Мышь компьютерная правильное название. Компьютерная мышка правильное название

23.03.2019

УРАВНЕНИЯ СОСТОЯНИЯ , ур-ния, выражающие связь между физически однородной системы при термодинамич. . Термическое уравнение состояния связывает р с объемом V и т-рой T, а для - также с составом (молярными долями компонентов). Калорическое уравнение состояния выражает внутр. энергию системы как ф-цию V, T и состава. Обычно под уравнением состояния, если специально не оговаривается, подразумевают термич. уравнение состояния. Из него можно непосредственно получить коэф. термич. расширения, коэф. изотермич. сжатия, термич. коэф. (упругости). Уравнение состояния является необходимым дополнением к термодинамич. законам. Пользуясь уравнениями состояния, можно раскрыть зависимость термодинамич. ф-ций от V и р, проинтегрировать дифференц. термодинамич. соотношения, рассчитать (фугитивносги) , через к-рые обычно записывают условия . устанавливает связь между уравнениями состояния и любым из системы, выраженным в виде ф-ции своих естественных переменных. Напр., если известна (свободная энергия) F как ф-ция T и V, то уравнение состояния не может быть получено с помощью одних только законов , оно определяется из опыта или выводится методами статистич. физики. Последняя задача очень сложная и м. б. решена лишь для упрощенных моделей системы, напр, для . Уравнения состояния, применяемые для реальных систем, имеют эмпирич. или полуэмпирич. характер. Ниже рассмотрены нек-рые наиб, известные и перспективные уравнения состояния.

У равнение состояния имеет вид pV=RT, где V-молярный объем, R - . Этому ур-нию подчиняются при высоких разрежениях (см. Клапейрона - Менделеева уравнение).

Св-ва при небольших и средних хорошо описываются : pV/RT = 1 + B 2 /V+B 3 /V 2 + ..., где B 2 , В 3 - второй, третий и т.д. вириальные коэффициенты. Для данного в-ва они зависят лишь от т-ры. состояния обосновано теоретически; показано, что коэф. B 2 определяется взаимод. , В 3 - взаимод. трех частиц и т.д. При больших плотностях в-ва записанное выше разложение по степеням обратного объема расходится, поэтому вириальное ур-ние непригодно для описания . Оно служит лишь для расчета компонентов газообразных B-B. Обычно ограничиваются членом B 2 /V (редко B 3 /V 2). В лит. приводят эксперим. значения вириальных коэф., разработаны и теоре-тич. методы их определения. Уравнение состояния со вторым вириальным коэф. B 2 широко используют для газовой фазы при расчетах в случае не слишком высоких (до 10 атм). Его применяют также для описания св-в разбавленных р-ров высокомол. в-в (см. ).

Для практич. расчетов в широком диапазоне т-р и важное значение имеют уравнения состояния, способные описать одновременно св-ва жидкой и газовой фаз. В первые такое ур-ние было предложено И. Ван-дер-Ваальсом в 1873:

р = RT(V-b)-a/V 2 ,

где а и b - постоянные Ван-дер-Ваальса, характерные для данного в-ва (см. ). Это уравнение состояния имеет третий порядок относительно объёма V, любая изотерма при , меньших критич. значений (в докри-тич. области), имеет три действит. положит, корня при фиксир. . Наиб, из корней ур-ния соответствует газовой фазе, наименьший - жидкой; средний корень ур-ния физ. смысла не имеет. В сверхкритич. области изотермы имеют лишь один действит. корень.

Кубич. зависимость от объема сохраняется во MH. эмпирич. модификациях ур-ния Ван-дер-Ваальса. Чаще других используют двухпараметрич. ур-ния Пенга - Робинсона (1976) и Редлиха - Квонга - Соаве (1949, 1972). Эмпирич. постоянные этих уравнений состояния можно определить по критич. параметрам в-ва (см. ). Чтобы расширить круг описываемых уравнений состояния систем, набор рассматриваемых CB-B, диапазон т-р и , разработаны кубич. Уравнения состояния, содержащие три и более эмпирич. постоянных. Важное преимущество кубич. уравнений состояния- их простота, благодаря чему при расчетах с помощью ЭВМ не требуется слишком больших затрат машинного времени. Для мн. систем, образованных неполярными или слабо полярными в-вами, эти уравнения состояния обеспечивают требуемую для практич. целей точность.

