Оценка тестового покрытия на проекте. Почему тестирование необходимо

02.08.2019
  • Tutorial

Доброго времени суток!

Хочу собрать всю самую необходимую теорию по тестирвоанию, которую спрашивают на собеседованиях у trainee, junior и немножко middle. Собственно, я собрал уже не мало. Цель сего поста в том, чтобы сообща добавить упущенное и исправить/перефразировать/добавить/сделатьЧтоТоЕщё с тем, что уже есть, чтобы стало хорошо и можно было взять всё это и повторить перед очередным собеседованием про всяк случай. Вообщем, коллеги, прошу под кат, кому почерпнуть что-то новое, кому систематизировать старое, а кому внести свою лепту.

В итоге должна получиться исчерпывающая шпаргалка, которую нужно перечитать по дороге на собеседование.

Всё ниже перечисленное не выдумано мной лично, а взято с разных источников, где мне лично формулировка и определение понравилось больше. В конце список источников.

В теме: определение тестирования, качество, верификация / валидация, цели, этапы, тест план, пункты тест плана, тест дизайн, техники тест дизайна, traceability matrix, tets case, чек-лист, дефект, error/deffect/failure, баг репорт, severity vs priority, уровни тестирования, виды / типы, подходы к интеграционному тестированию, принципы тестирования, статическое и динамическое тестирование, исследовательское / ad-hoc тестирование, требования, жизненный цикл бага, стадии разработки ПО, decision table, qa/qc/test engineer, диаграмма связей.

Поехали!

Тестирование программного обеспечения - проверка соответствия между реальным и ожидаемым поведением программы, осуществляемая на конечном наборе тестов, выбранном определенным образом. В более широком смысле, тестирование - это одна из техник контроля качества, включающая в себя активности по планированию работ (Test Management), проектированию тестов (Test Design), выполнению тестирования (Test Execution) и анализу полученных результатов (Test Analysis).

Качество программного обеспечения (Software Quality) - это совокупность характеристик программного обеспечения, относящихся к его способности удовлетворять установленные и предполагаемые потребности.

Верификация (verification) - это процесс оценки системы или её компонентов с целью определения удовлетворяют ли результаты текущего этапа разработки условиям, сформированным в начале этого этапа. Т.е. выполняются ли наши цели, сроки, задачи по разработке проекта, определенные в начале текущей фазы.
Валидация (validation) - это определение соответствия разрабатываемого ПО ожиданиям и потребностям пользователя, требованиям к системе .
Также можно встретить иную интерпритацию:
Процесс оценки соответствия продукта явным требованиям (спецификациям) и есть верификация (verification), в то же время оценка соответствия продукта ожиданиям и требованиям пользователей - есть валидация (validation). Также часто можно встретить следующее определение этих понятий:
Validation - ’is this the right specification?’.
Verification - ’is the system correct to specification?’.

Цели тестирвоания
Повысить вероятность того, что приложение, предназначенное для тестирования, будет работать правильно при любых обстоятельствах.
Повысить вероятность того, что приложение, предназначенное для тестирования, будет соответствовать всем описанным требованиям.
Предоставление актуальной информации о состоянии продукта на данный момент.

Этапы тестирования:
1. Анализ
2. Разработка стратегии тестирования
и планирование процедур контроля качества
3. Работа с требованиями
4. Создание тестовой документации
5. Тестирование прототипа
6. Основное тестирование
7. Стабилизация
8. Эксплуатация

Тест план (Test Plan) - это документ, описывающий весь объем работ по тестированию, начиная с описания объекта, стратегии, расписания, критериев начала и окончания тестирования, до необходимого в процессе работы оборудования, специальных знаний, а также оценки рисков с вариантами их разрешения.
Отвечает на вопросы:
Что надо тестировать?
Что будете тестировать?
Как будете тестировать?
Когда будете тестировать?
Критерии начала тестирования.
Критерии окончания тестирования.

Основные пункты тест плана
В стандарте IEEE 829 перечислены пункты, из которых должен (пусть - может) состоять тест-план:
a) Test plan identifier;
b) Introduction;
c) Test items;
d) Features to be tested;
e) Features not to be tested;
f) Approach;
g) Item pass/fail criteria;
h) Suspension criteria and resumption requirements;
i) Test deliverables;
j) Testing tasks;
k) Environmental needs;
l) Responsibilities;
m) StafÞng and training needs;
n) Schedule;
o) Risks and contingencies;
p) Approvals.

Тест дизайн - это этап процесса тестирования ПО, на котором проектируются и создаются тестовые случаи (тест кейсы), в соответствии с определёнными ранее критериями качества и целями тестирования.
Роли, ответственные за тест дизайн:
Тест аналитик - определяет «ЧТО тестировать?»
Тест дизайнер - определяет «КАК тестировать?»

Техники тест дизайна

Эквивалентное Разделение (Equivalence Partitioning - EP) . Как пример, у вас есть диапазон допустимых значений от 1 до 10, вы должны выбрать одно верное значение внутри интервала, скажем, 5, и одно неверное значение вне интервала - 0.

Анализ Граничных Значений (Boundary Value Analysis - BVA) . Если взять пример выше, в качестве значений для позитивного тестирования выберем минимальную и максимальную границы (1 и 10), и значения больше и меньше границ (0 и 11). Анализ Граничный значений может быть применен к полям, записям, файлам, или к любого рода сущностям имеющим ограничения.

Причина / Следствие (Cause/Effect - CE) . Это, как правило, ввод комбинаций условий (причин), для получения ответа от системы (Следствие). Например, вы проверяете возможность добавлять клиента, используя определенную экранную форму. Для этого вам необходимо будет ввести несколько полей, таких как «Имя», «Адрес», «Номер Телефона» а затем, нажать кнопку «Добавить» - эта «Причина». После нажатия кнопки «Добавить», система добавляет клиента в базу данных и показывает его номер на экране - это «Следствие».

Исчерпывающее тестирование (Exhaustive Testing - ET) - это крайний случай. В пределах этой техники вы должны проверить все возможные комбинации входных значений, и в принципе, это должно найти все проблемы. На практике применение этого метода не представляется возможным, из-за огромного количества входных значений.

Traceability matrix - Матрица соответствия требований - это двумерная таблица, содержащая соответсвие функциональных требований (functional requirements) продукта и подготовленных тестовых сценариев (test cases). В заголовках колонок таблицы расположены требования, а в заголовках строк - тестовые сценарии. На пересечении - отметка, означающая, что требование текущей колонки покрыто тестовым сценарием текущей строки.
Матрица соответсвия требований используется QA-инженерами для валидации покрытия продукта тестами. МСТ является неотъемлемой частью тест-плана.

