mydemo3 из командной строки. На экране появится графическое окно.

5. Файл-функции

Рассмотренные выше файл-программы являются последовательностью команд MatLab, они не имеют входных и выходных аргументов. Для использования численных методов и при программировании собственных приложений в MatLab необходимо уметь составлять файл-функции, которые производят необходимые действия с входными аргументами и возвращают результат в выходных аргументах. В этом подразделе разобрано несколько простых примеров, позволяющих понять работу с файл-функциями. Файл-функции, так же как и файл-процедуры, создаются в редакторе М-файлов.

5.1. Файл-функции с одним входным аргументом

Предположим, что в вычислениях часто необходимо использовать функцию

Имеет смысл один раз написать файл-функцию, а потом вызывать её всюду, где необходимо вычисление этой функции. Откройте в редакторе М-файлов новый файл и наберите текст листинга

function f = myfun(x)
f= ехр(-х)*sqrt((х^2+1)/(х^4+0.1));

Слово function в первой строке определяет, что данный файл содержит файл-функцию. Первая строка является заголовком функции, в которой размещается имя функции и списки входных и выходных аргументов. В примере, приведенном в листинге, имя функции myfun, один входной аргумент х и один выходной - f. После заголовка следует тело функции (оно в данном примере состоит из одной строки), где и вычисляется ее значение. Важно, что вычисленное значение записывается в f. Точка с запятой поставлена для предотвращения вывода лишней информации на экран.

Теперь сохраните файл в рабочем каталоге. Обратите внимание, что выбор пункта Save или Save as меню File приводит к появлению диалогового окна сохранения файла, в поле File name которого уже содержится название myfun. He изменяйте его, сохраните файл-функцию в файле с предложенным именем.

Теперь созданную функцию можно использовать так же, как и встроенные sin, cos и другие, например из командной строки:

» у =myfun(1.3)
У =
0.2600

Вызов собственных функций может осуществляться из файл-программы и из другой файл-функции.

Предупреждение

Каталог, в котором содержатся файл-функции, должен быть текущим, или путь к нему должен быть добавлен в пути поиска, иначе MatLab просто не найдет функцию, или вызовет вместо нее другую с тем же именем (если она находится в каталогах, доступных для поиска).

Файл-функция, приведенная в листинге, имеет один существенный недостаток. Попытка вычисления значений функции от массива приводит к ошибке, а не к массиву значений, как это происходит при вычислении встроенных функций.

» х = ;
» у = myfun(x)
??? Error using ==> ^
Matrix must be square.
Error in ==> C:\MATLABRll\work\myfun.m
On line 2 ==> f = exp(-x)*sqrt((х^2+1)/(х^4+1));

Если вы изучили работу с массивами, то устранение этого недостатка не вызовет затруднений. Необходимо просто при вычислении значения функции использовать поэлементные операции.
Измените тело функции, как указано в следующем листинге (не забудьте сохранить изменения в файле myfun.m).

function f = myfun(x)
f = ехр(-х).*sqrt((х.^2+1)./(х.^4+0.1));

Теперь аргументом функции myfun может быть как число, так и вектор или матрица значений, например:

» х = ;
» у = myfun(x)
У =
0.2600 0.0001

Переменная у, в которую записывается результат вызова функции myfun, автоматически становится вектором нужного размера.

Постройте график функции myfun на отрезке из командной строки или при помощи файл-программы:

x = ;
у = myfun(x);
plot(x, у)

MatLab предоставляет еще одну возможность работы с файл-функциями - использование их в качестве аргументов некоторых команд. Например, для построения графика служит специальная функция fplot, заменяющая последовательность команд, приведенную выше. При вызове fplot имя функции, график которой требуется построить, заключается в апострофы, пределы построения указываются в вектор-строке из двух элементов

fplot("myfun", )

Постройте графики myfun при помощи plot и fplot на одних осях, при помощи hold on. Обратите внимание, что график, построенный при помощи fplot, более точно отражает поведение функции, т. к. fplot сама подбирает шаг аргумента, уменьшая его на участках быстрого изменения отображаемой функции. Результаты приведите в отчете по лабораторной работе.

5.2. Файл-функции с несколькими входными аргументами

Написание файл-функций с несколькими входными аргументами практически не отличается от случая с одним аргументом. Все входные аргументы размещаются в списке через запятую. Например, следующий листинг содержит файл-функцию, вычисляющую длину радиус-вектора точки трехмерного пространства
Листинг файл-функции с несколькими аргументами

function r = radius3(x, у, z)
r = sqrt(х.^2 + у.^2 + z.^2);

» R = radius3(1, 1, 1)
R =
1.732

Кроме функций с несколькими входными аргументами, MatLab позволяет создавать функции, возвращающие несколько значений, т.е. имеющие несколько выходных аргументов.

5.3. Файл-функции с несколькими выходными аргументами

Файл-функции с несколькими выходными аргументами удобны при вычислении функций, возвращающих несколько значений (в математике они называются вектор-функциями ). Выходные аргументы добавляются через запятую в список выходных аргументов, а сам список заключается в квадратные скобки. Хорошим примером является функция, переводящая время, заданное в секундах, в часы, минуты и секунды. Данная файл-функция приведена в следующем листинге.

Листинг функции перевода секунд в часы, минуты и секунды

function = hms(sec)
hour = floor(sec/3600);
minute = floor((sec-hour*3600)/60);
second = sec-hour*3600-minute*60;

При вызове файл-функций с несколькими выходными аргументами результат следует записывать в вектор соответствующей длины:

» [Н, М, S] = hms(10000)
H =
2
М =
46
S =
40

6. Основы программирования в MatLab

Файл-функции и файл программы, используемые в предыдущих подразделах, являются самыми простыми примерами программ, Все команды MatLab, содержащиеся в них, выполняются последовательно. Для решения многих более серьезных задач требуется писать программы, в которых действия выполняются циклически или в зависимости от некоторых условий выполняются различные части программ. Рассмотрим основные операторы, задающие последовательности выполнения команд MatLab. Операторы можно использовать как в файл-процедурах, так и в функциях, что позволяет создавать программы со сложной разветвленной структурой.

6.1. Оператор цикла for

Оператор предназначен для выполнения заданного числа повторяющихся действий. Самое простое использование оператора for осуществляется следующим образом:

for count = start:step:final
команды MatLab
end

Здесь count - переменная цикла, start - ее начальное значение, final - конечное значение, а step - шаг, на который увеличивается count при каждом следующем заходе в цикл. Цикл заканчивается, как только значение count становится больше final. Переменная цикла может принимать не только целые, но и вещественные значения любого знака. Разберем применение оператора цикла for на некоторых характерных примерах.
Пусть требуется вывести семейство кривых для , которое задано функцией, зависящей от параметра для значений параметра от -0.1 до 0.1.
Наберите текст файл-процедуры в редакторе М-файлов и сохраните в файле FORdem1.m, и запустите его на выполнение (из редактора М-файлов или из командной строки, набрав в ней команду FORdem1 и нажав ):

% файл-программа для построения семейства кривых
x = ;
for a = -0.1:0.02:0.1
y = exp(-a*x).*sin(x);
hold on
plot(x, y)
end

Замечание 4

Редактор М-файлов автоматически предлагает расположить операторы внутри цикла с отступом от левого края. Используйте эту возможность для удобства работы с текстом программы.

В результате выполнения FORdem1 появится графическое окно, которое содержит требуемое семейство кривых.

Напишите файл-программу для вычисления суммы

Алгоритм вычисления суммы использует накопление результата, т.е. сначала сумма равна нулю (S = 0), затем в переменную k заносится единица, вычисляется 1/k !, добавляется к S и результат снова заносится в S . Далее k увеличивается на единицу, и процесс продолжается, пока последним слагаемым не станет 1/10!. Файл-программа Fordem2, приведенная в следующем листинге, вычисляет искомую сумму.

Листинг файл-программы Fordem2 для вычисления суммы

% файл-программа для вычисления суммы
% 1/1!+1/2!+ … +1/10!

% Обнуление S для накопления суммы
S = 0;
% накопление суммы в цикле
for k = 1:10
S = S + 1/factorial(k);
End
% вывод результата в командное окно S

Наберите файл-программу в редакторе М-файлов, сохраните её в текущем каталоге в файле Fordem2.m и выполните. Результат отобразится в командном окне, т.к. в последней строке файл-программы S содержится без точки с запятой для вывода значения переменной S

Обратите внимание, что остальные строки файл-программы, которые могли бы повлечь вывод на экран промежуточных значений, завершаются точкой с запятой для подавления вывода в командное окно.

Первые две строки с комментариями не случайно отделены пустой строкой от остального текста программы. Именно они выводятся на экран, когда пользователь при помощи команды help из командной строки получает информацию о том, что делает Fordem2

>> help Fordem2
файл-программа для вычисления суммы
1/1!+1/2!+ … +1/10!

При написании файл-программ и файл-функций не пренебрегайте комментариями!
Все переменные, использующиеся в файл-программе, становятся доступными в рабочей среде. Они являются, так называемыми, глобальными переменными. С другой стороны, в файл-программе могут использоваться все переменные, введенные в рабочей среде.

Рассмотрим задачу вычисления суммы, похожую на предыдущую, но зависящую от переменной x

Для вычисления данной суммы в файл-программе Fordem2 требуется изменить строку внутри цикла for на

S = S + x.^k/factorial(k);

Перед запуском программы следует определить переменную x в командной строке при помощи следующих команд:

>> x = 1.5;
>> Fordem2
S =
3.4817

В качестве x может быть вектор или матрица, так как в файл-программе Fordem2 при накоплении суммы использовались поэлементные операции.

Перед запуском Fordem2 нужно обязательно присвоить переменной x некоторое значение, а для вычисления суммы, например из пятнадцати слагаемых, придется внести изменения в текст файл-программы. Гораздо лучше написать универсальную файл-функцию, у которой в качестве входных аргументов будут значение x и верхнего предела суммы, а выходным - значение суммы S (x ). Файл-функция sumN приведена в следующем листинге.

Листинг файл-функции для вычисления суммы

function S = sumN(x, N)
% файл-функция для вычисления суммы
% x/1!+x^2/2!+ … +x^N/N!
% использование: S = sumN(x, N)

% обнуление S для накопления суммы
S = 0;
% накопление суммы в цикле
for m = 1:1:N
S = S + x.^m/factorial(m);
end

Об использовании функции sumN пользователь может узнать, набрав в командной строке help sumN. В командное окно выведутся первые три строки с комментариями, отделенные от текста файл-функции пустой строкой.

Обратите внимание, что переменные файл-функции не являются глобальными (m в файл-функции sumN). Попытка просмотра значения переменной m из командной строки приводит к сообщению о том, что m не определена. Если в рабочей среде имеется глобальная переменная с тем же именем, определенная из командной строки или в файл-программе, то она никак не связана с локальной переменной в файл-функции. Как правило, лучше оформлять собственные алгоритмы в виде файл-функций для того, чтобы переменные, используемые в алгоритме, не изменяли значения одноименных глобальных переменных рабочей среды.

Циклы for могут быть вложены друг в друга, при этом переменные вложенных циклов должны быть разными.

Цикл for оказывается полезным при выполнении повторяющихся похожих действий в том случае, когда их число заранее определено. Обойти это ограничение позволяет более гибкий цикл while.

6.2. Оператор цикла while

Рассмотрим пример на вычисление суммы, похожий на пример из предыдущего пункта. Требуется найти сумму ряда для заданного x (разложение в ряд ):
.

Сумму можно накапливать до тех пор, пока слагаемые являются не слишком маленькими, скажем больше по модулю Циклом for здесь не обойтись, так как заранее неизвестно число слагаемых. Выход состоит в применении цикла while, который работает, пока выполняется условие цикла:

while условие цикла
команды MatLab
end

В данном примере условие цикла предусматривает, что текущее слагаемое больше . Для записи этого условия используется знак больше (>). Текст файл-функции mysin, вычисляющей сумму ряда, приведен в следующем листинге.

Листинг файл-функции mysin, вычисляющей синус разложением в ряд

function S = mysin(x)
% Вычисление синуса разложением в ряд
% Использование: y = mysin(x), -pi

S = 0;
k = 0;
while abs(x.^(2*k+1)/factorial(2*k+1))>1.0e-10
S = S + (-1)^k*x.^(2*k+1)/factorial(2*k+1);
k = k + 1;
end

Обратите внимание, что у цикла while, в отличие от for, нет переменной цикла, поэтому пришлось до начала цикла k присвоить нуль, а внутри цикла увеличивать k на единицу.
Условие цикла while может содержать не только знак >. Для задания условия выполнения цикла допустимы также другие операции отношения, приведенные в табл. 1.