Для неполярных и слабо полярных в-в ур-ние БВР дает очень точные результаты. Для индивидуального в-ва оно содержит восемь подгоночных параметров, для смеси дополнительно вводятся параметры смешанного ("бинарного") взаимодействия. Оценка большого числа подгоночных параметров - задача очень сложная, требующая многочисленных и разнообразных эксперим. данных. Параметры ур-ния БВР известны лишь для неск. десятков в-в, гл. обр. и неорг. . Модификации ур-ния, направленные, в частности, на повышение точности описания св-в конкретных в-в, содержат еще большее число подгоночных параметров. Несмотря на это, добиться удовлетворит, результатов для полярных в-в не всегда удается. Усложненность формы затрудняет использование уравнений состояния этого типа при расчетах процессов , когда необходимо выполнять многократную оценку компонентов, объема и системы.

При описании смесей в-в эмпирич. постоянные уравнения состояния считаются зависящими от состава. Для кубич. уравнений состояния ван-дер-ва-альсового типа общеприняты квадратичные правила , согласно к-рым постоянные а и b для смеси определяют из соотношений:

где x i , x j - молярные доли компонентов, величины a ij и b ij связывают с постоянными для индивидуальных в-в a ii , a jj и b ii , b jj согласно комбинационным правилам:

a ij = (a ii a jj) 1/2 (1-k ij); 6 ij = (b ii +b jj)/2,

где k ij - подгоночные параметры смешанного взаимод., определяемые по эксперим. данным. Однако квадратичные правила не позволяют получить удовлетворит, результаты для т. наз. асимметричных систем, компоненты к-рых сильно отличаются по полярности и мол. размерам, напр, для смесей с .

M. Гурон и Дж. Видал в 1979 сформулировали правила нового типа, опирающиеся на модели локального состава, к-рые успешно передают асимметрию концснтрац. зависимостей избыточного потенциала Гиббса G E для и позволяют существенно улучшить описание . Суть подхода состоит в том, что приравнивают величины G E жидкого р-ра, получаемые из уравнений состояния и рассчитываемые согласно выбранной модели локального состава [ур-ния Вильсона, NRTL (Non-Random Two Liquids equation), UNIQAC (UNIversal QUAsi-Chemical equation), UNIFAC (UNIque Functional group Activity Coefficients model); CM. ]. Это направление интенсивно развивается.

Многие двухпараметрич. уравнения состояния (Ван-дер-Ваальса, вириаль-ное с третьим вириальным коэф. и др.) можно представить в виде приведенного уравнения состояния:

f(p пр, Т пр, V пр)= 0,

где p пр = р/р крит, Т пр =Т/Т крит, V пр = V/V крит - приведенные . В-ва с одинаковыми значениями р пр и Т пр имеют одинаковый приведенный объем V np ; совпадают также факторы Z = pV/RT, коэф. и нек-рые др. термодинамич. ф-ции (см. ). Более общий подход, к-рый позволяет расширить круг рассматриваемых в-в, связан с введением в приведенное уравнение состояния дополнит, параметров. Наиб, простые среди них - фактор критич. Z кpит = р крит V кpит /RT кpит. и ацентрич. фактор w = -Ig p пр -1 (при Т пр = 0,7). Ацентрич. фактор является показателем несферичности поля межмол. сил данного в-ва (для он близок к нулю).

К. Питцер предложил пользоваться для расчета фактора линейным разложением

Z(T кpит, р крит) = Z 0 (T кpит, р крит)+ w Z"(T кpит, р крит),

где Z 0 означает фактор "простой" , напр, a Z" характеризует отклонения от модели простой (см. ). Предложены , определяющие зависимости Z°(T кpит, р крит)

и Z"(T кpит, р крит). Наиб, известны корреляции Ли и Кесслера, в к-рых зависимость Z 0 от T кpит и р крит передается с помощью ур-ния БВР для . Зависимость Z" от T кpит и р крит установлена при выборе в качестве "эталонной" н-октана. Принимается, что Z"(T кpит, р крит) = /w *, где w * - фактор ацентричности н-октана, Z* - его фактор согласно ур-нию БВР. Разработана методика применения ур-ния Ли-Кесслера и для . Это уравнение состояния наиб, точно описывает термодинамич. св-ва и для неполярных в-в и смесей.