Тестовый случай (Test Case) - это артефакт, описывающий совокупность шагов, конкретных условий и параметров, необходимых для проверки реализации тестируемой функции или её части.
Пример:
Action Expected Result Test Result
(passed/failed/blocked)
Open page «login» Login page is opened Passed

Каждый тест кейс должен иметь 3 части:
PreConditions Список действий, которые приводят систему к состоянию пригодному для проведения основной проверки. Либо список условий, выполнение которых говорит о том, что система находится в пригодном для проведения основного теста состояния.
Test Case Description Список действий, переводящих систему из одного состояния в другое, для получения результата, на основании которого можно сделать вывод о удовлетворении реализации, поставленным требованиям
PostConditions Список действий, переводящих систему в первоначальное состояние (состояние до проведения теста - initial state)
Виды Тестовых Случаев:
Тест кейсы разделяются по ожидаемому результату на позитивные и негативные:
Позитивный тест кейс использует только корректные данные и проверяет, что приложение правильно выполнило вызываемую функцию.
Негативный тест кейс оперирует как корректными так и некорректными данными (минимум 1 некорректный параметр) и ставит целью проверку исключительных ситуаций (срабатывание валидаторов), а также проверяет, что вызываемая приложением функция не выполняется при срабатывании валидатора.

Чек-лист (check list) - это документ, описывающий что должно быть протестировано. При этом чек-лист может быть абсолютно разного уровня детализации. На сколько детальным будет чек-лист зависит от требований к отчетности, уровня знания продукта сотрудниками и сложности продукта.
Как правило, чек-лист содержит только действия (шаги), без ожидаемого результата. Чек-лист менее формализован чем тестовый сценарий. Его уместно использовать тогда, когда тестовые сценарии будут избыточны. Также чек-лист ассоциируются с гибкими подходами в тестировании.

Дефект (он же баг) - это несоответствие фактического результата выполнения программы ожидаемому результату. Дефекты обнаруживаются на этапе тестирования программного обеспечения (ПО), когда тестировщик проводит сравнение полученных результатов работы программы (компонента или дизайна) с ожидаемым результатом, описанным в спецификации требований.

Error - ошибка пользователя, то есть он пытается использовать программу иным способом.
Пример - вводит буквы в поля, где требуется вводить цифры (возраст, количество товара и т.п.).
В качественной программе предусмотрены такие ситуации и выдаются сообщение об ошибке (error message), с красным крестиком которые.
Bug (defect) - ошибка программиста (или дизайнера или ещё кого, кто принимает участие в разработке), то есть когда в программе, что-то идёт не так как планировалось и программа выходит из-под контроля. Например, когда никак не контроллируется ввод пользователя, в результате неверные данные вызывают краши или иные «радости» в работе программы. Либо внутри программа построена так, что изначально не соответствует тому, что от неё ожидается.
Failure - сбой (причём не обязательно аппаратный) в работе компонента, всей программы или системы. То есть, существуют такие дефекты, которые приводят к сбоям (A defect caused the failure) и существуют такие, которые не приводят. UI-дефекты например. Но аппаратный сбой, никак не связанный с software, тоже является failure.

Баг Репорт (Bug Report) - это документ, описывающий ситуацию или последовательность действий приведшую к некорректной работе объекта тестирования, с указанием причин и ожидаемого результата.
Шапка
Короткое описание (Summary) Короткое описание проблемы, явно указывающее на причину и тип ошибочной ситуации.
Проект (Project) Название тестируемого проекта
Компонент приложения (Component) Название части или функции тестируемого продукта
Номер версии (Version) Версия на которой была найдена ошибка
Серьезность (Severity) Наиболее распространена пятиуровневая система градации серьезности дефекта:
S1 Блокирующий (Blocker)
S2 Критический (Critical)
S3 Значительный (Major)
S4 Незначительный (Minor)
S5 Тривиальный (Trivial)
Приоритет (Priority) Приоритет дефекта:
P1 Высокий (High)
P2 Средний (Medium)
P3 Низкий (Low)
Статус (Status) Статус бага. Зависит от используемой процедуры и жизненного цикла бага (bug workflow and life cycle)

Автор (Author) Создатель баг репорта
Назначен на (Assigned To) Имя сотрудника, назначенного на решение проблемы
Окружение
ОС / Сервис Пак и т.д. / Браузера + версия /… Информация об окружении, на котором был найден баг: операционная система, сервис пак, для WEB тестирования - имя и версия браузера и т.д.

Описание
Шаги воспроизведения (Steps to Reproduce) Шаги, по которым можно легко воспроизвести ситуацию, приведшую к ошибке.
Фактический Результат (Result) Результат, полученный после прохождения шагов к воспроизведению
Ожидаемый результат (Expected Result) Ожидаемый правильный результат
Дополнения
Прикрепленный файл (Attachment) Файл с логами, скриншот или любой другой документ, который может помочь прояснить причину ошибки или указать на способ решения проблемы.

Severity vs Priority
Серьезность (Severity) - это атрибут, характеризующий влияние дефекта на работоспособность приложения.
Приоритет (Priority) - это атрибут, указывающий на очередность выполнения задачи или устранения дефекта. Можно сказать, что это инструмент менеджера по планированию работ. Чем выше приоритет, тем быстрее нужно исправить дефект.
Severity выставляется тестировщиком
Priority - менеджером, тимлидом или заказчиком

Градация Серьезности дефекта (Severity)

S1 Блокирующая (Blocker)
Блокирующая ошибка, приводящая приложение в нерабочее состояние, в результате которого дальнейшая работа с тестируемой системой или ее ключевыми функциями становится невозможна. Решение проблемы необходимо для дальнейшего функционирования системы.

S2 Критическая (Critical)
Критическая ошибка, неправильно работающая ключевая бизнес логика, дыра в системе безопасности, проблема, приведшая к временному падению сервера или приводящая в нерабочее состояние некоторую часть системы, без возможности решения проблемы, используя другие входные точки. Решение проблемы необходимо для дальнейшей работы с ключевыми функциями тестируемой системой.

S3 Значительная (Major)
Значительная ошибка, часть основной бизнес логики работает некорректно. Ошибка не критична или есть возможность для работы с тестируемой функцией, используя другие входные точки.

S4 Незначительная (Minor)
Незначительная ошибка, не нарушающая бизнес логику тестируемой части приложения, очевидная проблема пользовательского интерфейса.

S5 Тривиальная (Trivial)
Тривиальная ошибка, не касающаяся бизнес логики приложения, плохо воспроизводимая проблема, малозаметная посредствам пользовательского интерфейса, проблема сторонних библиотек или сервисов, проблема, не оказывающая никакого влияния на общее качество продукта.

Градация Приоритета дефекта (Priority)
P1 Высокий (High)
Ошибка должна быть исправлена как можно быстрее, т.к. ее наличие является критической для проекта.
P2 Средний (Medium)
Ошибка должна быть исправлена, ее наличие не является критичной, но требует обязательного решения.
P3 Низкий (Low)
Ошибка должна быть исправлена, ее наличие не является критичной, и не требует срочного решения.