Таблица 1. Операции отношения

Задание более сложных условий производится с применением логических операторов. Например, условие состоит в одновременном выполнении двух неравенств и , и записывается при помощи логического оператора and

and(x >= -1, x < 2)

или эквивалентным образом с символом &

(x >= -1) & (x < 2)

Логические операторы и примеры их использования приведены в табл. 2.

Таблица 2. Логические операторы

Оператор

Запись в MatLab

Эквивалентная запись

Логическое "И"

and(x < 3, k == 4)

(x < 3) & (k == 4)

Логическое "ИЛИ"

Or(x == 1,x == 2)

(x == 1) | (x == 2)

Отрицание "НЕ"

При вычислении суммы бесконечного ряда имеет смысл ограничить число слагаемых. Если ряд расходится из-за того, что его члены не стремятся к нулю, то условие на малое значение текущего слагаемого может никогда не выполниться и программа зациклится. Выполните суммирование, добавив в условие цикла while файл-функции mysin ограничение на число слагаемых:

while (abs(x.^(2*k+1)/factorial(2*k+1))>1.0e-10)&(k<=10000))

или в эквивалентной форме

while and(abs(x.^(2*k+1)/factorial(2*k+1))>1.0e-10), k<=10000)

Организация повторяющихся действий в виде циклов делает программу простой и понятной, однако часто требуется выполнить тот или иной блок команд в зависимости от некоторых условий, т.е. использовать ветвление алгоритма.

6.3. Условный оператор if

Условный оператор if позволяет создать разветвляющийся алгоритм выполнения команд, в котором при выполнении определенных условий работает соответствующий блок операторов или команд MatLab.

Оператор if может применяться в простом виде для выполнения блока команд при удовлетворении некоторого условия или в конструкции if-elseif-else для написания разветвляющихся алгоритмов.
Пусть требуется вычислить выражение . Предположим, что вычисления выполняются в области действительных чисел и требуется вывести предупреждение о том, что результат является комплексным числом. Перед вычислением функции следует произвести проверку значения аргумента x, и вывести в командное окно предупреждение, если модуль x не превосходит единицы. Здесь необходимо применение условного оператора if, применение которого в самом простом случае выглядит так:

if условие
команды MatLab
end

Если условие выполняется, то реализуются команды MatLab, размещенные между if и end, а если условие не выполняется, то происходит переход к командам, расположенным после end. При записи условия используются операции, приведенные в табл. 1.

Файл-функция, проверяющая значение аргумента, приведена в следующем листинге. Команда warning служит для вывода предупреждения в командное окно.

Листинг файл-функции Rfun, проверяющей значение аргумента

function f = Rfun(x)
% вычисляет sqrt(x^2-1)
% выводит предупреждение, если результат комплексный
% использование y = Rfun(x)

% проверка аргумента
if abs(x)<1
warning("результат комплексный")
end
% вычисление функции
f = sqrt(x^2-1);

Теперь вызов Rfun от аргумента, меньшего единицы, приведет к выводу в командное окно предупреждения:

>> y = Rfun(0.2)
результат комплексный
y =
0 + 0.97979589711327i

Файл-функция Rfun только предупреждает о том, что ее значение комплексное, а все вычисления с ней продолжаются. Если же комплексный результат означает ошибку вычислений, то следует прекратить выполнение функции, используя команду error вместо warning.

6.4. Оператор ветвления if-elseif-else

В общем случае применение оператора ветвления if-elseif-else выглядит следующим образом:

if условие 1
команды MatLab
elseif условие 2
команды MatLab
elseif условие 3
команды MatLab
. . . . . . . . . . .
elseif условие N
команды MatLab
else
команды MatLab
end

В зависимости от выполнения того или иного из N условий работает соответствующая ветвь программы, если не выполняется ни одно из N условий, то реализуются команды MatLab, размещенные после else. После выполнения любой из ветвей происходит выход из оператора. Ветвей может быть сколько угодно или только две. В случае двух ветвей используется завершающее else, а elseif пропускается. Оператор должен всегда заканчиваться end.
Пример использования оператора if-elseif-else приведен в следующем листинге.

function ifdem(a)
% пример использования оператора if-elseif-else

if (a == 0)
warning("а равно нулю")
elseif a == 1
warning("а равно единице")
elseif a == 2
warning("а равно двум")
elseif a >= 3
warning("а, больше или равно трем")
else
warning("а меньше трех, и не равно нулю, единице, двум")
end

6.5. Оператор ветвления switch

Для осуществления множественного выбора или ветвления может применяться оператор switch. Он является альтернативой оператору if-elseif-else. В общем случае применение оператора ветвления switch выглядит следующим образом:

switch switch_выражение
case значение 1
команды MatLab
case значение 2
команды MatLab
. . . . . . . . . . .
case значение N
команды MatLab
case {значение N+1, значение N+2, …}
команды MatLab
. . . . . . . . . . . .
case {значение NM+1, значение NM+2,…}
otherwise
команды MatLab
end

В данном операторе сначала вычисляется значение switch_выражения (это может быть скалярное числовое значение либо строка символов). Затем это значение сравнивается со значениями: значение 1, значение 2, …, значение N, значение N+1, значение N+2, …, значение NM+1, значение NM+2,… (которые также могут быть числовыми либо строковыми). Если найдено совпадение, то выполняются команды MatLab, стоящие после соответствующего ключевого слова case. В противном случае выполняются команды MatLab, расположенные между ключевыми словами otherwise и end.

Строк с ключевым словом case может быть сколько угодно, но строка с ключевым словом otherwise должна быть одна.

После выполнения какой-либо из ветвей происходит выход из switch, при этом значения, заданные в других case не проверяются.

Применение switch поясняет следующий пример:

function demswitch(x)
a = 10/5 + x
switch a
case -1
warning("a = -1")
case 0
warning("a = 0")
case 1
warning("a = 1")
case {2, 3, 4}
warning("a равно 2 или 3 или 4")
otherwise
warning("a не равно -1, 0, 1, 2, 3, 4")
end

>> x = -4
demswitch(x)
a =
1
warning: a = 1
>> x = 1
demswitch(x)
a =
6
warning: a не равно -1, 0, 1, 2, 3, 4

6.6. Оператор прерывания цикла break

При организации циклических вычислений следует заботиться о том, чтобы внутри цикла не возникло ошибок. Например, пусть задан массив x, состоящий из целых чисел, и требуется сформировать новый массив y по правилу y(i) = x(i+1)/x(i). Очевидно, что задача может быть решена при помощи цикла for. Но если один из элементов исходного массива равен нулю, то при делении получится inf, и последующие вычисления могут оказаться бесполезными. Предотвратить эту ситуацию можно выходом из цикла, если текущее значение x(i) равно нулю. Следующий фрагмент программы демонстрирует использование оператора break для прерывания цикла:

for x = 1:20
z = x-8;
if z==0
break
end
y = x/z
end

Как только переменная z принимает значение 0, цикл прерывается.

Оператор break позволяет досрочно прервать выполнение циклов for и while. Вне этих циклов оператор break не работает.

Если оператор break применяется во вложенном цикле, то он осуществляет выход только из внутреннего цикла.

Инструкция

В среде MATLAB есть несколько режимов работы. Самый простой – это ввод команд непосредственно в окно команд (Command Window ).
Если оно не видно в интерфейсе программы, значит нужно его открыть. Найти окно команд можно через меню Desktop -> Command Window .
Давайте для примера введём в это окно последовательно друг за другом команды "x = ; y = sqrt(x); plot(y);", и нажмём клавишу "Ввод" (Enter ). Программа моментально создаст переменные X, создаст переменную Y и посчитает её значения по заданной функции, а затем построит её график.
Стрелками клавиатуры "Вверх" и "Вниз" в окне команд мы можем переключаться между всеми введёнными командами, тут же изменять их при необходимости, и по нажатию Enter снова отправлять среде MATLAB на исполнение.
Удобно? Безусловно. И главное - очень быстро. Все эти действия занимают несколько секунд.
Но что если нужна более сложная организация команд? Если нужно циклическое исполнение каких-то команд? Вводить команды вручную по одной, а потом долго искать их в истории может быть довольно утомительным делом.

Чтобы упростить жизнь учёному, инженеру или студенту, служит окно редактора (Editor ). Давайте откроем окно редактора через меню Desktop -> Editor .
Здесь можно создавать новые переменные, строить графики, писать программы (скрипты), создавать компоненты для обмена с другими средами, создавать приложения с пользовательским интерфейсом (GUI), а также редактировать уже имеющиеся. Но нас в данный момент интересует написание программы, содержащей функции для повторного использования в будущем. Поэтому идём в меню File и выбираем New -> M-File .

В поле редактора напишем простую программу, но чуть-чуть усложним её:

function draw_plot(x)
y = log(x); % Задаём первую функцию
subplot(1, 2, 1), plot(x, y); % Строим первый график
y = sqrt(x); % Задаём вторую функцию
subplot(1, 2, 2), plot(x, y); % Строим второй график

Мы добавили вторую функцию и будем выводить сразу два графика рядом друг с другом. Знаком процента обозначаются в среде MATLAB комментарии.
Не забудем сохранить программу. Стандартное расширение файла с программой Матлаб – *.m .
Теперь закройте редактор и окно с графиком, который мы построили ранее.

Переходим обратно в окно команд.
Можно очистить историю команд, чтобы лишняя информация нас не отвлекала. Для этого кликните правой кнопкой мыши на поле ввода команд и в открывшемся контекстном меню выберите пункт Clear Command Window .
Переменная X у нас осталась после предыдущего эксперимента, мы её не изменяли и не удаляли. Поэтому в окно команд можно сразу ввести:
draw_plot(x);
Вы увидите, что MATLAB прочитает нашу функцию из файла и выполнит её, нарисовав график.

Среда MATLAB включает интерпретатор команд на языке высокого уров­ня, графическую систему, пакеты расширений и реализована на языке C. Вся работа организуется через командное окно (Command Window), которое появля­ется при запуске программы matlab.exe. В процессе работы данные располага­ются в памяти (Workspace), для изображения кривых, поверхностей и других графиков создаются графические окна.

В командном окне в режиме диалога проводятся вычисления. Пользова­тель вводит команды или запускает на выполнение файлы с текстами на языке MATLAB. Интерпретатор обрабатывает введенное и выдает результаты: число­вые и строковые данные, предупреждения и сообщения об ошибках. Строка ввода помечена знаком >>. В командном окне показываются вводимые с кла­виатуры числа, переменные, а также результаты вычислений. Имена перемен­ных должны начинаться с буквы. Знак = соответствует операции присваивания. Нажатие клавиши Enter заставляет систему вычислить выражение и показать результат. Наберите с клавиатуры в строке ввода:

Нажмите клавишу Enter, на экране в зоне просмотра появится результат вычисления:

Все значения переменных, вычисленные в течение текущего сеанса рабо­ты, сохраняются в специально зарезервированной области памяти компьютера, называемой рабочим пространством системы MATLAB (Workspace). Коман­дой clc можно стереть содержимое командного окна, однако это не затронет содержимого рабочего пространства. Когда исчезает необходимость в хранении ряда переменных в текущем сеансе работы, их можно стереть из памяти ком­пьютера командой clear или clear(имя1, имя2, ...). Первая команда удаляет из памяти все переменные, а вторая - переменные с именами имя1 и имя2. Коман­дой who можно вывести список всех переменных, входящих в данный момент в рабочее пространство системы. Для просмотра значения любой переменной из текущего рабочего пространства системы достаточно набрать ее имя и нажать клавишу Enter.

После окончания сеанса работы с системой MATLAB все ранее вычислен­ные переменные теряются. Чтобы сохранить в файле на диске компьютера со­держимое рабочего пространства системы MATLAB, нужно выполнить коман­ду меню File / Save Workspace As ... .По умолчанию расширение имени файла mat, поэтому такие файлы принято называть МАТ-файлами. Для загрузки в па­мять компьютера ранее сохраненного на диске рабочего пространства нужно выполнить команду меню: File / Load Workspace ... .

Вещественные числа и тип данных double

Система MATLAB представляет на машинном уровне все действительные числа заданные мантиссой и показателем степени, например, 2.85093Е+11, где буквой Е обозначается основание степени равное 10. Этот основной тип дан­ных носит название double. MATLAB по умолчанию использует формат short для вывода вещественных чисел, при котором показываются только четыре де­сятичных цифры после запятой.

Введите с клавиатуры пример:

» res=5.345*2.868/3.14-99.455+1.274

Получите результат вычисления:

Если требуется полное представление вещественного числа res, введите с клавиатуры команду:

нажмите клавишу Enter и получите более подробную информацию:

res = -93.29900636942675

Теперь все результаты вычислений будут показываться с такой высокой точностью в течение данного сеанса работы в среде системы MATLAB. Если требуется до прекращения текущего сеанса работы вернуться к старой точности визуального представления вещественных чисел в командном окне, нужно вве­сти и исполнить (нажав клавишу Enter) команду:

Целые числа показываются системой в командном окне в виде целых чисел.