Наряду с вышеупомянутыми эмпирич. уравнениями состояния важное значение приобрели ур-ния, обладающие возможностями учета особенностей структуры и межмол. взаимод. Они опираются на положения статистич. теории и результаты численных экспериментов для модельных систем. Согласно мол.-статистич. трактовке, ур-ние Ван-дер-Ваальса описывает флюид твердых притягивающихся сфер, рассматриваемый в приближении среднею поля. В новых ур-ниях уточняется прежде всего член ур-ния Ван-дер-Ваальса, обусловливаемый силами межчастичного отталкивания. Значительно точнее приближение Кариахана- Старлинга, опирающееся на результаты численного флюида твердых сфер в широком диапазоне плотностей. Оно используется во многих уравнениях состояния, однако большие возможности имеют уравнения состояния модельных систем твердых частиц, в к-рых учитывается асимметрия мол. формы. Напр., в ур-нии BACK (Boublik-Alder-Chen-Kre-glewski) для оценки вклада сил отталкивания служит уравнение состояния флюида твердых частиц, имеющих форму гантелей. Для учета вклада сил притяжения употребляют выражение, аппроксимирующее результаты, полученные методом мол. динамики для флюида с межчастичными потенциалами типа прямоугольной ямы (см. ). Ур-ние BACK и его аналоги позволяют с достаточной точностью описывать смеси, не содержащие высококипящих компонентов.

Особенность описания смесей высококипящих орг. B-B -необходимость учета дополнительной вращательно-колебат. степени свободы, связанной со смещениями сегментов молекул-цепочек (напр., C 8). Для этих систем наиб, распространение получило ур-ние PHCT (Perturbed Hard Chain Theory), предложенное Дж. Прауснитцем и M. До-нахью в 1978. Индивидуальное в-во характеризуется тремя эмпирич. параметрами в ур-нии PHCT. Комбинационные правила для смеси содержат один параметр смешанного взаимодействия. Дальнейшее усовершенствование ур-ния PHCT основано на замене потенциала прямоугольной ямы, описывающей притяжение

Добрый день, друзья!

Сегодня мы поговорим об одном очень удобном устройстве, к которому мы так привыкли и без которого уже не представляем работы на компьютере.

Что такое «мышь»?

«Мышь» — это кнопочный манипулятор, предназначенный вместе с клавиатурой для ввода информации в .

Действительно, он похож на мышь с хвостиком. Современный компьютер уже немыслим без этой штуковины.

«Мышью» пользоваться гораздо удобнее, чем, например, встроенным манипулятором ноутбука.

Поэтому частенько пользователи отключают это ноутбучный «коврик» и подключают «мышь».

Как же устроена эта удобная штука?

Первые конструкции манипуляторов

Первые манипуляторы включали в себя шарик, который касался двух валиков с дисками.

Внешний обод каждого диска имел перфорацию . Валы были расположены перпендикулярно друг к другу.

Один вал отвечал за координату Х (горизонтальное перемещение), другой – за координату Y (вертикальное перемещение).

При перемещении манипулятора по столу шарик вращался, передавая крутящий момент на валы.

Если перемещение манипулятора выполнялось в направлении «вправо-влево», то вращался преимущественно вал, отвечающий за координату Х. Курсор на экране монитора перемещался также вправо-влево. Если мышь перемещалась в направлении «к себе-от себя», вращался преимущественно вал, отвечающий за координату Y. Курсор на экране монитора перемещался вверх-вниз.

Если манипулятор перемешался в произвольном направлении, вращались оба вала, соответственно перемещался и курсор.