Уровни Тестирования

1. Модульное тестирование (Unit Testing)
Компонентное (модульное) тестирование проверяет функциональность и ищет дефекты в частях приложения, которые доступны и могут быть протестированы по-отдельности (модули программ, объекты, классы, функции и т.д.).

2. Интеграционное тестирование (Integration Testing)
Проверяется взаимодействие между компонентами системы после проведения компонентного тестирования.

3. Системное тестирование (System Testing)
Основной задачей системного тестирования является проверка как функциональных, так и не функциональных требований в системе в целом. При этом выявляются дефекты, такие как неверное использование ресурсов системы, непредусмотренные комбинации данных пользовательского уровня, несовместимость с окружением, непредусмотренные сценарии использования, отсутствующая или неверная функциональность, неудобство использования и т.д.

4. Операционное тестирование (Release Testing).
Даже если система удовлетворяет всем требованиям, важно убедиться в том, что она удовлетворяет нуждам пользователя и выполняет свою роль в среде своей эксплуатации, как это было определено в бизнес моделе системы. Следует учесть, что и бизнес модель может содержать ошибки. Поэтому так важно провести операционное тестирование как финальный шаг валидации. Кроме этого, тестирование в среде эксплуатации позволяет выявить и нефункциональные проблемы, такие как: конфликт с другими системами, смежными в области бизнеса или в программных и электронных окружениях; недостаточная производительность системы в среде эксплуатации и др. Очевидно, что нахождение подобных вещей на стадии внедрения - критичная и дорогостоящая проблема. Поэтому так важно проведение не только верификации, но и валидации, с самых ранних этапов разработки ПО.

5. Приемочное тестирование (Acceptance Testing)
Формальный процесс тестирования, который проверяет соответствие системы требованиям и проводится с целью:
определения удовлетворяет ли система приемочным критериям;
вынесения решения заказчиком или другим уполномоченным лицом принимается приложение или нет.

Виды / типы тестирования

Функциональные виды тестирования
Функциональное тестирование (Functional testing)
Тестирование безопасности (Security and Access Control Testing)
Тестирование взаимодействия (Interoperability Testing)

Нефункциональные виды тестирования
Все виды тестирования производительности:
o нагрузочное тестирование (Performance and Load Testing)
o стрессовое тестирование (Stress Testing)
o тестирование стабильности или надежности (Stability / Reliability Testing)
o объемное тестирование (Volume Testing)
Тестирование установки (Installation testing)
Тестирование удобства пользования (Usability Testing)
Тестирование на отказ и восстановление (Failover and Recovery Testing)
Конфигурационное тестирование (Configuration Testing)

Связанные с изменениями виды тестирования
Дымовое тестирование (Smoke Testing)
Регрессионное тестирование (Regression Testing)
Повторное тестирование (Re-testing)
Тестирование сборки (Build Verification Test)
Санитарное тестирование или проверка согласованности/исправности (Sanity Testing)

Функциональное тестирование рассматривает заранее указанное поведение и основывается на анализе спецификаций функциональности компонента или системы в целом.

Тестирование безопасности - это стратегия тестирования, используемая для проверки безопасности системы, а также для анализа рисков, связанных с обеспечением целостного подхода к защите приложения, атак хакеров, вирусов, несанкционированного доступа к конфиденциальным данным.

Тестирование взаимодействия (Interoperability Testing) - это функциональное тестирование, проверяющее способность приложения взаимодействовать с одним и более компонентами или системами и включающее в себя тестирование совместимости (compatibility testing) и интеграционное тестирование

Нагрузочное тестирование - это автоматизированное тестирование, имитирующее работу определенного количества бизнес пользователей на каком-либо общем (разделяемом ими) ресурсе.

Стрессовое тестирование (Stress Testing) позволяет проверить насколько приложение и система в целом работоспособны в условиях стресса и также оценить способность системы к регенерации, т.е. к возвращению к нормальному состоянию после прекращения воздействия стресса. Стрессом в данном контексте может быть повышение интенсивности выполнения операций до очень высоких значений или аварийное изменение конфигурации сервера. Также одной из задач при стрессовом тестировании может быть оценка деградации производительности, таким образом цели стрессового тестирования могут пересекаться с целями тестирования производительности.

Объемное тестирование (Volume Testing) . Задачей объемного тестирования является получение оценки производительности при увеличении объемов данных в базе данных приложения

Тестирование стабильности или надежности (Stability / Reliability Testing) . Задачей тестирования стабильности (надежности) является проверка работоспособности приложения при длительном (многочасовом) тестировании со средним уровнем нагрузки.

Тестирование установки направленно на проверку успешной инсталляции и настройки, а также обновления или удаления программного обеспечения.

Тестирование удобства пользования - это метод тестирования, направленный на установление степени удобства использования, обучаемости, понятности и привлекательности для пользователей разрабатываемого продукта в контексте заданных условий. Сюда также входит:
Тестирование пользовательского интерфейса (англ. UI Testing) - это вид тестирования исследования, выполняемого с целью определения, удобен ли некоторый искусственный объект (такой как веб-страница, пользовательский интерфейс или устройство) для его предполагаемого применения.
User eXperience (UX) - ощущение, испытываемое пользователем во время использования цифрового продукта, в то время как User interface - это инструмент, позволяющий осуществлять интеракцию «пользователь - веб-ресурс».

Тестирование на отказ и восстановление (Failover and Recovery Testing) проверяет тестируемый продукт с точки зрения способности противостоять и успешно восстанавливаться после возможных сбоев, возникших в связи с ошибками программного обеспечения, отказами оборудования или проблемами связи (например, отказ сети). Целью данного вида тестирования является проверка систем восстановления (или дублирующих основной функционал систем), которые, в случае возникновения сбоев, обеспечат сохранность и целостность данных тестируемого продукта.

Конфигурационное тестирование (Configuration Testing) - специальный вид тестирования, направленный на проверку работы программного обеспечения при различных конфигурациях системы (заявленных платформах, поддерживаемых драйверах, при различных конфигурациях компьютеров и т.д.)

Дымовое (Smoke) тестирование рассматривается как короткий цикл тестов, выполняемый для подтверждения того, что после сборки кода (нового или исправленного) устанавливаемое приложение, стартует и выполняет основные функции.

Регрессионное тестирование - это вид тестирования направленный на проверку изменений, сделанных в приложении или окружающей среде (починка дефекта, слияние кода, миграция на другую операционную систему, базу данных, веб сервер или сервер приложения), для подтверждения того факта, что существующая ранее функциональность работает как и прежде. Регрессионными могут быть как функциональные, так и нефункциональные тесты.

Повторное тестирование - тестирование, во время которого исполняются тестовые сценарии, выявившие ошибки во время последнего запуска, для подтверждения успешности исправления этих ошибок.
В чем разница между regression testing и re-testing?
Re-testing - проверяется исправление багов
Regression testing - проверяется то, что исправление багов не повлияло на другие модули ПО и не вызвало новых багов.