Над вещественными числами и переменными типа double производятся арифметические операции: сложения +, вычитания -, умножения *, деления / и возведения в степень ^ . Приоритет в выполнении арифметических операций обычный. Операции одинакового приоритета выполняются в порядке слева на­право, но круглые скобки могут изменить этот порядок.

Если нет необходимости видеть в командном окне результат вычисления некоторого выражения, то в конце введенного выражения следует поставить точку с запятой и только после этого нажать Enter.

В системе MATLAB присутствуют все основные элементарные функции для вычислений с вещественными числами. Любая функция характеризуется своим именем, списком входных аргументов (перечисляются через запятую и стоят внутри круглых скобок, следующих за именем функции) и вычисляемым (возвращаемым) значением. Список всех имеющихся в системе элементарных математических функций может быть получен по команде help elfun. В Прило­жении 1 перечислены стандартные функции вещественного аргумента.

Вычислите выражение, включающее вычисление функции арксинус:

Убедитесь, что получился следующий результат:

соответствующее числу «пи». В системе MATLAB для вычисления числа «пи» есть специальное обозначение: pi. (Список системных переменных MATLAB находится в Приложении 2).

MATLAB имеет также логические функции, функции, связанные с цело­численной арифметикой (округления до ближайшего целого: round, усечение дробной части числа: fix). Есть еще функция mod - остаток от деления с учетом знака, sign - знак числа, lcm - наименьшее общее кратное, perms - вычисление числа перестановок и nchoosek - числа сочетаний и много других. Многие из функций имеют область определения, отличную от множества всех действи­тельных чисел.

Помимо арифметических операций над операндами типа double выполня­ются еще операции отношения и логические операции. Операции отношения сравнивают между собой два операнда по величине. Эти операции записывают­ся следующими знаками или комбинациями знаков (Таблица 1):

Таблица 1


В случае истинности операции отношения ее величина равна 1, а в случае ложности - 0. Операции отношения имеют более низкий приоритет, чем ариф­метические операции.

Наберите с клавиатуры выражение с операциями отношения и вычислите

» a=1; b=2; c=3;

» res=(a

Вы получите следующий результат:

Логические операции над вещественными числами обозначаются знаками, перечисленными в таблице 2:

Таблица 2


& | ~
И ИЛИ НЕ

Первые две из этих операций являются бинарными (двухоперандными), а последняя - унарной (однооперандной). Логические операции трактуют свои операнды как «истинные» (не равные нулю) или «ложные» (равные нулю). Ес­ли оба операнда операции «И» истинны (не равны нулю), то результат этой операции равен 1 («истина»); во всех остальных случаях операция «И» выраба­тывает значение 0 («ложь»). Операция «ИЛИ» вырабатывает 0 («ложь») только в случае, когда являются ложными (равными нулю) оба операнда. Операция «НЕ» инвертирует «ложь» на «истину». Логические операции имеют самый низкий приоритет.

Комплексные числа и комплексные функции

Комплексные переменные, как и вещественные автоматически имеют тип double и не требуют никакого предварительного описания. Для записи мнимой единицы зарезервированы буквы i или j. В случае, когда коэффициентом перед мнимой единицей является не число, а переменная, между ними следует обяза­тельно использовать знак умножения. Итак, комплексные числа можно записывать следующим образом:

» 2+3i; -6.789+0.834e-2*i; 4-2j; x+y*i;

Почти все элементарные функции допускают вычисления с комплексны­ми аргументами. Вычислите выражение:

» res=sin(2+3i)*atan(4i)/(1 -6i)

Получится результат:

1.8009 - 1.91901

Специально для работы с комплексными числами предназначены следую­щие функции: abs (абсолютное значение комплексного числа), conj (комплекс­но сопряженное число), imag (мнимая часть комплексного числа), real (дейст­вительная часть комплексного числа), angle (аргумент комплексного числа), isreal («истина», если число действительное). Функции комплексного перемен­ного перечислены в Приложении 1.

В отношении арифметических операций ничего нового для комплексных чисел (по сравнению с вещественными) сказать невозможно. То же самое отно­сится и к операциям отношения «равно» и «не равно». Остальные операции от­ношения вырабатывают результат исходя только из действительных частей этих операндов.

Введите выражение, получите результат и объясните его:

» c=2+3i; d=2i; » c>d

Логические операции трактуют операнды как ложные, если они равны ну­лю. Если же у комплексного операнда не равна нулю хотя бы одна его часть (вещественная или мнимая), то такой операнд трактуется как истинный.

Числовые массивы

Для создания одномерного массива можно использовать операцию конка­тенации, которая обозначается с помощью квадратных скобок . Элементы массива помещаются между скобками и отделяются друг от друга пробелом или запятой:

» al=; d=;

Для доступа к индивидуальному элементу массива нужно применить операцию индексации, для чего после имени элемента указать в круглых скоб­ках индекс элемента.

Можно изменять элементы уже сформированного массива путем примене­ния операций индексации и присваивания. Например, введя:

мы изменим третий элемент массива. Или, после введения:

» al(2)=(al(1)+al(3))/2;

второй элемент массива станет равным среднему арифметическому первого и третьего элементов. Запись несуществующего элемента вполне допустима - она означает добавление нового элемента к уже существующему массиву:

Применяя после выполнения этой операции к массиву а1 функцию length, находим, что количество элементов в массиве возросло до четырех:

Тоже самое действие - «удлинение массива а1» - можно выполнить и с помощью операции конкатенации:

Можно задать массив, прописывая все его элементы по отдельности:

» a3(1)=67; a3(2)=7.8; a3(3)=0.017;

Однако этот способ создания не является эффективным. Еще один способ создания одномерного массива основан на применении специальной функции, обозначаемой двоеточием (операция формирования диапазона числовых значений). Через двоеточие следует набрать первое число диапазона, шаг (приращение) и конечное число диапазона. Например:

» diap=3.7:0.3:8.974;

Если не нужно выводить на экран весь получившийся массив, то в конце набора (после конечного числа диапазона) следует набрать точку с запятой. Чтобы узнать, сколько элементов в массиве, следует вызвать функцию length (имя массива).

Для создания двумерного массива (матрицы) также можно использовать операцию конкатенацию. Элементы массива набираются один за другим со­гласно их расположению в строках, в качестве разделителя строк используется точка с запятой.

Введите с клавиатуры:

» a=

Нажмите ENTER, получим:

Полученную матрицу а размером 3x2 (первым указывается число строк, вторым - число столбцов) можно сформировать также вертикальной конкате­нацией вектор-строк:

» a=[;;];

или горизонтальной конкатенацией вектор-столбцов:

» a=[,];

Структуру созданных массивов можно узнать с помощью команды whos(имя массива), размерность массива - функцией ndims, а размер массива - size.

Двумерные массивы можно задать также с помощью операции индекса­ции, прописывая по отдельности его элементы. Номер строки и столбца, на пе­ресечении которых находится задаваемый элемент массива, указываются через запятую в круглых скобках. Например:

» a(1,1)=1; a(1,2)=2; a(2,1)=3; » a(2,2)=4; a(3,1)=5; a(3,2)=6;

Однако будет намного эффективнее, если до начала прописывания элементов массива, создать массив нужного размера функциями ones (m,n) или zeros(m,n), заполненный единицами или нулями (m - число строк, n - число столбцов). При вызове этих функций предварительно выделяется память под заданный размер массива, после этого постепенное прописывание элементов нужными значениями не требует перестройки структуры памяти, отведенной под массив. Использование этих функций возможно и при задании массивов других раз­мерностей.

Если после формирования массива Х потребуется, не изменяя элементов массива, изменить его размеры, можно воспользоваться функцией reshape (Х, М, N), где M и N - новые размеры массива Х

Объяснить работу этой функции можно, только исходя из способа, каким система MATLAB хранит элементы массивов в памяти компьютера. Она хра­нит их в непрерывной области памяти упорядоченно по столбцам: сначала рас­полагаются элементы первого столбца, вслед за ними расположены элементы второго столбца и т.д. Помимо собственно данных (элементов массива) в памя­ти компьютера хранится также управляющая информация: тип массива (напри­мер, double), размерность и размер массива, другая служебная информация. Этой информации достаточно для определения границ столбцов. Отсюда сле­дует, что для переформирования матрицы функцией reshape достаточно изме­нить только служебную информацию и не трогать собственные данные.

Поменять местами строки матрицы с ее столбцам можно операцией транс­портирования, которая обозначается знаком." (точка и апостроф). Например,

» A=;

Операция " (апостроф) выполняет транспонирование для вещественных матриц и транспонирование с одновременным комплексным сопряжением для комплексных матриц.

Объекты, с которыми работает MATLAB, являются массивами. Даже од­но заданное число во внутреннем представлении MATLAB является массивом, состоящим из одного элемента. MATLAB позволяет делать вычисления с ог­ромными массивами чисел также легко как и с одиночными числами, и это яв­ляется одним из самых заметных и важных преимуществ системы MATLAB над другими программными пакетами, ориентированными на вычисления и программирование. Помимо памяти, необходимой для хранения числовых эле­ментов (по 8 байт на каждый в случае вещественных чисел и по 16 байт в слу­чае комплексных чисел), MATLAB автоматически при создании массивов вы­деляет еще и память для управляющей информации.

Вычисления с массивами

В традиционных языках программирования вычисления с массивами осу­ществляются поэлементно в том смысле, что нужно запрограммировать каж­дую отдельную операцию над отдельным элементом массива. В М-языке сис­темы MATLAB допускаются мощные групповые операции над всем массивом сразу. Именно групповые операции системы MATLAB позволяют чрезвычайно компактно задавать выражения, при вычислении которых реально выполняется гигантский объем работы.

Операции сложения и вычитания матриц обозначаются стандартными знаками + и -.

Задайте матрицы А и В и выполните операцию сложения матриц:

» A=; B=;

Если используются операнды разных размеров, выдается сообщение об ошибке, за исключением случая, когда один из операндов является скаляром. При выполнении операции А + скаляр (А - матрица) система расширит скаляр до массива размера А, который и складывается далее поэлементно с А.

Для поэлементного перемножения и поэлементного деления массивов одинаковых размеров, а также поэлементного возведения в степень массивов, применяются операции, обозначаемые комбинациями двух символов: .* , ./, и.^. Использование комбинаций символов объясняется тем, что символами * и / обозначены специальные операции линейной алгебры над векторами и матри­цами.

Кроме операции./, называемой операцией правого поэлементного деления, есть еще операция левого поэлементного деления.\. Разница между этими операциями: выражение А./ В приводит к матрице с элементами А (k, m) /В (k, m), а выражение А.\В приводит к матрице с элементами В (k, m) /А (k, m).

Знак * закреплен за перемножением матриц и векторов в смысле линейной алгебры.

Знак \ закреплен в системе MATLAB за решением довольно сложной зада­чи линейной алгебры - нахождением корней системы линейных уравнений. Например, если требуется решить систему линейных уравнений Ay = b, где А - заданная квадратная матрица размера N´N, b - заданный вектор- столбец длины N, то для нахождения неизвестного вектор-столбца у достаточно вычислить выражение А\b (это равносильно операции: A -1 B).

Типичные задачи аналитической геометрии в пространстве, связанные с нахождением длин векторов и углов между ними, с вычислением скалярного и векторного произведений, легко решаются разнообразными средствами систе­мы MATLAB. Например, для нахождения векторного произведения векторов предназначена специальная функция cross, например:

» u=; v=;

Скалярное произведение векторов можно вычислить с помощью функции общего назначения sum, вычисляющей сумму всех элементов векторов (для матриц эта функция вычисляет суммы для всех столбцов). Скалярное произве­дение, как известно, равно сумме произведений соответствующих координат (элементов) векторов. Таким образом, выражение: » sum(u.*v)

вычисляет скалярное произведение двух векторов u и v. Скалярное произведе­ние можно также вычислить как: u*v".

Длина вектора вычисляется с помощью скалярного произведения и функ­ции извлечения квадратного корня, например:

» sqrt(sum(u.*u))

Ранее рассмотренные для скаляров операции отношения и логические опе­рации выполняются в случае массивов поэлементно. Оба операнда должны быть одинаковых размеров, при этом операция возвращает результат такого же размера. В случае, когда один из операндов скаляр, производится его предвари­тельное расширение, смысл которого уже был пояснен на примере арифметиче­ских операций.

Среди функций, генерирующих матрицы с заданными свойствами, часто испольльзуется функция eye , производящую единичные квадратные матрицы, а так­же широко применяемую на практике функцию rand, генерирующую массив со случайными элементами, равномерно распределенными на интервале от 0 до 1. Например, выражение

порождает массив случайных чисел размером 3х3 с элементами, равномерно распределенными на интервале от 0 до 1.