Оптические датчики в старых «мышах»

Такие устройства содержали в себе два оптических датчика оптопары . Оптопара включает в себя излучатель (светодиод, излучающий в ИК диапазоне) и приемник – (фотодиод или фототранзистор). Излучатель и приемник расположены на близком расстоянии друг от друга.

При движении манипулятора вращаются валы с жестко закрепленными на них дисками. Перфорированный край диска периодически пересекает поток излучения от излучателя к приемнику. В итоге на выходе приемника получается серия импульсов, которая поступает на микросхему-контроллер. Чем быстрее будет перемещаться мышь, тем быстрее будут вращаться валы. Будет большей частота импульсов, и быстрее будет перемещаться курсор по экрану монитора.

Кнопки и колесо прокрутки

Любой манипулятор имеет, как минимум, две кнопки.

Двойной «клик» (нажатие) на одну из них (обычно левую) запускает исполнение программы или файла, нажатие на другую – запускает контекстное меню для соответствующей ситуации.

Устройства, предназначенные для компьютерных игр, могут иметь 5-8 кнопок.

Нажав на одну из них, можно пальнуть в монстра из гранатомета, на другую – пустить ракету, на третью – разрядить в него добрый старый винчестер.

Современные мыши имеют в себе и scroll – колесико прокрутки, что очень удобно при просмотре объемного документа. Просматривать такой документ можно, только вращая колесико и не используя кнопки. Некоторые модели имеют два колеса прокрутки, при этом можно просматривать текст или графическое изображение перемещаясь как вверх-вниз, так и влево-вправо.

Под колесиком прокрутки обычно имеется еще одна кнопка. Если, просматривать документ, вращая колесико и одновременно нажать на него, драйвер манипулятора подключает такой режим, что документ сам начинает перемещаться вверх по экрану. Скорость перемещения зависит от того, с какой скорость пользователь вращал колесико до нажатия на него.

В таком режиме курсор изменяет свое начертание. Это еще более повышает удобство… Короче говоря, добыли, приготовили, разжевали, осталось только проглотить. Повторное нажатие на колесико осуществляет переход от «автопросмотра» в обычный режим.

Оптические «мыши»

В дальнейшем манипулятор был усовершенствован.

Появились так называемые оптические «мыши».

Такие устройства содержат излучающий светодиод (обычно красного цвета), прозрачную отражающую призму из пластика, светочувствительный сенсор и управляющий контроллер.

Светодиод испускает лучи, которые, отражаясь от поверхности, улавливаются сенсором.

При движении манипулятора поток принятого излучения меняется, что улавливается сенсором и передается контроллеру, который вырабатывает стандартные сигналы для конкретного интерфейса. Оптическая мышь более чувствительна к перемещению и не требует для себя коврика, как старый манипулятор с шариком.

В оптической «мыши» нет трущихся частей (за исключением потенциометра, вращение на который передается с колеса прокрутки), которые изнашиваются или загрязняются. Это также является преимуществом.

Возможные проблемы с манипуляторами

Манипулятор «мышь», как и любая техника, имеет ограниченный срок службы. Ни для кого не секрет, что основная часть компьютерной техники делается в Китае. Цель любого бизнеса – это прибыль, поэтому китайские товарищи экономят даже на кабелях для «мышей», максимально утончая их.

Поэтому первое слабое место у манипуляторов – именно кабель.

Чаще всего внутренний обрыв одной или нескольких жил бывает в месте входа кабеля в мышь.

В кабеле имеется 4 провода, два из них – питание, третий – тактовая частота, четвертый – информационный.

Если мышь не видится компьютером, первым делом надо «позвонить» кабель .

Если обнаружен обрыв, следует отрезать часть кабеля с разъемом (за местом входа кабеля в корпус «мыши» ближе к разъему) и оставшийся кусок к печатной плате манипулятора, соблюдая, естественно, расцветку.

Мыши с разъемом PS/2 нельзя переключать «на ходу» .

В противном случае ее контроллер (крохотный ее «мозг») может выйти из строя. И хорошо еще, если дело ограничится только этим. Может выйти из строя и контроллер интерфейса PS/2 на материнской плате, что гораздо хуже.