Тестирование сборки или Build Verification Test - тестирование направленное на определение соответствия, выпущенной версии, критериям качества для начала тестирования. По своим целям является аналогом Дымового Тестирования, направленного на приемку новой версии в дальнейшее тестирование или эксплуатацию. Вглубь оно может проникать дальше, в зависимости от требований к качеству выпущенной версии.

Санитарное тестирование - это узконаправленное тестирование достаточное для доказательства того, что конкретная функция работает согласно заявленным в спецификации требованиям. Является подмножеством регрессионного тестирования. Используется для определения работоспособности определенной части приложения после изменений произведенных в ней или окружающей среде. Обычно выполняется вручную.

Предугадывание ошибки (Error Guessing - EG) . Это когда тест аналитик использует свои знания системы и способность к интерпретации спецификации на предмет того, чтобы «предугадать» при каких входных условиях система может выдать ошибку. Например, спецификация говорит: «пользователь должен ввести код». Тест аналитик, будет думать: «Что, если я не введу код?», «Что, если я введу неправильный код? », и так далее. Это и есть предугадывание ошибки.

Подходы к интеграционному тестированию:

Снизу вверх (Bottom Up Integration)
Все низкоуровневые модули, процедуры или функции собираются воедино и затем тестируются. После чего собирается следующий уровень модулей для проведения интеграционного тестирования. Данный подход считается полезным, если все или практически все модули, разрабатываемого уровня, готовы. Также данный подход помогает определить по результатам тестирования уровень готовности приложения.

Сверху вниз (Top Down Integration)
Вначале тестируются все высокоуровневые модули, и постепенно один за другим добавляются низкоуровневые. Все модули более низкого уровня симулируются заглушками с аналогичной функциональностью, затем по мере готовности они заменяются реальными активными компонентами. Таким образом мы проводим тестирование сверху вниз.

Большой взрыв («Big Bang» Integration)
Все или практически все разработанные модули собираются вместе в виде законченной системы или ее основной части, и затем проводится интеграционное тестирование. Такой подход очень хорош для сохранения времени. Однако если тест кейсы и их результаты записаны не верно, то сам процесс интеграции сильно осложнится, что станет преградой для команды тестирования при достижении основной цели интеграционного тестирования.

Принципы тестирования

Принцип 1 - Тестирование демонстрирует наличие дефектов (Testing shows presence of defects)
Тестирование может показать, что дефекты присутствуют, но не может доказать, что их нет. Тестирование снижает вероятность наличия дефектов, находящихся в программном обеспечении, но, даже если дефекты не были обнаружены, это не доказывает его корректности.

Принцип 2 - Исчерпывающее тестирование недостижимо (Exhaustive testing is impossible)
Полное тестирование с использованием всех комбинаций вводов и предусловий физически невыполнимо, за исключением тривиальных случаев. Вместо исчерпывающего тестирования должны использоваться анализ рисков и расстановка приоритетов, чтобы более точно сфокусировать усилия по тестированию.

Принцип 3 - Раннее тестирование (Early testing)
Чтобы найти дефекты как можно раньше, активности по тестированию должны быть начаты как можно раньше в жизненном цикле разработки программного обеспечения или системы, и должны быть сфокусированы на определенных целях.

Принцип 4 - Скопление дефектов (Defects clustering)
Усилия тестирования должны быть сосредоточены пропорционально ожидаемой, а позже реальной плотности дефектов по модулям. Как правило, большая часть дефектов, обнаруженных при тестировании или повлекших за собой основное количество сбоев системы, содержится в небольшом количестве модулей.

Принцип 5 - Парадокс пестицида (Pesticide paradox)
Если одни и те же тесты будут прогоняться много раз, в конечном счете этот набор тестовых сценариев больше не будет находить новых дефектов. Чтобы преодолеть этот «парадокс пестицида», тестовые сценарии должны регулярно рецензироваться и корректироваться, новые тесты должны быть разносторонними, чтобы охватить все компоненты программного обеспечения, или системы, и найти как можно больше дефектов.

Принцип 6 - Тестирование зависит от контекста (Testing is concept depending)
Тестирование выполняется по-разному в зависимости от контекста. Например, программное обеспечение, в котором критически важна безопасность, тестируется иначе, чем сайт электронной коммерции.

Принцип 7 - Заблуждение об отсутствии ошибок (Absence-of-errors fallacy)
Обнаружение и исправление дефектов не помогут, если созданная система не подходит пользователю и не удовлетворяет его ожиданиям и потребностям.

Cтатическое и динамическое тестирование
Статическое тестирование отличается от динамического тем, что производится без запуска программного кода продукта. Тестирование осуществляется путем анализа программного кода (code review) или скомпилированного кода. Анализ может производиться как вручную, так и с помощью специальных инструментальных средств. Целью анализа является раннее выявление ошибок и потенциальных проблем в продукте. Также к статическому тестирвоанию относится тестирования спецификации и прочей документации.

Исследовательское / ad-hoc тестирование
Простейшее определение исследовательского тестирования - это разработка и выполнения тестов в одно и то же время. Что является противоположностью сценарного подхода (с его предопределенными процедурами тестирования, неважно ручными или автоматизированными). Исследовательские тесты, в отличие от сценарных тестов, не определены заранее и не выполняются в точном соответствии с планом.

Разница между ad hoc и exploratory testing в том, что теоретически, ad hoc может провести кто угодно, а для проведения exploratory необходимо мастерство и владение определенными техниками. Обратите внимание, что определенные техники это не только техники тестирования.

Требования - это спецификация (описание) того, что должно быть реализовано.
Требования описывают то, что необходимо реализовать, без детализации технической стороны решения. Что, а не как.

Требования к требованиям:
Корректность
Недвусмысленность
Полнота набора требований
Непротиворечивость набора требований
Проверяемость (тестопригодность)
Трассируемость
Понимаемость

Жизненный цикл бага

Стадии разработки ПО - это этапы, которые проходят команды разработчиков ПО, прежде чем программа станет доступной для широко круга пользователей. Разработка ПО начинается с первоначального этапа разработки (стадия «пре-альфа») и продолжается стадиями, на которых продукт дорабатывается и модернизируется. Финальным этапом этого процесса становится выпуск на рынок окончательной версии программного обеспечения («общедоступного релиза»).

Программный продукт проходит следующие стадии:
анализ требований к проекту;
проектирование;
реализация;
тестирование продукта;
внедрение и поддержка.

Каждой стадии разработки ПО присваивается определенный порядковый номер. Также каждый этап имеет свое собственное название, которое характеризует готовность продукта на этой стадии.

Жизненный цикл разработки ПО:
Пре-альфа
Альфа
Бета
Релиз-кандидат
Релиз
Пост-релиз

Таблица принятия решений (decision table) - великолепный инструмент для упорядочения сложных бизнес требований, которые должны быть реализованы в продукте. В таблицах решений представлен набор условий, одновременное выполнение которых должно привести к определенному действию.