Если вызвать эту функцию с двумя аргументами, например R=rand(2,3), то получится матрица R случайных элементов размером 2x3. При вызове функции rand с тремя и более скалярными аргументами производятся многомерные мас­сивы случайных чисел.

Определитель квадратной матрицы вычисляется с помощью функции det. Среди функций, производящих простейшие вычисления над массивами, помимо рассмотренной выше функции sum, используется еще и функция prod, ко­торая во всем аналогична функции sum, только вычисляет она не сумму эле­ментов, а их произведение. Функции max и min ищут соответственно макси­мальный и минимальный элементы массивов. Для векторов они возвращают единственное числовое значение, а для матриц они порождают набор экстре­мальных элементов, вычисленных для каждого столбца. Функция sort сортиру­ет в возрастающем порядке элементы одномерных массивов, а для матриц она производит такую сортировку для каждого столбца отдельно.

В MATLAB есть уникальная возможность производить групповые вычисления над массивами, используя обыч­ные математические функции, которые в традиционных языках программиро­вания работают только со скалярными аргументами. В результате с помощью крайне компактных записей, удобных для ввода с клавиатуры в интерактивном режиме работы с командным окном системы MATLAB, удается произвести большой объем вычислений. Например, всего два коротких выражения

» x=0:0.01:pi/2; y=sin(x);

вычисляют значения функции sin сразу в 158 точках, формируя два вектора x и у со 158 элементами каждый.

Построение графиков функций

Графические возможности системы MATLAB являются мощными и разно­образными. Изучим наиболее простые в использовании возможности (высоко­уровневую графику).

Сформируйте два вектора х и у:

» x=0:0.01:2; y=sin(x);

Вызовите функцию:

и вы получите на экране график функции (рис. 1).

Рис. 1. График функции y=sin(x)

MATLAB показывает графические объекты в специальных графических окнах, имеющих в заголовке слово Figure. Не убирая с экрана дисплея первое графическое окно, введите с клавиату­ры выражения

и получите новый график функции в том же самом графическом окне (при этом старые оси координат и график пропадают - этого также можно добиться ко­мандой clf, командой cla удаляют только график с приведением осей коорди­нат к их стандартным диапазонам от 0 до 1).

Если нужно второй график провести «поверх первого графика», то перед вторичным вызовом графической функции plot нужно выполнить команду hold on, которая предназначена для удержания текущего графического окна:

» x=0:0.01:2; y=sin(x);

Практически тоже самое получится (рис. 2), если набрать:

» x=0:0.01:2; y=sin(x); z=cos(x);

» plot(x,y,x,z)

Рис. 2. Графики функций y=sin(x), z=cos(x), построенные в одном графи­ческом окне

Если нужно одновременно визуализировать несколько графиков так, что­бы они не мешали друг другу, то это можно сделать двумя способами. Первым решением является построение их в разных графических окнах. Для этого пе­ред вторичным вызовом функции plot следует набрать команду figure, которая создает новое графическое окно и заставляет все последующие за ней функции построения графиков выводить их туда.

Вторым решением показа нескольких графиков без конфликта диапазонов осей координат является использование функции subplot. Эта функция позволя­ет разбить область вывода графической информации на несколько подобластей, в каждую из которых можно вывести графики различных функций.

Например, для ранее выполненных вычислений с функциями sin и cos по­стройте графики этих двух функций в первой подобласти, а график функции exp(x) - во второй подобласти одного и того же графического окна (рис. 3):

» subplot(1,2,1); plot(x,y,x,z)

» subplot(1,2,2); plot(x,w)

Рис. 3. Графики функций y=sin(x), z=cos(x) и w=exp(x), построенные в двух подобластях одного графического окна

Диапазоны изменения переменных на осях координат этих подобластей не­зависимы друг от друга. Функция subplot принимает три числовых аргумента, первый из которых равен числу рядов подобластей, второй равен числу коло­нок подобластей, а третий аргумент - номеру подобласти (номер отсчитывается вдоль рядов с переходом на новый ряд по исчерпании). Снять действие функ­ции subplot можно командой:

» subplot(1,1,1)

Если для одиночного графика диапазоны изменения переменных вдоль од­ной или обеих осей координат слишком велик, то можно воспользоваться функциями построения графиков в логарифмических масштабах. Для этого предназначены функции semilogx, semilogy и loglog.

Построить график функции в полярных координатах (рис. 4) можно с по­мощью графической функции polar.

» phi=0:0.01:2*pi; r=sin(3*phi);

Рис. 4. График функции r=sin(3*phi) в полярных координатах

Рассмотрим дополнительные возможности, связанные с управлением внешним видом графиков - задание цвета и стиля линий, а также размещение различных надписей в пределах графического окна. Например, команды

» x=0:0.1:3; y=sin(x);

» plot(x,y,"r-",x,y, "ko")

позволяют придать графику вид красной сплошной линии (рис. 5), на которой в дискретных вычисляемых точках проставляют черные окружности. Здесь функция plot дважды строит график одной и той же функции, но в двух разных стилях. Первый из этих стилей отмечен как "r-", что означает проведение линии красным цветом (буква r), а штрих означает проведение сплошной линии. Вто­рой стиль, помечен как "ko", означает проведение черным цветом (буква k) ок­ружностей (буква o) на месте вычисляемых точек.

Рис. 5. Построение графика функции y=sin(x) в двух разных стилях

В общем случае функция plot (x1, y1, s1, x2, y2, s2, ...) позволяет объеди­нить в одном графическом окне несколько графиков функций y1(x1), y2(x2), ... проведя их со стилями s1, s2, ... и т. д.

Стили s1, s2,... задаются в виде набора трех символьных маркеров, заклю­ченных в одиночные кавычки (апострофы). Один из этих маркеров задает тип линии (Таблица 3). Другой маркер задает цвет (Таблица 4). Последний маркер задает тип проставляемых «точек» (Таблица 5). Можно указывать не все три маркера. Тогда используются маркеры, установленные по умолчанию. Порядок, в котором указывают маркеры, не является существенным, то есть "r+-" и "-+r" приводит к одинаковому результату.

Таблица 3. Маркеры, задающие тип линии

Таблица 4 Маркеры, задающие цвет линии

Таблица 5 Маркеры, задающие тип точки

Если в строке стиля поставить маркер на тип точки, но не проставить мар­кер на тип линии, то тогда отображаются только вычисляемые точки, а непре­рывной линией они не соединяются.


Сис­тема MATLAB устанавливает пределы на горизонтальной оси равными тем значениям, что указаны пользователем для независимой переменной. Для зави­симой переменной по вертикальной оси MATLAB самостоятельно вычисляет диапазон изменения значений функции. Если надо отказаться от этой осо­бенности масштабирования при построении графиков в системе MATLAB, то нужно явным образом навязать свои пределы изменения переменных по осям координат. Это делается с помощью функции axis().

Для проставления различных надписей на полученном рисунке применяют функции xlabel, ylabel, title и text. Функция xlabel создает подпись у горизон­тальной оси, функция ylabel - тоже для вертикальной оси (причем эти надписи ориентированы вдоль осей координат). Если требуется разместить надпись в произвольном месте рисунка, применяют функцию text. Общий заголовок для графика создается функцией title. Кроме того, используя команду grid on, мож­но нанести измерительную сетку на всю область построения графика. Напри­мер (рис. 6):

» x=0:0.1:3; y=sin(x);

» plot(x,y,"r-",x,y,"ko")

»title("Function sin(x) graph");

» xlabel("xcoordinate"); ylabel("sin(x)");

» text(2.1, 0.9, "\leftarrowsin(x)"); grid on

Надпись функцией text помещается начиная от точки с координатами, указанными первыми двумя аргументами. По умолчанию координаты задаются в тех же единицах измерения, что и координаты, указанные на горизонтальной и вертикальной осях. Специальные управляющие символы вводятся внутри текста после символа \ (обратная косая черта).

Трехмерная графика

Каждая точка в пространстве характеризуется тремя координатами. Набор точек, принадлежащих некоторой линии в пространстве, нужно задать в виде трех векторов, первый из которых содержит первые координаты этих точек, второй вектор - вторые их координаты, третий вектор - третьи координа­ты. После чего эти три вектора можно подать на вход функции plot3, которая и осуществит проектирование соответствующей трехмерной линии на плоскость и построит результирующее изображение (рис. 7). Введите с клавиатуры:

» t=0:pi/50:10*pi; x=sin(t);

» y=cos(t); plot3(x,y,t); grid on

Рис. 7. График винтовой линии, построенный с помощью функции plot3

Эту же функцию plot3 можно применить и для изображения поверхностей в пространстве, если, конечно, провести не одну линию, а много. Наберите с клавиатуры:

» u=-2:0.1:2; v=-1:0.1:1;

» =meshgrid(u,v);

» z=exp(-X.^2-Y.^2);

Получите трехмерное изображение графика функции (рис. 8).

Функция plot3 строит график в виде набора линий в пространстве, каждая из которых является сечением трехмерной поверхности плоскостями, парал­лельными плоскости yOz. Помимо этой простейшей функции система MATLAB располагает еще рядом функций, позволяющих добиваться большей реалистичности в изображении трехмерных графиков.

Рис. 8. График поверхности в пространстве, построенный с помо­щью функции plot3


Сценарии и m-файлы.

Для простых операций удобен интерактивный режим, но если вычисле­ния нужно многократно выполнять или необходимо реализовывать сложные алгоритмы, то следует использовать m-файлы MATLAB (расширение файла со­стоит из одной буквы m). script-m-файл (или сценарий) - текстовый файл, содержащий инструкции на языке MATLAB, подле­жащими исполнению в автоматическом пакетном режиме. Создать такой файл удобнее с помощью редактора системы MATLAB. Он вызывается из командно­го окна системы MATLAB командой меню File/New/M-file (или самой левой кнопкой на полосе инструментов, на которой изображен чистый белый лист бумаги). Записанные в script-файлы команды будут выполнены, если в команд­ной строке ввести имя script-файла (без расширения). Переменные, определяе­мые в командном окне и переменные, определяемые в сценариях, составляют единое рабочее пространство системы MATLAB, причем переменные, опреде­ляемые в сценариях, являются глобальными, их значения заместят значения таких же переменных, которые были использованы до вызова данного script- файла.

После создания текста сценария его надо сохранить на диске. Путь к каталогу с файлом обязательно должен быть известен сис­теме MATLAB. Командой File/Set Path вызывается диалоговое окно просмотрщика путей доступа к каталогам. Для добавления нового каталога в список пу­тей доступа необходимо выполнить далее команду меню Path/Add to path.

1. Урок 23. Знакомство с пакетами расширения MATLAB

Урок №23.

Знакомство с пакетами расширения МАТLАВ

    Вывод списка пакетов расширения

    Simulinc for Windows

    Пакет символьной математики

    Пакеты математических вычислений

    Пакеты анализа и синтеза систем управления

    Пакеты идентификации систем

    Дополнительные средства пакета Simulinc

    Пакеты для обработки сигналов и изображений

    Прочие пакеты прикладных программ

В этом уроке мы кратко ознакомимся с основными средствами профессионального расширения системы и ее адаптации под решение определенных классов математических и научно-технических задач - с пакетами расширения системы MATLAB. Несомненно, что хотя бы части из этих пакетов должен быть посвящен отдельный учебный курс или справочник, быть может, и не один. За рубежом по большинству таких расширений опубликованы отдельные книги, а объем документации по ним составляет сотни мегабайт. К сожалению, объем данной книги позволяет лишь немного пройтись по пакетам расширения, с тем чтобы дать читателю представление о том, в каких направлениях развивается система.