Если кабель цел, а мышь не опознается контроллером, то, скорее всего, вышел из строя ее контроллер, и она подлежит замене. Обрыв кабеля у оптических мышей можно заподозрить и по отсутствию свечения светодиода (который расположен вблизи поверхности, которая ездит по столу). В других случаях свечения может не быть из-за неисправности светодиода или контроллера, но такое бывает редко.

Манипуляторы с интерфейсом COM или USB можно переключать «на ходу». Впрочем, в настоящее время устройства с интерфейсом COM практически не встречаются.

«Кликать» мышкой приходится многие тысячи раз, и кнопки после длительной работы могут отказывать. Чтобы заменить кнопку, надо разобрать манипулятор и припаять другую. Не обязательно использовать такую же, какая была. Главное здесь – соблюсти высоту, чтобы сохранить длину хода клавиши. Впрочем, манипуляторы давно уже весьма доступны, и большинство пользователей не заморачиваются с их ремонтом.

Скажем «спасибо» добрым старым «мышкам» с шариком в брюхе – они хорошо нам послужили…

Заканчивая статью, отметим, что существуют разновидности манипуляторов с лазерным излучателем вместо светодиода, которые обеспечивают более точное и быстрое позиционирование курсора. Эти скорость и точность особенно востребованы в играх.

Существуют и wireless (радио) «мыши», в которых обмен информацией с компьютером осуществляется не по проводу, а по радиоканалу. Поэтому они содержат собственный источник питания – пару пальчиковых гальванических элементов типоразмера АА или ААА. Напомним еще раз, что разъем манипулятора вставляется в один из портов .

На сегодня все.

С вами был Виктор Геронда.

До встречи на блоге!

Практически все пользователи стационарных компьютеров в повседневной работе для выполнения каких-либо операций используют мышь. Владельцы ноутбуков тоже частенько обращаются к этому устройству, считая тачпад несколько неудобным. Но давайте посмотрим, что такое мышь в общем понимании и какие типы таких устройств были разработаны изначально и сегодня представлены на рынке. И для начала обратимся к уважаемым информационным источникам, которые представляют описание с задействованием технических терминов, а потом перейдем к более простому рассмотрению вопроса.

Что такое мышь

Исходя из официальной информации, предоставляемой множеством компьютерных изданий, мышь представляет собой универсальный манипулятор указывающего типа, который предназначен для управления графическим интерфейсом операционной системы и выполнения практически всех известных операций на основе привязки устройства к курсору на экране компьютерного монитора.

Принцип управления состоит в перемещении по коврику для мыши, по столу или по любой другой поверхности (это могут делать устройства, для которых коврик не требуется). Информация о смещении или текущем местоположении передается операционной системе или программе, что вызывает ответную реакцию на выполнение каких-то действий (например, отображение дополнительных разворачиваемых меню или списков). Но в конструкции устройства предусмотрено еще и наличие специальных кнопок, которые отвечают за выбор определенного действия. При использовании стандартных настроек для открытия файлов или программ предусмотрен двойной клик левой кнопкой, для выделения объекта или активации элементов интерфейса - одинарный, для доступа к контекстным меню - одинарный клик правой кнопкой. Но это применимо только к классическим конструкциям. Сегодня на рынке такого оборудования можно найти множество моделей, кардинально отличающихся и по конструктивным решениям, и по принципам действия. На них остановимся отдельно.

Немного истории

Впервые о том, что такое мышь, заговорили в 1968 году, когда она была представлена на выставке интерактивных устройств в Калифорнии. Чуть позже, в 1981 году, мышь официально вошла в стандартный набор устройств, которыми комплектовались мини-компьютеры Xerox серии 8010.

Еще несколько позже она стала неотъемлемой частью периферии компьютеров Apple, и только потом мышью начали комплектоваться IBM-совместимые компьютерные системы. С тех пор манипулятор прочно вошел в жизнь всех пользователей, хотя и претерпел множество изменений и постоянно вводимых новшеств в плане конструктивных решений, принципов работы, управления, выполняемых действий, а также расширенных возможностей.

Основные виды манипуляторов по принципу действия

Изначально мышь подразумевала конструкцию на основе прямого привода, который состоял из двух перпендикулярно расположенных колес, что позволяло производить перемещение в разные стороны независимо от угла.