QA/QC/Test Engineer


Таким образом, мы можем построить модель иерархии процессов обеспечения качества: Тестирование - часть QC. QC - часть QA.

Диаграмма связей - это инструмент управления качеством, основанный на определении логических взаимосвязей между различными данными. Применяется этот инструмент для сопоставления причин и следствий по исследуемой проблеме.

Ваша цель как системного администратора
состоит во внедрении эффективных стратегий для
максимизации своих компьютерных ресурсов.


Д. Гантер, С. Барнет, Л. Гантер.
Интеграция Windows NT и Unix

Специалистам в области IT приходится не только знакомиться с многочисленными тестированиями, публикуемыми в компьютерной прессе, но и самим разрабатывать процедуры испытаний, необходимые и при выборе поставщика, и при создании собственного решения. Поэтому попытаемся ответить на вопросы, возникающие в многотрудном процессе тестирования, особенно когда это касается таких сложных систем, как серверы .

Что и зачем тестируется

Часто в компьютерной периодике встречаются разного рода обзоры программ, аппаратных средств и решений. Особый интерес, как правило, представляют сравнительные обзоры функционально однородных продуктов, где приводятся результаты тестирования. Считается, что эти развернутые таблицы помогают пользователю, администратору и IT-профессионалу как минимум быть в курсе происходящего в данной области и даже определиться с выбором продукта.

Итак, какие факторы учитываются в таких случаях, что является объектом исследований и какого рода испытания наиболее популярны?

Критерии тестирования обычно таковы:

  • функциональные возможности продукта;
  • простота освоения;
  • легкость установки;
  • качество документации и поддержки;
  • производительность;
  • для аппаратуры иногда учитывается конструктивное исполнение.

Встречаются и весьма двусмысленные критерии. Не так давно в одном из обзоров Web-серверов при выставлении общей оценки в качестве положительного фактора рассматривалась "высокая степень интеграции с операционной системой". Но если сбой приложения вызывает сбой операционной системы (вероятность чего пропорциональна степени интегрированности) — то такое ли уж это преимущество?

Равна ли сотня кроликов одному тигру?

Отдельно хотелось бы остановиться на соотношении цена/производительность, типичном при оценке аппаратных средств. На первый взгляд, это действительно единственный объективный критерий, связывающий технические характеристики исследуемой системы с кошельком потребителя. Однако и здесь не все так просто, как кажется. Дело в том, что вышеупомянутый подход срабатывает лишь на момент покупки и не учитывает ни цену владения, ни сохранность инвестиций в оборудование или ПО, ни возможность дальнейшей модернизации.

Типичный пример — сравнение старших моделей систем на процессорах Intel с младшими в линии RISC-платформ. Да, действительно, в заданном ценовом диапазоне машины с Intel-архитектурой сопоставимы или, в некоторых случаях, даже превосходят RISC-системы. Однако то, что является потолком для одних платформ, — лишь начальный уровень для других и т. д.

Выводы: относитесь критически к критериям, по которым оценивается продукт, — у вас и у тестеров могут оказаться разные вкусы. Попробуйте сказать приверженцам Unix, что ради удобства графического интерфейса конфигурирования системы стоит смириться с необходимостью перезагрузки после изменения IP-параметров. Что же касается компактности исполнения системного блока, то это хорошо до тех пор, пока вам не понадобится вставить в slim-корпус дополнительный винчестер.

Одним словом — переосмысливайте результаты тестов в соответствии со своими нуждами.

Специфика тестирования серверов

Если компьютер не включается — он неисправен.
Если не выключается — он сервер.
Народная примета

На наш взгляд, одно из фундаментальных требований к серверам — надежность. Производительность, конечно, тоже важна, поскольку она влияет на время отклика системы — важнейшую с точки зрения пользователя характеристику, но доступность сервиса определяется именно надежностью. Своевременность его предоставления, актуальность и целостность информации также зависят от надежности.

Кроме того, следует учитывать, что специализированные, т. е. обеспечивающие только один сервис, серверы пока являются скорее исключением, чем правилом. Обычно один такой компьютер совмещает ряд функций — например, сервер приложений может служить также и файл-сервером, сервером печати, контроллером службы резервного копирования и т. д. Для коммуникационных серверов типична работа с несколькими протоколами прикладного уровня, каждый из которых обслуживается собственным "демоном".

И наконец, характерной особенностью функционирования серверов является наличие пиковых нагрузок. Причины их появления могут быть самыми разными — от начала рабочего дня в большой организации (особенно если все пользователи приходят на работу вовремя) до восстановления "упавшего" соединения у поставщика услуг Internet, когда на коммуникационные серверы обрушиваются накопившаяся почта и группы новостей.

Эти факторы, т. е. требование к повышенной надежности в условиях обеспечения множества сервисов и пиковых нагрузок, должны быть ключевыми при определении идеологии тестирования серверов.

К сожалению, большинство обзоров, публикуемых в компьютерной периодике, посвящено либо сопоставлению производительности разных аппаратных решений на наборе тестовых задач, выполняемых последовательно, либо сравнительному тестированию того или иного сервиса (например, испытание Web-серверов разных производителей). Один из наихудших вариантов такого подхода — когда сравнительный обзор возможностей аналогичных решений называют тестированием только потому, что автор публикации провел инсталляцию и немного "погонял" продукт.

Условия проведения тестирования

Для начала немного теории. Гленфорд Майерс в своей работе "Надежность программного обеспечения" приводит несколько "аксиом тестирования". Попробуем, следуя им, рассмотреть, что и как надо тестировать.

Время от времени в компьютерной прессе появляются сообщения почти спортивного характера: продукт фирмы N показал рекордное быстродействие в тесте M. Насколько информативны тесты, проведенные фирмами-производителями?

Невозможно тестировать свою собственную программу

Зачастую тесты пишутся сотрудниками фирмы под конкретный продукт. Притчей во языцех стали тесты производительности процессоров, написанные так, чтобы реализовать преимущества конкретного процессора. Например, размер тестирующей программы подбирается с учетом ее размещения в кэш-памяти и т. д. Часто достаточно тенденциозным является и графическое представление таких результатов.

Знание особенностей архитектуры приложений и использования ими ресурсов ОС позволяет разработчикам ПО настроить систему таким образом, чтобы получить максимальные результаты для их программы. Совершенно не важно, будет ли другое ПО или сервисы чувствовать себя комфортно при таких установках операционной системы и не произойдет ли "захват ресурсов" испытуемым приложением.

С таким явлением автор столкнулся, пытаясь настроить Netscape Enterprise Web Server под Solaris (SPARC). Производительность сервера по http-протоколу удалось поднять почти в 6 (!) раз (по данным тестирования с MS InetLoad), однако на комплексном тесте увеличение оказалось трехкратным, в то время как быстродействие POP3-сервера возросло вдвое, News-сервера — осталось неизменным, а SMTP показал в два раза худшие результаты, чем до внесения изменений.