2. Вывод списка пакетов расширения

Вывод списка пакетов расширения

Полный состав системы MATLAB 6.0 содержит ряд компонентов, название, номер версии и дату создания которых можно вывести на просмотр командой ver:

MATLAB Version 6.0.0.88 (R12) on PCWIN MATLAB License Number: 0

MATLAB Toolbox

Version 6.0

06-0ct-2000

Version 4.0

Version 4.0

04-0ct-2000

Stateflow Coder

Version 4.0

04-0ct-2000

Real -Time Workshop

Version 4.0

COMA Reference Blockset

Version 1.0.2

Communications Blockset

Version 2.0

Communications Toolbox

Version 2.0

Control System Toolbox

Version 5.0

DSP Blockset

Version 4.0

Data Acquisition Toolbox

Version 2.0

05-0ct-2000

Database Toolbox

Version 2.1

Datafeed Toolbox

Version 1.2

Dials & Gauges Blockset

Version 1.1

Filter Design Toolbox

Version 2.0

Financial Derivatives Toolbox

Version 1.0

Financial Time Series Toolbox

Version 1.0

Financial Toolbox

Version 2.1.2

Fixed-Point Blockset

Version 3.0

Fuzzy Logic Toolbox

Version 2.1

GARCH Toolbox

Version 1.0

Image Processing Toolbox

Version 2.2.2

Instrument Control Toolbox

Version 1.0

LMI Control Toolbox

Version 1.0.6

MATLAB Compiler

Version 2.1

MATLAB Report Generator

Version 1.1

Mapping Toolbox

Version 1.2


Version 1.0.5

Motorola DSP Developer"s Kit

Version 1.1

Ol-Sep-2000

Ми-Analysis and Synthesis Toolbox

Version 3.0.5

Neural Network Toolbox

Version 4.0

Nonlinear Control Design Blockset

Version 1.1.4

Optimization Toolbox

Version 2.1

Partial Differential Equation Toolbox

Version 1.0.3

Power System Blockset

Version 2.1

Real -Time Workshop Ada Coder

Version 4.0

Real -Time Workshop Embedded Coder

Version 1.0

Requirements Management Interface

Version 1.0.1

Robust Control Toolbox

Version 2.0.7

SB2SL (converts SystemBuild to Simu

Version 2.1

Signal Processing Toolbox

Version 5.0

Simulink Accelerator

Version 1.0

Model Differencing for Simulink and...

Version 1.0

Simulink Model Coverage Tool

Version 1.0

Simulink Report Generator

Version 1.1

Spline Toolbox

Version 3.0

Statistics Toolbox

Version 3.0

Symbolic Math Toolbox

Version 2.1.2


Version 5.0

Wavelet Toolbox

Version 2.0

Version 1.1

xPC Target Embedded Option

Version 1.1

Обратите внимание, что практически все пакеты расширения в MATLAB 6.0 обновлены и датируются 2000 годом. Заметно расширено их описание, которое в PDF-формате уже занимает много более десятка тысяч страниц. Ниже дано краткое описание основных пакетов расширения

3. Simulink for Windows

Simulink for Windows

Пакет расширения Simulink служит для имитационного моделирования моделей, состоящих из графических блоков с заданными свойствами (параметрами). Компоненты моделей, в свою очередь, являются графическими блоками и моделями, которые содержатся в ряде библиотек и с помощью мыши могут переноситься в основное окно и соединяться друг с другом необходимыми связями. В состав моделей могут включаться источники сигналов различного вида, виртуальные регистрирующие приборы, графические средства анимации. Двойной щелчок мышью на блоке модели выводит окно со списком его параметров, которые пользователь может менять. Запуск имитации обеспечивает математическое моделирование построенной модели с наглядным визуальным представлением результатов. Пакет основан на построении блочных схем путем переноса блоков из библиотеки компонентов в окно редактирования создаваемой пользователем модели. Затем модель запускается на выполнение. На рис. 23.1 показан процесс моделирования простой системы - гидравлического цилиндра. Контроль осуществляется с помощью виртуальных осциллографов - на рис. 23.1 видны экраны двух таких осциллографов и окно простой подсистемы модели. Возможно моделирование сложных систем, состоящих из множества подсистем.

Simulink составляет и решает уравнения состояния модели и позволяет подключать в нужные ее точки разнообразные виртуальные измерительные приборы. Поражает наглядность представления результатов моделирования. Ряд примеров применения пакета Simulink уже приводился в уроке 4. Предшествующая версия пакета достаточно подробно описана в книгах. Основным нововведением является обработка матричных сигналов. Добавлены отдельные пакеты повышения производительности Simulink, такие как Simulink Accelerator для компиляции кода моделей, Simulink profiler для анализа кода и т. д.

Рис. 23.1. Пример моделирования системы гидравлического цилиндра с помощью расширения Simulink

1.gif

Изображение:

1b.gif

Изображение:

4. Real Time Windows Target и Workshop

Real Time Windows Target и Workshop

Подключающаяся к Simulink мощная подсистема имитационного моделирования в реальном масштабе времени (при наличии дополнительных аппаратных средств в виде плат расширения компьютера), представленная пакетами расширения Real Time Windows Target и Workshop, - мощное средство управления реальными объектами и системами. Кроме того, эти расширения позволяют создавать исполняемые коды моделей. Рис. 4.21 в уроке 4 показывает пример такого моделирования для системы, описываемой нелинейными дифференциальными уравнениями Ван-дер-Поля. Достоинством такого моделирования является его математическая и физическая наглядность. В компонентах моделей Simulink можно задавать не только фиксированные параметры, но и математические соотношения, описывающие поведение моделей.

5. Report Generator для MATLAB и Simulink

Report Generator для MATLAB и Simulink

Генераторы отчетов - средство, введенное еще в MATLAB 5.3.1, дает информацию о работе системы MATLAB и пакета расширения Simulink. Это средство очень полезно при отладке сложных вычислительных алгоритмов или при моделировании сложных систем. Генераторы отчетов запускаются командой Report. Отчеты могут быть представлены в виде программ и редактироваться.

Генераторы отчетов могут запускать входящие в отчеты команды и фрагменты программ и позволяют проконтролировать поведение сложных вычислений.

6. Neural Networks Toolbox

Neural Networks Toolbox

Пакет прикладных программ, содержащих средства для построения нейронных сетей, базирующихся на поведении математического аналога нейрона. Па-кет обеспечивает эффективную поддержку проектирования, обучения и моделирования множества известных сетевых парадигм, от базовых моделей персептрона до самых современных ассоциативных и самоорганизующихся сетей. Пакет может быть использован для исследования и применения нейронных сетей к таким задачам, как обработка сигналов, нелинейное управление и финансовое моделирование. Обеспечена возможность генерации переносимого С-кода с помощью Real Time Workshop.

В пакет включены более 15 известных типов сетей и обучающих правил, позволяющих пользователю выбирать наиболее подходящую для конкретного приложения или исследовательской задачи парадигму. Для каждого типа архитектуры и обучающих правил имеются функции инициализации, обучения, адаптации, создания и моделирования, демонстрации и пример приложения сети.

Для управляемых сетей можно выбрать прямую или рекуррентную архитектуру, используя множество обучающих правил и методов проектирования, таких как персептрон, обратное распространение, обратное распространение Левенберга, сети с радиальным базисом и рекуррентные сети. Вы можете легко изменять любые архитектуры, обучающие правила или переходные функции, добавлять новые, - и все это без написания единой строки на Си или ФОРТРАН. Пример применения пакета для распознавания образа буквы приводился в уроке 4. Детальное описание предшествующей версии пакета можно найти в книге.

7. Fuzzy Logic Toolbox

Fuzzy Logic Toolbox

Пакет прикладных программ Fuzzy Logic относится к теории нечетких (размытых) множеств. Обеспечивается поддержка современных методов нечеткой кластеризации и адаптивных нечетких нейронных сетей. Графические средства пакета позволяют интерактивно отслеживать особенности поведения системы.

Основные возможности пакета:

  • определение переменных, нечетких правил и функций принадлежности;
  • интерактивный просмотр нечеткого логического вывода;
  • современные методы: адаптивный нечеткий вывод с использованием нейронных сетей, нечеткая кластеризация;
  • интерактивное динамическое моделирование в Simulink;
  • генерация переносимого Си кода с помощью Real-Time Workshop.

Этот пример наглядно показывает отличия в поведении модели при учете нечеткой логики и без такого учета.

8. Symbolic Math Toolbox

Symbolic Math Toolbox

Пакет прикладных программ, дающих системе MATLAB принципиально новые возможности - возможности решения задач в символьном (аналитическом) виде, включая реализацию точной арифметики произвольной разрядности. Пакет базируется на применении ядра символьной математики одной из самых мощных систем компьютерной алгебры - Maple V R4. Обеспечивает выполнение символьного дифференцирования и интегрирования, вычисление сумм и произведений, разложение в ряды Тейлора и Маклорена, операции со степенными многочленами (полиномами), вычисление корней полиномов, решение в аналитическом виде нелинейных уравнений, всевозможные символьные преобразования, подстановки и многое другое. Имеет команды прямого доступа к ядру системы Maple V.

Пакет позволяет готовить процедуры с синтаксисом языка программирования системы Maple V R4 и устанавливать их в системе MATLAB. К сожалению, по возможностям символьной математики пакет сильно уступает специализированным системам компьютерной алгебры, таким как новейшие версии Maple и Mathematica.

9. Пакеты математических вычислений

Пакеты математических вычислений

В MATLAB входит множество пакетов расширения, усиливающих математические возможности системы, повышающих скорость, эффективность и точность вычислений.

10. NAG Foundation Toolbox

NAG Foundation Toolbox

Одна из самых мощных библиотек математических функций, созданная специальной группой The Numerical Algorithms Group, Ltd. Пакет содержит сотни новых функций. Названия функций и синтаксис их вызова заимствованы из известной библиотеки NAG Foundation Library. Вследствие этого опытные пользователи NAG ФОРТРАН могут без затруднений работать с пакетом NAG в MATLAB. Библиотека NAG Foundation предоставляет свои функции в виде объектных кодов и соответствующих m-файлов для их вызова. Пользователь может легко модифицировать эти МЕХ-файлы на уровне исходного кода.

Пакет обеспечивает следующие возможности:

    корни многочленов и модифицированный метод Лагерра;

    вычисление суммы ряда: дискретное и эрмитово-дискретное преобразование Фурье;

    обыкновенные дифференциальные уравнения: методы Адамса и Рунге-Кутта;

    уравнения в частных производных;

    интерполяция;

    вычисление собственных значений и векторов, сингулярных чисел, поддержка комплексных и действительных матриц;

    аппроксимация кривых и поверхностей: полиномы, кубические сплайны, полиномы Чебышева;

    минимизация и максимизация функций: линейное и квадратичное программирование, экстремумы функций нескольких переменных;

    разложение матриц;

    решение систем линейных уравнений;

    линейные уравнения (LAPACK);

    статистические расчеты, включая описательную статистику и распределения вероятностей;

    корреляционный и регрессионный анализ: линейные, многомерные и обобщенные линейные модели;

    многомерные методы: главных компонент, ортогональные вращения;

    генерация случайных чисел: нормальное распределение, распределения Пуассона, Вейбулла и Кощи;

    непараметрические статистики: Фридмана, Крускала-Уоллиса, Манна-Уитни; О временные ряды: одномерные и многомерные;

    аппроксимации специальных функций: интегральная экспонента, гамма-функция, функции Бесселя и Ганкеля.

Наконец, этот пакет позволяет пользователю создавать программы на ФОРТРАН, которые динамически линкуются с MATLAB.

11. Spline Toolbox

Пакет прикладных программ для работы со сплайнами. Поддерживает одномерную, двумерную и многомерную сплайн-интерполяцию и аппроксимацию. Обеспечивает представление и отображение сложных данных и поддержку графики.

Пакет позволяет выполнять интерполяцию, аппроксимацию и преобразование сплайнов из В-формы в кусочно-полиномиальную, интерполяцию кубическими сплайнами и сглаживание, выполнение операций над сплайнами: вычисление производной, интеграла и отображение.

Пакет Spline оснащен программами работы с В-сплайнами, описанными в работе «A Practical Guide to Splines» Карлом Дебуром, создателем сплайнов и автором пакета Spline. Функции пакета в сочетании с языком MATLAB и подробным руководством пользователя облегчают понимание сплайнов и их эффективное применение к решению разнообразных задач.

В пакет включены программы для работы с двумя наиболее широко распространенными формами представления сплайнов: В-формой и кусочно-полиномиальной формой. В-форма удобна на этапе построения сплайнов, в то время как кусочно-полиномиальная форма более эффективна во время постоянной работы со сплайном. Пакет включает функции для создания, отображения, интерполяции, аппроксимации и обработки сплайнов в В-форме и в виде отрезков полиномов.

12. Statistics Toolbox

Statistics Toolbox

Пакет прикладных программ по статистике, резко расширяющий возможности системы MATLAB в области реализации статистических вычислений и статистической обработки данных. Содержит весьма представительный набор средств генерации случайных чисел, векторов, матриц и массивов с различными законами распределения, а также множество статистических функций. Следует отметить, что наиболее распространенные статистические функции входят в состав ядра системы MATLAB (в том числе функции генерации случайных данных с равномерным и нормальным распределением). Основные возможности пакета:

    описательная статистика;

    распределения вероятностей;

    оценка параметров и аппроксимация;

    проверка гипотез;

    множественная регрессия;

    интерактивная пошаговая регрессия;

    моделирование Монте-Карло;

    аппроксимация на интервалах;

    статистическое управление процессами;

    планирование эксперимента;

    моделирование поверхности отклика;

    аппроксимация нелинейной модели;

    анализ главных компонент;

    статистические графики;

    графический интерфейс пользователя.