Чуть позже появились устройства на основе шарового привода, в котором главную роль играл вмонтированный металлический шарик с резиновым покрытием, которое обеспечивало улучшенное сцепление с поверхностью коврика для мыши. Следующим поколением стали устройства, оснащенные контактным энкодером (текстолитовым диском) с тремя контактами на лучевидных металлических дорожках. Наконец, были созданы оптические мыши на основе одного свето- и двух фотодиодов.

Именно оптические устройства стали самыми распространенным и востребованными среди пользователей. В их классификации можно выделить следующие модели:

Из этого набора особого внимания заслуживают устройства гироскопического типа. Они способны осуществлять управление не только при перемещении по поверхности, но и в вертикальном положении в пространстве.

Типы мышек по подключению

Что такое мышь, немного разобрались. Теперь посмотрим, как такие манипуляторы подключаются к компьютерным системам. Изначально для соединения с компьютером на материнской плате был предусмотрен специальный вход, а мышь подключалась посредством шнура со специальным штекером тюльпанного типа.

С появлением интерфейсов USB стали использоваться манипуляторы, которые соединялись с компьютерами именно через них. Наконец, появились беспроводные устройства, которые, правда, тоже, по сути, представляют собой USB-мышь, поскольку для них используется специальный датчик или планшетный коврик, подключаемый как раз через USB-порт. Еще несколько позднее стали использоваться устройства на основе радиомодулей Bluetooth. А это уже точно беспроводные мыши.

Основные и дополнительные кнопки мыши

Теперь несколько слов об основных элементах любого такого манипулятора. В свое время компания Apple посчитала, что для управления интерфейсом достаточно всего одной кнопки, поэтому долгое время ориентировалась именно на такие устройства. Потом выяснилось, что одной кнопки явно недостаточно, и компьютерный мир перешел на устройства с двумя и тремя клавишами. Однако вскоре стало понятно, что и этого не хватает. Так, например, особой популярностью стали пользоваться модели, в которых присутствовали дополнительные кнопки управления громкостью. И, конечно же, появилось колесико прокрутки, которое упрощало перемещение по экрану.

Дополнительные элементы управления

Конструкция что USB-мыши, что любого другого типа постоянно совершенствуется. И тут на первый план выходит специфика использования манипулятора.

Так, например, игровые мыши, кроме того, что обладают дополнительными кнопками, могут оснащаться еще и мини-джойстиками, трекболами, кнопками программирования и сенсорными полосками, которые в некотором смысле являются аналогами самых обычных тачпадов, которые устанавливаются на ноутбуках.

Да и само колесико прокрутки стало выполнять двойную функцию. Кроме того что им можно осуществлять перемещение вверх/вниз, при нажатии на него оно срабатывает как средняя клавиша трехкнопочной мыши.

Основные настройки мыши в Windows

Это важный вопрос. Теперь посмотрим, как осуществляется настройка мыши в Windows-системах. Для этого необходимо использовать соответствующий раздел «Панели управления».

Настроек здесь хватает. Все зависит от типа подключаемого устройства. Но мышь в Windows, как правило, настраивается на трех основных вкладках, содержащих параметры кнопок, колесика и выбора указателей. Можно настроить чувствительность, скорость перемещения по экрану, сменить ориентацию кнопок, выбрать типы указателей для любой выполняемой операции, указать число строк, на которые должно производиться перемещение при прокрутке, использовать дополнительные визуальные эффекты вроде остаточного следа и многое другое. В общем, настройка мыши даже у неподготовленного пользователя особых сложностей вызывать не должна. По большому счету, параметры, установленные по умолчанию, обычно можно не изменять.

Вместо послесловия

Вот вкратце и все о мыши как одной из составляющих компьютерной системы. Что же касается ее практического использования, на стационарных ПК без нее не обойтись, но владельцы ноутбуков, имеющих тачпад или оснащенных экранами типа тачскрин, вполне могут отказаться от ее подключения к компьютерной системе. И все равно, несмотря на такие инновации, мышь как управляющий элемент остается востребованной и популярной.