Кроме того, производители, зная характеристики того или иного тестового набора, могут оптимизировать параметры системы именно под него. Пример тому — Web-страничка Netscape, где приведены рекомендации, как настроить Netscape Enterprise Server для проведения тестирования с помощью SPECweb96 .

Тестирование проводится для обнаружения ошибок

В случае серверов и серверного программного обеспечения это значит, что устройство следует заставить работать в максимально неблагоприятном режиме — провести тест на "живучесть". Этого можно достичь проведением тестирования сервера в следующей рабочей конфигурации:

  • все сервисы должны быть запущены;
  • все сервисы должны тестироваться одновременно (комплексный тест);
  • к каждому из сервисов направляется поток запросов, имитирующий типичную активность пользователей;
  • эта активность должна в процессе теста периодически возрастать до тех пор, пока по меньшей мере один сервис не перестанет справляться с обработкой запросов.

Здесь уместны два примечания:

1. Модель поведения пользователя.

По отношению к пользователям администратор должен быть пессимистом. Соответственно должно строиться и тестирование "на выживание".

Предусмотрите максимальное количество действий, совершить которые вам в нормальном состоянии просто не пришло бы в голову. Прикиньте (или проверьте), нормально ли будет функционировать система в данной ситуации. И что не менее важно, получит ли пользователь от нее вразумительное сообщение о том, что так делать больше не стоит и почему.

2. Сервис перестал справляться с обработкой запросов: возможные варианты.

По степени серьезности такие отказы можно разделить на 4 группы:

  • снижение производительности — сервис не успевает провести обработку, но отвечает корректно (возвращает соответствующий код ошибки — "Too many connections" и т. п.);
  • аварийное завершение работы сервиса, не влекущее за собой негативных последствий для системы: соответствующая программа завершила работу, выгружена из памяти, системные ресурсы освобождены;
  • аварийное завершение работы сервиса, отрицательно влияющее на производительность системы. Программа либо "висит" в списке процессов, не высвобождая ресурсы, либо в процессе завершения захватывает дополнительные ресурсы;
  • крах системы — в лучшем случае с последующей перезагрузкой, в худшем — с зависанием.

Готовьте тесты как для правильных, так и для неправильных входных данных

Эта аксиома детализирует предыдущую с точки зрения входных информационных потоков.

Как отреагирует система на отправление письма размером несколько десятков мегабайт? Застрянет ли оно в очереди, заблокировав тем самым на неопределенное время вашу почтовую систему (особенно если связь с хостом-получателем регулярно обрывается), или будет уничтожено, а пользователь уведомлен о недопустимости таких действий?

Совет, взятый из той же книги Г. Майерса: "старайтесь, чтобы система не рассердила пользователя, ибо это может привести к некоторым неожиданным ситуациям на входе — правило # 5 минимизации ошибок пользователя в диалоговых системах. Быть пессимистом — не значит быть мизантропом!".

А как насчет news-сервера — установлен ли там максимальный размер статьи?

Может ли кто-то, вознамерившись загрузить половину вашего FTP-сайта, открыть три десятка параллельных ftp-сессий, и если да, то как это повлияет на ваш канал и работу других желающих посетить FTP?

В качестве примера, подтверждающего корректность такого подхода, можно упомянуть инцидент с ракетным крейсером Yorktown, где ошибка ввода оператора повлекла за собой отказ системы управления двигателями . Или еще один, приведенный самим Майерсом: "Операторы Нью-Йоркской системы диспетчеризации полицейских машин SPRINT в свободное время развлекались тем, что пытались вывести ее из строя, вводя заведомо неправильные сообщения". Это происходило в начале 70-х. Может, с тех пор нравы и смягчились, но это маловероятно.

Избегайте невоспроизводимых тестов

В случае тестирования серверов и серверного ПО эта аксиома особенно актуальна. Во-первых, для их тестирования необходимо наличие аппаратно разделенных генераторов нагрузки (Client-Side Load Generators, CSLG) — обычно это группы рабочих станций, выполняющих клиентскую часть теста и обеспечивающих поток запросов на сервер. Во-вторых, на результаты может повлиять состояние сети, соединяющей сервер и CSLG. Кроме того, во многих случаях производительность зависит от предыстории обращений к серверу. Большинство серверных приложений использует кэширование. Скорость обращения к кэш-памяти значительно выше скорости обращения к дисковой подсистеме. Кэш приложения может наполняться вследствие предварительных или отладочных прогонов тест-программ — и соответственно могут меняться результаты. Более того, при комплексном тестировании возможно перекрестное влияние приложений — так, количество обработанных за единицу времени сложных запросов к POP3- или IMAP-серверам зависит от размера почтового спула, который может быть увеличен предыдущим проведением SMTP-теста. И наконец, на производительность влияют настройки операционной системы.

Во всех приличных обзорах есть раздел "Как проводились испытания". В одних публикациях он более подробен, в других менее — стандарта на описание и протоколирование тестирования, кажется, до сих пор не существует. Прекрасным образцом тому может служить тест SPECweb96 . В этом документе учтена специфика тестирования именно серверного приложения. В отличие от традиционных описаний там есть требования к протоколированию дополнительных настроек операционной системы и исследуемого приложения — то, что обычно лишь вскользь упоминается даже в лучших образцах описаний тестирования.

Возможно, вы сами придете к осознанию необходимости провести собственное испытание. Такая потребность может возникнуть в следующих случаях:

  • вы планируете расширить вашу сеть, что приведет к повышению нагрузки на размещенные в ней серверы;
  • вы намереваетесь обновить (или сменить) программное обеспечение;
  • вы решили сменить ваш сервер (или серверы) на более производительные;
  • наконец, может быть, вы просто решили выяснить "пределы роста" вашей системы.

Вашим первым шагом, вероятно, станет изучение опубликованных обзоров. Поэтому для того, чтобы воспользоваться полученными кем-то другим данными, относитесь к ним критически и попытайтесь понять в том числе мотивацию людей, выполнявших это тестирование. А далее все зависит от вас — осознание цели, выбор или написание адекватного набора тестов и корректное проведение самого тестирования. Надеюсь, что изложенные в настоящей статье соображения помогут вам в этом.

Аннотация: Основные понятия тестирования. Фазы и этапы тестирования. Типы тестов. Разработка, управляемая тестами (Test Driven Development)

Введение

Тестирование является одним из наиболее устоявшихся способов обеспечения качества разработки программного обеспечения.

С технической точки зрения тестирование заключается в выполнении приложения на некотором множестве исходных данных и сверке получаемых результатов с заранее известными (эталонными) с целью установить соответствие различных свойств и характеристик приложения заказанным свойствам. Как одна из основных фаз процесса разработки программного продукта ( Дизайн приложения - Разработка кода - Тестирование), тестирование характеризуется достаточно большим вкладом в суммарную трудоемкость разработки продукта. Широко известна оценка распределения трудоемкости между фазами создания программного продукта: 40%-20%-40%.