Пакет включает 20 различных распределений вероятностей, включая t (Стъюдента), F и Хи-квадрат. Подбор параметров, графическое отображение распределений и способ вычисления лучших аппроксимаций предоставляются для всех типов распределений. Предусмотрено множество интерактивных инструментов для динамической визуализации и анализа данных. Имеются специализированные интерфейсы для моделирования поверхности отклика, визуализации распределений, генерации случайных чисел и линий уровня.

13. Optimization Toolbox

Optimization Toolbox

Пакет прикладных задач- для решения оптимизационных задач и систем нелинейных уравнений. Поддерживает основные методы оптимизации функций ряда переменных:

    безусловная оптимизация нелинейных функций;

    метод наименьших квадратов и нелинейная интерполяция;

    решение нелинейных уравнений;

    линейное программирование;

    квадратичное программирование;

    условная минимизация нелинейных функций;

    метод минимакса;

    многокритериальная оптимизация.

Разнообразные примеры демонстрируют эффективное применение функций пакета. С их помощью можно также сравнить, как одна и та же задача решается разными методами.

14. Partial Differential Equations Toolbox

Partial Differential Equations Toolbox

Весьма важный пакет прикладных программ, содержащий множество функций для решения систем дифференциальных уравнений в частных производных. Дает эффективные средства для решения таких систем уравнений, в том числе жестких. В пакете используется метод конечных элементов. Команды и графический интерфейс пакета могут быть использованы для математического моделирования уравнений в частных производных применительно к широкому классу инженерных и научных приложений, включая задачи сопротивления материалов, расчеты электромагнитных устройств, задачи тепломассопереноса и диффузии. Основные возможности пакета:

    полноценный графический интерфейс для обработки уравнений с частными производными второго порядка;

    автоматический и адаптивный выбор сетки;

    задание граничных условий: Дирихле, Неймана и смешанных;

    гибкая постановка задачи с использованием синтаксиса MATLAB;

    полностью автоматическое сеточное разбиение и выбор величины конечных элементов;

    нелинейные и адаптивные расчетные схемы;

    возможность визуализации полей различных параметров и функций решения, демонстрация принятого разбиения и анимационные эффекты.

Пакет интуитивно следует шести шагам решения PDE с помощью метода конечных элементов. Эти шаги и соответствующие режимы пакета таковы: определение геометрии (режим рисования), задание граничных условий (режим граничных условий), выбор коэффициентов, определяющих задачу (режим PDE), дисркре-тизация конечных элементов (режим сетки), задание начальных условий и решение уравнений (режим решения), последующая обработка решения (режим графика).

15. Пакеты анализа и синтеза систем управления

Пакеты анализа и синтеза систем управления

Control System Toolbox

Пакет Control System предназначен для моделирования, анализа и проектирования систем автоматического управления - как непрерывных, так и дискретных. Функции пакета реализуют традиционные методы передаточных функций и современные методы пространства состояний. Частотные и временные отклики, диаграммы расположения нулей и полюсов могут быть быстро вычислены и отображены на экране. В пакете реализованы:

    полный набор средств для анализа MIMO-систем (множество входов - множество выходов) систем;

    временные характеристики: передаточная и переходная функции, реакция на произвольное воздействие;

    частотные характеристики: диаграммы Боде, Николса, Найквиста и др.;

    разработка обратных связей;

    проектирование LQR/LQE-регуляторов;

    характеристики моделей: управляемость, наблюдаемость, понижение порядка моделей;

    поддержка систем с запаздыванием.

Дополнительные функции построения моделей позволяют конструировать более сложные модели. Временной отклик может быть рассчитан для импульсного входа, единичного скачка или произвольного входного сигнала. Имеются также функции для анализа сингулярных чисел.

Интерактивная среда для сравнения временного и частотного отклика систем предоставляет пользователю графические управляющие элементы для одновременного отображения откликов и переключения между ними. Можно вычислять различные характеристики откликов, такие как время разгона и время регулирования.

Пакет Control System содержит средства для выбора параметров обратной связи. Среди традиционных методов: анализ особых точек, определение коэффициента усиления и затухания. Среди современных методов: линейно-квадратичное регулирование и др. Пакет Control System включает большое количество алгоритмов для проектирования и анализа систем управления. Кроме того, он обладает настраиваемым окружением и позволяет создавать свои собственные m-файлы.

16. Nonlinear Control Design Toolbox

Nonlinear Control Design Toolbox

Nonlinear Control Design (NCD) Blockset реализует- метод динамической оптимизации для проектирования систем управления. Этот инструмент, разработанный для использования с Simulink, автоматически настраивает системные параметры, основываясь на определенных пользователем ограничениях на временные характеристики.

Пакет использует перенос объектов мышью для изменения временных ограничений прямо на графиках, что позволяет легко настраивать переменные и указывать неопределенные параметры, обеспечивает интерактивную оптимизацию, реализует моделирование методом Монте-Карло, поддерживает проектирование SISO- (один вход - один выход) и MIMO-систем управления, позволяет моделировать подавление помех, слежение и другие типы откликов, поддерживает проблемы повторяющегося параметра и задачи управления системами с запаздыванием, позволяет осуществлять выбор между удовлетворенными и недостижимыми ограничениями.

17. Robust Control Toolbox

Robust Control Toolbox

Пакет Robust Control включает средства для проектирования и анализа многопараметрических устойчивых систем управления. Это системы с ошибками моделирования, динамика которых известна не полностью или параметры которых могут изменяться в ходе моделирования. Мощные алгоритмы пакета позволяют выполнять сложные вычисления с учетом изменения множества параметров. Возможности пакета:

    синтез LQG-регуляторов на основе минимизации равномерной и интегральной нормы;

    многопараметрический частотный отклик;

    построение модели пространства состояний;

    преобразование моделей на основе сингулярных чисел;

    понижение порядка модели;

    спектральная факторизация.

Пакет Robust Control базируется на функциях пакета Control System, одновременно предоставляя усовершенствованный набор алгоритмов для проектирования систем управления. Пакет обеспечивает переход между современной теорией управления и практическими приложениями. Он имеет множество функций, реализующих современные методы проектирования и анализа многопараметрических робастных регуляторов.

Проявления неопределенностей, нарушающих устойчивость систем, многообразны - шумы и возмущения в сигналах, неточность модели передаточной функции, немоделируемая нелинейная динамика. Пакет Robust Control позволяет оценить многопараметрическую границу устойчивости при различных неопределенностях. Среди используемых методов: алгоритм Перрона, анализ особенностей передаточных функций и др.

Пакет Robust Control обеспечивает различные методы проектирования обратных связей, среди которых: LQR, LQG, LQG/LTR и др. Необходимость понижения порядка модели возникает в нескольких случаях: понижение порядка объекта, понижение порядка регулятора, моделирование больших систем. Качественная процедура понижения порядка модели должна быть численно устойчива. Процедуры, включенные в пакет Robust Control, успешно справляются с этой задачей.

18. Model Predictive Control Toolbox

Model Predictive Control Toolbox

Пакет Model Predictive Control содержит полный набор средств для реализации стратегии предиктивного (упреждающего) управления. Эта стратегия была разработана для решения практических задач управления сложными многоканальными процессами при наличии ограничений на переменные состояния и управление. Методы предикативного управления используются в химической промышленности и для управления другими непрерывными процессами. Пакет обеспечивает:

    моделирование, идентификацию и диагностику систем;

    поддержку MISO (много входов - один выход), MIMO, переходных характеристик, моделей пространства состояний;

    системный анализ;

    конвертирование моделей в различные формы представления (пространство состояний, передаточные функции);

    предоставление учебников и демонстрационных примеров.

Предикативный подход к задачам управления использует явную линейную динамическую модель объекта для прогнозирования влияния будущих изменений управляющих переменных на поведение объекта. Проблема оптимизации формулируется в виде задачи квадратичного программирования с ограничениями, решаемой на каждом такте моделирования заново. Пакет позволяет создавать и тестировать регуляторы как для простых, так и для сложных объектов.

Пакет содержит более полусотни специализированных функций для проектирования, анализа и моделирования динамических систем с использованием предикативного управления. Он поддерживает следующие типы систем: импульсные, непрерывные и дискретные по времени, пространство состояний. Обрабатываются различные виды возмущений. Кроме того, в модель могут быть явно включены ограничения на входные и выходные переменные.

Средства моделирования позволяют осуществлять слежение и стабилизацию. Средства анализа включают вычисление полюсов замкнутого контура, частотного отклика, другие характеристики системы управления. Для идентификации модели в пакете имеются функции взаимодействия с пакетом System Identification. Пакет также включает две функции Simulink, позволяющие тестировать нелинейные модели.

19. мю - Analysis and Synthesis

(Мю)-Analysis and Synthesis

Пакет p-Analysis and Synthesis содержит функции для проектирования устойчивых систем управления. Пакет использует оптимизацию в равномерной норме и сингулярный параметр и. В этот пакет включен графический интерфейс для упрощения операций с блоками при проектировании оптимальных регуляторов. Свойства пакета:

  • проектирование регуляторов, оптимальных в равномерной и интегральной норме;
  • оценка действительного и комплексного сингулярного параметра мю;
  • D-K-итерации для приближенного мю -синтеза;

    графический интерфейс для анализа отклика замкнутого контура;

    средства понижения порядка модели;

    непосредственное связывание отдельных блоков больших систем.

Модель пространства состояний может быть создана и проанализирована на основе системных матриц. Пакет поддерживает работу с непрерывными и дискретными моделями. Пакет обладает полноценным графическим интерфейсом, включающим в себя: возможность устанавливать диапазон вводимых данных, специальное окно для редактирования свойств D-K итераций и графическое представление частотных характеристик. Имеет функции для матричного сложения, умножения, различных преобразований и других операций над матрицами. Обеспечивает возможность понижения порядка моделей.

20. Stateflow

Stateflow - пакет моделирования событийно-управляемых систем, основанный на теории конечных автоматов. Этот пакет предназначен для использования вместе с пакетом моделирования динамических систем Simulink. В любую Simulink-мо-дель можно вставить Stateflow-диаграмму (или SF-диаграмму), которая будет отражать поведение компонентов объекта (или системы) моделирования. SF-диаграмма является анимационной. По ее выделяющимся цветом блокам и связям можно проследить все стадии работы моделируемой системы или устройства и поставить ее работу в зависимость от тех или иных событий. Рис. 23.6 иллюстрирует моделирование поведения автомобиля при возникновении чрезвычайного обстоятельства на дороге. Под моделью автомобиля видна SF-диаграмма (точнее, один кадр ее работы).

Для создания SF-диаграмм пакет имеет удобный и простой редактор, а также средства пользовательского интерфейса.

21. Quantitative Feedback Theory Toolbox

Quantitative Feedback Theory Toolbox

Пакет содержит функции для создания робастных (устойчивых) систем с обратной связью. QFT (количественная теория обратных связей) - инженерный метод, использующий частотное представление моделей для удовлетворения различных требований к качеству при наличии неопределенных характеристик объекта. В основе метода лежит наблюдение, что обратная связь необходима в тех случаях, когда некоторые характеристики объекта неопределенны и/или на его вход подаются неизвестные возмущения. Возможности пакета:

    оценка частотных границ неопределенности, присущей обратной связи;

    графический интерфейс пользователя, позволяющий оптимизировать процесс нахождения требуемых параметров обратной связи;

    функции для определения влияния различных блоков, вводимых в модель (мультиплексоров, сумматоров, петель обратной связи) при наличии неопределенностей;

    поддержка моделирования аналоговых и цифровых контуров обратной связи, каскадов и многоконтурных схем;

    разрешение неопределенности в параметрах объекта с использованием параметрических и непараметрических моделей или комбинации этих типов моделей.

Теория обратных связей является естественным продолжением классического частотного подхода к проектированию. Ее основная цель - проектирование простых регуляторов небольшого порядка с минимальной шириной полосы пропускания, удовлетворяющих качественным характеристикам при наличии неопределенностей.

Пакет позволяет вычислять различные параметры обратных связей, фильтров, проводить тестирование регуляторов как в непрерывном, так и в дискретном пространстве. Имеет удобный графический интерфейс, позволяющий создавать простые регуляторы, удовлетворяющие требованиям пользователя.

QFT позволяет проектировать регуляторы, удовлетворяющие различным требованиям, несмотря на изменения параметров модели. Измеряемые данные могут быть непосредственно использованы для проектирования регуляторов, без необходимости идентификации сложного отклика системы.