С точки зрения математики тестирование можно рассматривать как интерпретацию некоторой формулы и проверки ее истинности на некоторых множествах. Действительно, программу можно представить в виде формулы f = f1* f2* f3*... * fn , где f1 , f 2 , ... fn - операторы языка программирования, а их суперпозиция - программа .

Обосновать истинность такой формулы можно при помощи формального подхода - то есть выводить из исходных формул-аксиом с помощью формальных процедур (правил вывода) искомые формулы и утверждения (теоремы). Преимущество формального подхода заключается в том, что с его помощью удается избегать обращений к бесконечной области значений и на каждом шаге доказательства оперировать только конечным множеством символов. Однако зачастую построение формальной системы и формализация самой программы являются очень сложными процессами. Альтернативным подходом обоснования истинности может служить интерпретация .

Интерпретационный подход применяется, когда осуществляется подстановка констант в формулы, а затем интерпретация формул как осмысленных утверждений в элементах множеств конкретных значений. Истинность интерпретируемых формул проверяется на конечных множествах возможных значений. Сложность подхода состоит в том, что часто число комбинаций значений очень велико и сами комбинации состоят из большого числа значений - а значит, обработка всех комбинаций потребует значительных ресурсов. Существуют различные методы, позволяющие уменьшить количество комбинаций, которые необходимо рассмотреть. Основная проблема тестирования - определение достаточности множества тестов для истинности вывода о правильности реализации программы, а также нахождения множества тестов, обладающих этим свойством.

Статическое тестирование выявляет формальными методами анализа без выполнения тестируемой программы неверные конструкции или неверные отношения объектов программы (ошибки формального задания) с помощью специальных инструментов контроля кода - CodeChecker.

Динамическое тестирование (собственно тестирование) осуществляет выявление ошибок только на выполняющейся программе с помощью специальных инструментов автоматизации тестирования - Testbed или Testbench.

Основы тестирования

Классы критериев тестирования

Структурные критерии используют информацию о структуре программы (критерии так называемого "белого ящика"), что предполагает знание исходного текста программы или спецификации программы в виде потокового графа управления. Структурные критерии базируются на основных элементах графа управления - операторах, ветвях и путях.

  • Условие критерия тестирования команд (критерий С0) - набор тестов в совокупности должен обеспечить прохождение каждой команды не менее одного раза.
  • Условие критерия тестирования ветвей (критерий С1) - набор тестов в совокупности должен обеспечить прохождение каждой ветви не менее одного раза.
  • Условие критерия тестирования путей (критерий С2) - набор тестов в совокупности должен обеспечить прохождение каждого пути не менее 1 раз.

Функциональные критерии формулируются в описании требований к программному изделию (критерии так называемого "черного ящика") Они обеспечивают, прежде всего, контроль степени выполнения требований заказчика в программном продукте. Поскольку требования формулируются к продукту в целом, они отражают взаимодействие тестируемого приложения с окружением. Проблема функционального тестирования - это прежде всего трудоемкость; дело в том, что документы, фиксирующие требования к программному изделию, как правило, достаточно объемны, тем не менее соответствующая проверка должна быть всеобъемлющей.

Выделяют следующие частные виды функциональных критериев :

  • тестирование пунктов спецификации;
  • тестирование классов входных данных;
  • тестирование правил - набор тестов в совокупности должен обеспечить проверку каждого правила, если входные и выходные значения описываются набором правил некоторой грамматики;
  • тестирование классов выходных данных;
  • тестирование функций;
  • комбинированные критерии для программ и спецификаций. Критерии стохастического тестирования формулируются в терминах

проверки наличия заданных свойств у тестируемого приложения, средствами проверки некоторой статистической гипотезы. Применяется при тестировании сложных программных комплексов - когда набор детерминированных тестов (X, Y) имеет громадную мощность.

Мутационные критерии ориентированы на проверку свойств программного изделия на основе подхода Монте-Карло.

Метод мутационного тестирования состоит в том, что в разрабатываемую программу P вносят мутации (мелкие ошибки), т.е. искусственно создают программы- мутанты P1, P2... . Затем программа P и ее мутанты тестируются на одном и том же наборе тестов (X, Y).

Если на наборе (X, Y) подтверждается правильность программы P и, кроме того, выявляются все внесенные в программы- мутанты ошибки, то набор тестов (X, Y) соответствует мутационному критерию, а тестируемая программа объявляется правильной. Если некоторые мутанты не выявили всех мутаций, то надо расширять набор тестов (X, Y) и продолжать тестирование.

Фазы тестирования

При тестировании как правило выделяют три фазы: модульное, интеграционное и системное тестирование.

Модульное тестирование - это тестирование программы на уровне отдельно взятых модулей, функций или классов. Цель модульного тестирования состоит в выявлении локализованных в модуле ошибок в реализации алгоритмов, а также в определении степени готовности системы к переходу на следующий уровень разработки и тестирования. Модульное тестирование проводится по принципу "белого ящика", то есть основывается на знании внутренней структуры программы, и часто включает те или иные методы анализа покрытия кода.

Интеграционное тестирование - это тестирование части системы, состоящей из двух и более модулей. Основная задача интеграционного тестирования - поиск дефектов, связанных с ошибками в реализации и интерпретации интерфейсного взаимодействия между модулями. Основная разница между модульным и интеграционным тестированиями состоит в целях, то есть в типах обнаруживаемых дефектов, которые, в свою очередь, определяют стратегию выбора входных данных и методов анализа.

Системное тестирование качественно отличается от интеграционного и модульного уровней. Оно рассматривает тестируемую систему в целом и оперирует на уровне пользовательских интерфейсов. Основная задача системного тестирования состоит в выявлении дефектов, связанных с работой системы в целом, таких как неверное использование ресурсов системы, непредусмотренные комбинации данных пользовательского уровня, несовместимость с окружением, непредусмотренные сценарии использования, отсутствующая или неверная функциональность, неудобство в применении и тому подобное.

Системное тестирование производится над проектом в целом с помощью метода "черного ящика". Структура программы не имеет никакого значения, для проверки доступны только входы и выходы, видимые пользователю. Тестированию подлежат коды и пользовательская документация.

Кроме того, выделяют регрессионное тестирование - цикл тестирования, который производится при внесении изменений на фазе системного тестирования или сопровождения продукта. Главная проблема регрессионного тестирования - выбор между полным и частичным перетестированием и пополнением тестовых наборов. При частичном перетестировании контролируются только те части проекта, которые связаны с измененными компонентами.