22. LMI Control Toolbox

LMI Control Toolbox

Пакет LMI (Linear Matrix Inequality) Control обеспечивает интегрированную среду для постановки и решения задач линейного программирования. Предназначенный первоначально для проектирования систем управления пакет позволяет решать любые задачи линейного программирования практически в любой сфере деятельности, где такие задачи возникают. Основные возможности пакета:

    решение задач линейного программирования: задачи совместности ограничений, минимизация линейных целей при наличии линейных ограничений, минимизация собственных значений;

    исследование задач линейного программирования;

    графический редактор задач линейного программирования;

    задание ограничений в символьном виде;

    многокритериальное проектирование регуляторов;

    проверка устойчивости: квадратичная устойчивость линейных систем, устойчивость по Ляпунову, проверка критерия Попова для нелинейных систем.

Пакет LMI Control содержит современные симплексные алгоритмы для решения задач линейного программирования. Использует структурное представление линейных ограничений, что повышает эффективность и минимизирует требования к памяти. Пакет имеет специализированные средства для анализа и проектирования систем управления на основе линейного программирования.

С помощью решателей задач линейного программирования можно легко выполнять проверку устойчивости динамических систем и систем с нелинейными компонентами. Ранее этот вид анализа считался слишком сложным для реализации. Пакет позволяет даже такое комбинирование критериев, которое ранее считалось слишком сложным и разрешимым лишь с помощью эвристических подходов.

Пакет является мощным средством для решения выпуклых задач оптимизации, возникающих в таких областях, как управление, идентификация, фильтрация," структурное проектирование, теория графов, интерполяция и линейная алгебра. Пакет LMI Control включает два вида графического интерфейса пользователя: редактор задачи линейного программирования (LMI Editor) и интерфейс Magshape. LMI Editor позволяет задавать ограничения в символьном виде, a Magshape обеспечивает пользователя удобными средствами работы с пакетом.

23. Пакеты идентификации систем

Пакеты идентификации систем

System Identification Toolbox

Пакет System Identification содержит средства для создания математических моделей динамических систем на основе наблюдаемых входных и выходных данных. Он имеет гибкий графический интерфейс, помогающий организовать данные и создавать модели. Методы идентификации, входящие в пакет, применимы для решения широкого класса задач, от проектирования систем управления и обработки сигналов до анализа временных рядов и вибрации. Основные свойства пакета:

    простой и гибкий интерфейс;

    предварительная обработка данных, включая предварительную фильтрацию, удаление трендов и смещений; О выбор диапазона данных для анализа;

    анализ отклика во временной и частотной области;

    отображение нулей и полюсов передаточной функции системы;

    анализ невязок при тестировании модели;

    построение сложных диаграмм, таких как диаграмма Найквиста и др.

Графический интерфейс упрощает предварительную обработку данных, а также диалоговый процесс идентификации модели. Возможна также работа с пакетом в командном режиме и с применением расширения Simulink. Операции загрузки и сохранения данных, выбора диапазона, удаления смещений и трендов выполняются с минимальными усилиями и находятся в главном меню.

Представление данных и идентифицированных моделей организовано графически таким образом, что в процессе интерактивной идентификации пользователь легко может вернуться к предыдущему шагу работы. Для новичков существует возможность просматривать следующие возможные шаги. Специалисту графические средства позволяют отыскать любую из ранее полученных моделей и оценить ее качество в сравнении с другими моделями.

Начав с измерения выхода и входа, можно создать параметрическую модель системы, описывающую ее поведение в динамике. Пакет поддерживает все традиционные структуры моделей, включая авторегрессию, структуру Бокса-Дженкинса и др. Он поддерживает линейные модели пространства состояний, которые могут быть определены как в дискретном, так и в непрерывном пространстве. Эти модели могут включать произвольное число входов и выходов. В пакет включены функции, которые можно использовать как тестовые данные для идентифицированных моделей. Идентификация линейных моделей широко используется при проектировании систем управления, когда требуется создать модель объекта. В задачах обработки сигналов модели могут быть использованы для адаптивной обработки сигналов. Методы идентификации успешно применяются и для финансовых приложений.

24. Frequency Domain System Identification Toolbox

Frequency Domain System Identification Toolbox

Пакет Frequency Domain System Identification предоставляет специализированные средства для идентификации линейных динамических систем по их временному или частотному отклику. Частотные методы направлены на идентификацию непрерывных систем, что является мощным дополнением к более традиционной дискретной методике. Методы пакета могут быть применены к таким задачам, как моделирование электрических, механических и акустических систем. Свойства пакета:

    периодические возмущения, пик-фактор, оптимальный спектр, псевдослучайные и дискретные двоичные последовательности;

    расчет доверительных интервалов амплитуды и фазы, нулей и полюсов;

    идентификация непрерывных и дискретных систем с неизвестным запаздыванием;

    диагностика модели, включая моделирование и вычисление невязок;

    преобразование моделей в формат System Identification Toolbox и обратно.

Используя частотный подход, можно добиться наилучшей модели в частотной области; избежать ошибок дискретизации; легко выделять постоянную составляющую сигнала; существенно улучшить отношение сигнал/шум. Для получения возмущающих сигналов пакет предоставляет функции генерации двоичных последовательностей, минимизации величины пика и улучшения спектральных характеристик. Пакетом обеспечивается идентификация непрерывных и дискретных линейных статических систем, автоматическая генерация входных сигналов, а также графическое изображение нулей и полюсов передаточной функции результирующей системы. Функции для тестирования модели включают вычисление невязок, передаточных функций, нулей и полюсов, прогонку модели с использованием тестовых данных.

25. Дополнительные пакеты расширения MATLAB

Дополнительные пакеты расширения MATLAB

Communications Toolbox

Пакет прикладных программ для построения и моделирования разнообразных телекоммуникационных устройств: цифровых линий связи, модемов, преобразователей сигналов и др. Имеет богатейший набор моделей самых различных устройств связи и телекоммуникаций. Содержит ряд интересных примеров моделирования коммуникационных средств, например модема, работающего по протоколу v34, модулятора для обеспечения однополосной модуляции и др.

26. Digital Signal Processing (DSP) Blockset

Digital Signal Processing (DSP) Blockset

Пакет прикладных программ для проектирования устройств, использующих процессоры цифровой обработки сигналов. Это прежде всего высокоэффективные цифровые фильтры с заданной или адаптируемой к параметрам сигналов частотной характеристикой (АЧХ). Результаты моделирования и проектирования цифровых устройств с помощью этого пакета могут использоваться для построения высокоэффективных цифровых фильтров на современных микропроцессорах цифровой обработки сигналов.

27. Fixed-Point Blockset

Fixed-Point Blockset

Этот специальный пакет ориентирован на моделирование цифровых систем управления и цифровых фильтров в составе пакета Simulink. Специальный набор компонентов позволяет быстро переключаться между вычислениями с фиксированной и плавающей запятой (точкой). Можно указывать 8-, 16- или 32-битовую длину слова. Пакет обладает рядом полезных свойств:

    применение беззнаковой или двоичной арифметики;

    выбор пользователем положения двоичной точки;

    автоматическая установка положения двоичной точки;

    просмотр максимального и минимального диапазонов сигнала модели;

    переключение между вычислениями с фиксированной и плавающей точкой;

    коррекция переполнения и наличие ключевых компонентов для операций с фиксированной точкой; логические операторы, одно- и двумерные справочные таблицы.

28. Пакеты для обработки сигналов и изображений

Пакеты для обработки сигналов и изображений

Signal Processing Toolbox

Мощный пакет по анализу, моделированию и проектированию устройств обработки всевозможных сигналов, обеспечению их фильтрации и множества преобразований.

Пакет Signal Processing обеспечивает чрезвычайно обширные возможности создания программ обработки сигналов для современных научных и технических приложений. В пакете используется разнообразная техника фильтрации и новейшие алгоритмы спектрального анализа. Пакет содержит модули для разработки линейных систем и анализа временных рядов. Пакет будет полезен, в частности, в таких областях, как обработка аудио- и видеоинформации, телекоммуникации, геофизика, задачи управления в реальном режиме времени, экономика, финансы и медицина. Основные свойства пакета:

    моделирование сигналов и линейных систем;

    проектирование, анализ и реализация цифровых и аналоговых фильтров;

    быстрое преобразование Фурье, дискретное косинусное и другие преобразования;

    оценка спектров и статистическая обработка сигналов;

    параметрическая обработка временных рядов;

    генерация сигналов различной формы.

Пакет Signal Processing - идеальная оболочка для анализа и обработки сигналов. В нем используются проверенные практикой алгоритмы, выбранные по критериям максимальной эффективности и надежности. Пакет содержит широкий спектр алгоритмов для представления сигналов и линейных моделей. Этот набор позволяет пользователю достаточно гибко подходить к созданию сценария обработки сигналов. Пакет включает алгоритмы для преобразования модели из одного представления в другое.

Пакет Signal Processing включает полный набор методов для создания цифровых фильтров с разнообразными характеристиками. Он позволяет быстро разрабатывать фильтры верхних и нижних частот, полосовые пропускающие и задерживающие фильтры, многополосные фильтры, в том числе фильтры Чебышева, Юла-Уолкера, эллиптические и др.

Графический интерфейс позволяет проектировать фильтры, задавая требования к ним в режиме переноса объектов мышью. В пакет включены следующие новые методы проектирования фильтров:

    обобщенный метод Чебышева для создания фильтров с нелинейной фазовой характеристикой, комплексными коэффициентами или произвольным откликом. Алгоритм разработан Макленаном и Карамом в 1995 г.;

    метод наименьших квадратов с ограничениями позволяет пользователю явно контролировать максимальную ошибку (сглаживание);

    метод расчета минимального порядка фильтра с окном Кайзера;

    обобщенный метод Баттерворта для проектирования низкочастотных фильтров с максимально однородными полосами пропускания и затухания.

Основанный на оптимальном алгоритме быстрого преобразования Фурье пакет Signal Processing обладает непревзойденными характеристиками для частотного анализа и спектральных оценок. Пакет включает функции для вычисления дискретного преобразования Фурье, дискретного косинусного преобразования, преобразования Гильберта и других преобразований, часто применяемых для анализа, кодирования и фильтрации. В пакете реализованы такие методы спектрального анализа как метод Вельха, метод максимальной энтропии и др.

Новый графический интерфейс позволяет просматривать и визуально оценивать характеристики сигналов, проектировать и применять фильтры, производить спектральный анализ, исследуя влияние различных методов и их параметров на получаемый результат. Графический интерфейс особенно полезен для визуализации временных рядов, спектров, временных и частотных характеристик, расположения нулей и полюсов передаточных функций систем.

Пакет Signal Processing является основой для решения многих других задач. Например, комбинируя его с пакетом Image Processing, можно обрабатывать и анализировать двумерные сигналы и изображения. В паре с пакетом System Identification пакет Signal Processing позволяет выполнять параметрическое моделирование систем во временной области. В сочетании с пакетами Neural Network и Fuzzy Logic может быть создано множество средств для обработки данных или выделения классификационных характеристик. Средство генерации сигналов позволяет создавать импульсные сигналы различной формы.

29. Higher-Order Spectral Analysis Toolbox

Higher-Order Spectral Analysis Toolbox

Пакет Higher-Order Spectral Analysis содержит специальные алгоритмы для анализа сигналов с использованием моментов высшего порядка. Пакет предоставляет широкие возможности для анализа негауссовых сигналов, так как содержит алгоритмы, пожалуй, самых передовых методов для анализа и обработки сигналов. Основные возможности пакета:

    оценка спектров высокого порядка;

    традиционный или параметрический подход;

    восстановление амплитуды и фазы;

    адаптивное линейное прогнозирование;

    восстановление гармоник;

    оценка запаздывания;

    блочная обработка сигналов.

Пакет Higher-Order Spectral Analysis позволяет анализировать сигналы, поврежденные негауссовым шумом, и процессы, происходящие в нелинейных системах. Спектры высокого порядка, определяемые в терминах моментов высокого порядка сигнала, содержат дополнительную информацию, которую невозможно получить, пользуясь только анализом автокорреляции или спектра мощности сигнала. Спектры высокого порядка позволяют:

    подавить аддитивный цветной гауссов шум;

    идентифицировать неминимально-фазовые сигналы;

    выделить информацию, обусловленную негауссовым характером шума;

    обнаружить и проанализировать нелинейные свойства сигналов.

Возможные приложения спектрального анализа высокого порядка включают акустику, биомедицину, эконометрию, сейсмологию, океанографию, физику плазмы, радары и локаторы. Основные функции пакета поддерживают спектры высокого порядка, взаимную спектральную оценку, линейные модели прогноза и оценку запаздывания.

30. Image Processing Toolbox

Image Processing Toolbox

Пакет Image Processing предоставляет ученым, инженерам и даже художникам широкий спектр средств для цифровой обработки и анализа изображений. Будучи тесно связанным со средой разработки приложений MATLAB, пакет Image Processing Toolbox освобождает вас от выполнения длительных операций кодирования и отладки алгоритмов, позволяя сосредоточить усилия на решении основной научной или практической задачи. Основные свойства пакета:

    восстановление и выделение деталей изображений;

    работа с выделенным участком изображения;

    анализ изображения;

    линейная фильтрация;

    преобразование изображений;

    геометрические преобразования;

    увеличение контрастности важных деталей;

    бинарные преобразования;

    обработка изображений и статистика;

    цветовые преобразования;

    изменение палитры;

    преобразование типов изображений.

Пакет Image Processing дает широкие возможности для создания и анализа графических изображений в среде MATLAB. Этот пакет обеспечивает чрезвычайно гибкий интерфейс, позволяющий манипулировать изображениями, интерактивно разрабатывать графические картины, визуализировать наборы данных и аннотировать результаты для технических описаний, докладов и публикаций. Гибкость, соединение алгоритмов пакета с такой особенностью MATLAB, как матрично-векторное описание делают пакет очень удачно приспособленным для решения практически любых задач по разработке и представлению графики. Примеры применения этого пакета в среде системы MATLAB были даны в уроке 7. В MATLAB входят специально разработанные процедуры, позволяющие повысить эффективность графической оболочки. Можно отметить, в частности, такие особенности:

    интерактивная отладка при разработке графики;

    профилировщик для оптимизации времени выполнения алгоритма;

    средства построения интерактивного графического интерфейса пользователя (GUI Builder) для ускорения разработки GUI-шаблонов, позволяющие настраивать его под задачи пользователя.

Этот пакет позволяет пользователю тратить значительно меньше времени и сил на создание стандартных графических изображений и, таким образом, сконцентрировать усилия на важных деталях и особенностях изображений.

MATLAB и пакет Image Processing максимально приспособлены для развития, внедрения новых идей и методов пользователя. Для этого имеется набор сопрягаемых пакетов, направленных на решение всевозможных специфических задач и задач в нетрадиционной постановке.

Пакет Image Processing в настоящее время интенсивно используется в более чем 4000 компаниях и университетах по всему миру. При этом имеется очень широкий круг задач, которые пользователи решают с помощью данного пакета, например космические исследования, военные разработки, астрономия, медицина, биология, робототехника, материаловедение, генетика и т. д.

31. Wavelet Toolbox

Пакет Wavelet предоставляет пользователю полный набор программ для исследования многомерных нестационарных явлений с помощью вейвлетов (коротких волновых пакетов). Сравнительно недавно созданные методы пакета Wavelet расширяют возможности пользователя в тех областях, где обычно применяется техника Фурье-разложения. Пакет может быть полезен для таких приложений, как обработка речи и аудиосигналов, телекоммуникации, геофизика, финансы и медицина. Основные свойства пакета:

    усовершенствованный графический пользовательский интерфейс и набор команд для анализа, синтеза, фильтрации сигналов и изображений;

    преобразование многомерных непрерывных сигналов;

    дискретное преобразование сигналов;

    декомпозиция и анализ сигналов и изображений;

    широкий выбор базисных функций, включая коррекцию граничных эффектов;

    пакетная обработка сигналов и изображений;

    анализ пакетов сигналов, основанный на энтропии;

    фильтрация с возможностью установления жестких и нежестких порогов;

    оптимальное сжатие сигналов.

Пользуясь пакетом, можно анализировать такие особенности, которые упускают другие методы анализа сигналов, т. е. тренды, выбросы, разрывы в производных высоких порядков. Пакет позволяет сжимать и фильтровать сигналы без явных потерь даже в тех случаях, когда нужно сохранить и высоко- и низкочастотные компоненты сигнала. Имеются алгоритмы сжатия и фильтрации и для пакетной обработки сигналов. Программы сжатия выделяют минимальное число коэффициентов, представляющих исходную информацию наиболее точно, что очень важно для последующих стадий работы системы сжатия. В пакет включены следующие базисные наборы вейвлетов: биортогональный, Хаара, «Мексиканская шляпа», Майера и др. Вы также можете добавить в пакет свои собственные базисы.

Обширное руководство пользователя объясняет принципы работы с методами пакета, сопровождая их многочисленными примерами и полноценным разделом ссылок.

32. Прочие пакеты прикладных программ

Прочие пакеты прикладных программ

Financial Toolbox

Довольно актуальный для нашего периода рыночных реформ пакет прикладных программ по финансово-экономическим расчетам. Содержит множество функций по расчету сложных процентов, операций по банковским вкладам, вычисления прибыли и многое другое. К сожалению, из за многочисленных (хотя, в общем-то, не слишком принципиальных) различий в финансово-экономических формулах его применение в наших условиях не всегда разумно - есть множество отечественных программ для таких расчетов, - например «Бухгалтерия 1C». Но если вы хотите подключиться к базам данных агентств финансовых новостей - Bloom-berg, IDC через пакет Datafeed Toolbox MATLAB, то, конечно, обязательно пользуйтесь и финансовыми пакетами расширения MATLAB.

Пакет Financial является основой для решения в MATLAB множества финансовых задач, от простых вычислений до полномасштабных распределенных приложений. Пакет Financial может быть использован для расчета процентных ставок и прибыли, анализа производных доходов и депозитов, оптимизации портфеля инвестиций. Основные возможности пакета:

    обработка данных;

    дисперсионный анализ эффективности портфеля инвестиций;

    анализ временных рядов;

    расчет доходности ценных бумаг и оценка курсов;

    статистический анализ и анализ чувствительности рынка;

    калькуляция ежегодного дохода и расчет денежных потоков;

    методы начисления износа и амортизационных отчислений.

Учитывая важность даты той или иной финансовой операции, в пакет Financial включены несколько функций для манипулирования датами и временем в различных форматах. Пакет Financial позволяет рассчитывать цены и доходы при инвестициях в облигации. Пользователь имеет возможность задавать нестандартные, в том числе нерегулярные и несовпадающие друг с другом, графики дебитных и кредитных операций и окончательного расчета при погашении векселей. Экономические функции чувствительности могут быть вычислены с учетом разновременных сроков погашения.

Алгоритмы пакета Financial для расчета показателей движения денежных средств и других данных, отражаемых в финансовых счетах, позволяют вычислять, в частности, процентные ставки по займам и кредитам, коэффициенты рентабельности, кредитные поступления и итоговые начисления, оценивать и прогнозировать стоимость инвестиционного портфеля, вычислять показатели износа и т. п. Функции пакета могут быть использованы с учетом положительного и отрицательного денежных потоков (cash-flow) (превышения денежных поступлений над платежами или денежных выплат над поступлениями соответственно).

Пакет Financial содержит алгоритмы, которые позволяют анализировать портфель инвестиций, динамику и экономические коэффициенты чувствительности. В частности, при определении эффективности инвестиций функции пакета позволяют сформировать портфель, удовлетворяющий классической задаче Г. Марковица. Пользователь может комбинировать алгоритмы пакета для вычисления коэффициентов Шарпе и ставок дохода. Анализ динамики и экономических коэффициентов чувствительности позволяет пользователю определить позиции для стреддл-сделок, хеджирования и сделок с фиксированными ставками. Пакет Financial обеспечивает также обширные возможности для представления и презентации данных и результатов в виде традиционных для экономической и финансовой сфер деятельности графиков и диаграмм. Денежные средства могут по желанию пользователя отображаться в десятичном, банковском и процентном форматах.

33. Mapping Toolbox

Пакет Mapping предоставляет графический и командный интерфейс для анализа географических данных, отображения карт и доступа к внешним источникам данных по географии. Кроме того, пакет пригоден для работы с множеством широко известных атласов. Все эти средства в комбинации с MATLAB предоставляют пользователям все условия для продуктивной работы с научными географическими данными. Основные возможности пакета:

    визуализация, обработка и анализ графических и научных данных;

    более 60 проекций карт (прямые и инверсные);

    проектирование и отображение векторных, матричных и составных карт;

    графический интерфейс для построения и обработки карт и данных;

    глобальные и региональные атласы данных и сопряжение с правительственными данными высокого разрешения;

    функции географической статистики и навигации;

    трехмерное представление карт со встроенными средствами подсветки и затенения;

    конвертеры для популярных форматов географических данных: DCW, TIGER, ЕТОРО5.

Пакет Mapping включает более 60 наиболее широко известных проекций, включая цилиндрическую, псевдоцилиндрическую, коническую, поликоническую и псевдоконическую, азимутальную и псевдоазимутальную. Возможны прямые и обратные проекции, а также нестандартные виды проекции, задаваемые пользователем.

В пакете Mapping картой называется любая переменная или множество переменных, отражающих или назначающих численное значение географической точке или области. Пакет позволяет работать с векторными, матричными и смешанными картами данных. Мощный графический интерфейс обеспечивает интерактивную работу с картами, например возможность подвести указатель к объекту и, щелкнув на нем, получить информацию. Графический интерфейс MAPTOOL - полная среда разработки приложений для работы с картами.

Наиболее широко известные атласы мира, Соединенных Штатов, астрономические атласы входят в состав пакета. Географическая структура данных упрощает извлечение и обработку данных из атласов и карт. Географическая структура данных и функции взаимодействия с внешними географическими данными форматов Digital Chart of the World (DCW), TIGER, TBASE и ЕТОРО5 собраны воедино, чтобы обеспечить мощный и гибкий инструмент для доступа к уже существующим и будущим географическим базам данных. Тщательный анализ географических данных часто требует математических методов, работающих в сферической системе координат. Пакет Mapping снабжен подмножеством географических, статистических и навигационных функций для анализа географических данных. Функции навигации дают широкие возможности для выполнения задач перемещения, таких как позиционирование и планирование маршрутов.

34. Power System Blockset

Data Acquisition Toolbox и Instrument Control Toolbox

Data Acquisition Toolbox - пакет расширения, относящийся к области сбора данных через блоки, подключаемые к внутренней шине компьютера, функциональных генераторов, анализаторов спектра - словом, приборов, широко используемых в исследовательских целях для получения данных. Они поддержаны соответствующей вычислительной базой. Новый блок Instrument Control Toolbox позволяет подключать приборы и устройства с последовательным интерфейсом и с интерфейсами Канал общего пользования и VXI.

36. Database toolbox и Virtual Reality Toolbox

Database toolbox и Virtual Reality Toolbox

Более чем в 100 раз повышена скорость работы Database toolbox, при помощи которого осуществляется обмен информацией с целым рядом систем управления базами данных через драйверы ODBC или JDBC:

  • Access 95 или 97 Microsoft;

    Microsoft SQL Server 6.5 или 7.0;

    Sybase Adaptive Server 11;

    Sybase (бывший Watcom) SQL Server Anywhere 5.0;

    IBM DB2 Universal 5.0;

  • Computer Associates Ingres (все версии).

Все данные предварительно преобразуются в массив ячеек в MATLAB 6.0. В MATLAB 6.1 можно использовать и массив структур. Визуальный конструктор (Visual Query Builder) позволяет составлять сколь угодно сложные запросы на диалектах языка SQL этих баз данных даже без знания SQL. В одном сеансе может быть открыто много неоднородных баз данных.

Пакет Virtual Reality Toolbox доступен начиная с версии MATLAB 6.1. Позволяет осуществлять трехмерную анимацию и мультипликацию, в том числе моделей Simulink. Язык программирования - VRML - язык моделирования виртуальной реальности (Virtual Reality Modeling Language). Просмотр анимации возможен с любого компьютера, оснащенного браузером с поддержкой VRML. Подтверждает, что математика - наука о количественных соотношениях и пространственных формах любых действительных или виртуальных миров.

37. Excel Link

Позволяет использовать Microsoft Excel 97 как процессор ввода-вывода MATLAB. Для этого достаточно установить в Excel как add-in функцию поставляемый Math Works файл excllinkxla. В Excel нужно набрать Сервис > Надстройки > Обзор, выбрать файл в каталоге \matlabrl2\toolbox\exlink и установить его. Теперь при каждом запуске Excel появится командное окно MATLAB, а панель управления Excel дополнится кнопками getmatrix, putmatrix, evalstring. Для закрытия MATLAB из Excel достаточно набрать =MLC1ose() в любой ячейке Excel. Для открытия после выполнения этой команды нужно либо щелкнуть мышью на одной из кнопок getmatrix, putmatrix, evalstring, либо набрать в Excel Сервис > Макрос >Выполнить mat! abi ni t. Выделив мышью диапазон ячеек Excel, вы можете щелкнуть на getmatrix и набрать имя переменной MATLAB. Матрица появится в Excel. Заполнив числами диапазон ячеек Excel, вы можете выделить этот диапазон, щелкнуть на putmatrix и ввести имя переменной MATLAB. Работа, таким образом, интуитивно понятна. В отличие от MATLAB Excel Link не чувствителен к регистру: I и i, J и j равноценны.

Вызывать демонстрационные примеры пакетов расширения.