Этапы тестирования

Каждая фаза тестирования включает в себя следующие этапы:

  1. Определение целей (требований к тестированию), включающее следующую конкретизацию: какие части системы будут тестироваться, какие аспекты их работы будут выбраны для проверки, каково желаемое качество и т. п.
  2. Планирование : создание графика (расписания) разработки тестов для каждой тестируемой подсистемы; оценка необходимых человеческих, программных и аппаратных ресурсов; разработка расписания тестовых циклов . Важно отметить, что расписание тестирования обязательно должно быть согласовано с расписанием разработки создаваемой системы.
  3. Разработка тестов (тестового кода для тестируемой системы).
  4. Выполнение тестов : реализация тестовых циклов .
  5. Анализ результатов .

Тестовый цикл - это цикл исполнения тестов, включающий фазы 4 и 5 тестового процесса. Тестовый цикл заключается в прогоне разработанных тестов на некотором однозначно определяемом срезе системы (состоянии кода разрабатываемой системы). Обычно такой срез системы называют build .

Тестовый план - это документ, или набор документов, который содержит тестовые ресурсы, перечень функций и подсистем, подлежащих тестированию, тестовую стратегию , расписание тестовых циклов , фиксацию тестовой конфигурации (состава и конкретных параметров аппаратуры и программного окружения), определение списка тестовых метрик, которые на тестовом цикле необходимо собрать и проанализировать (например метрик, оценивающих степень покрытия тестами набора требований).

Тесты разрабатывают на основе спецификаций как вручную, так и с помощью автоматизирующих средств. Помимо собственно кода, в понятие "тест" включается его общее описание и подробное описание шагов, выполняемых в данном тесте.

Для оценки качества тестов используют различные метрики, связанные с количеством найденных дефектов, покрытием кода, функциональных требований, множества сценариев.

Вся информация об обнаруженных в процессе тестирования дефектах (тип, условия обнаружения , причина, условия исправления, время, затраченное на исправление) заносятся в базу дефектов.

Информация о тестовом плане , тестах и дефектах используется в конце каждого цикла тестирования для генерации тестового отчета и корректирования системы тестов для следующей итерации.

Типы тестов

В тестовом плане определяются и документируются различные типы тестов .

Типы тестирования по виду подсистемы или продукта таковы:

  1. Тестирование основной функциональности, когда тестированию подвергается собственно система, являющаяся основным выпускаемым продуктом.
  2. Тестирование инсталляции включает тестирование сценариев первичной инсталляции системы, сценариев повторной инсталляции (поверх уже существующей копии), тестирование деинсталляции, тестирование инсталляции в условиях наличия ошибок в инсталлируемом пакете, в окружении или в сценарии и т. п.
  3. Тестирование пользовательской документации включает проверку полноты и понятности описания правил и особенностей использования продукта, наличие описания всех сценариев и функциональности, синтаксис и грамматику языка, работоспособность примеров и т. п.

Типы тестирования по способу выбора входных значений:

  1. Функциональное тестирование, при котором проверяется:
    • покрытие функциональных требований;
    • покрытие сценариев использования.
  2. Стрессовое тестирование, при котором проверяются экстремальные режимы использования продукта.
  3. Тестирование граничных значений.
  4. Тестирование производительности.
  5. Тестирование на соответствие стандартам.
  6. Тестирование совместимости с другими программно-аппаратными комплексами.
  7. Тестирование работы с окружением.
  8. Тестирование работы на конкретной платформе.

Test Driven Development

Рассмотрим подход к тестированию, несколько отличающийся от приведенного выше. Разработка через тестирование ( Test Driven Development - TDD) - процесс разработки программного обеспечения, который предусматривает написание и автоматизацию модульных тестов еще до момента написания соответствующих классов или модулей. Это гарантирует, что все обязанности любого элемента программного обеспечения определяются еще до того, как они будут закодированы.

TDD задает следующий порядок этапов программирования:

  • Красный - напишите небольшой тест, который не работает, а возможно, даже не компилируется.
  • Зеленый - заставьте тест работать как можно быстрее, при этом не думайте о правильности дизайна и чистоте кода. Напишите ровно столько кода, чтобы тест сработал.
  • Рефакторинг - удалите из написанного вами кода любое дублирование.
  • Освоив TDD, разработчики обнаруживают, что они пишут значительно больше тестов, чем раньше, и двигаются вперед маленькими шагами, которые раньше могли показаться бессмысленными.

После того, как программист заставил тест работать и может быть уверен, что эта часть функциональности покрыта, он заставляет работать второй тест, затем третий, четвертый и т. д. Чем сложнее проблема, стоящая перед программистом, тем меньшую область функциональности должен покрывать каждый тест. В итоге получается 100% покрытие кода модульными тестами, чего, как правило, невозможно добиться при классическом подходе к тестированию.

Определенно существуют задачи, которые невозможно (по крайней мере на текущий момент) решить только при помощи тестов. В частности, TDD не позволяет механически продемонстрировать адекватность разработанного кода в области безопасности данных и взаимодействия между процессами. Безусловно, безопасность основана на коде, в котором не должно быть дефектов, однако она основана также на участии человека в процедурах защиты данных. Тонкие проблемы, возникающие в области взаимодействия между процессами, невозможно с уверенностью воспроизвести, просто запустив некоторый код.

Итоги

Чем активней разрабатываются новые информационные системы , усложняются архитектуры, развиваются новые технологии, тем важнее становится процесс тестирования. Появляется все больше сетевых приложений и приложений для мобильных устройств. Тестировать такие системы значительно сложнее, чем однопользовательские программы для домашних ПК. Для таких типов систем требуются эффективные алгоритмы автоматизации тестов. Кроме того, актуальна задача тестирования безопасности информационных систем во всех ее проявлениях. Индустрия видеоигр также нуждается в новых подходах к тестированию.

Тестирование сопровождает практически весь процесс разработки, включая самые ранние стадии. До сих пор необходимо улучшение технологий тестирования спецификаций и требований. Актуальна задача разработки тестов, тестирующих процесс разработки, требования бизнеса и цели всей организации. Речь идет о разработке более эффективных тестов, покрывающих самые различные характеристики информационной системы.

Кроме того, продолжаются исследования в области тестов, ориентированных на конкретную модель разработки (водопадную, спиральную) или на конкретную парадигму программирования. Например, для тестирования компонентно-ориентированных систем предлагается тестирование при помощи агентов. Для тестирования активных Java-апплетов предлагают использовать нейросети. Для тестирования агентов, существующих в web (роботы, пауки), предлагают использовать системы, основанные на знаниях.

Таким образом, несмотря на значительную определенность процесса тестирования и полную автоматизацию многих его этапов, остается масса направлений для исследований и практической работы.

Тестирование программного обеспечения (ПО) выявляет недоработки, изъяны и ошибки в коде, которые необходимо устранить. Его также можно определить как процесс оценки функциональных возможностей и корректности ПО с помощью анализа. Основные методы интеграции и тестирования программных продуктов обеспечивают качество приложений и заключаются в проверке спецификации, дизайна и кода, оценке надежности, валидации и верификации.

Методы

Главная цель тестирования ПО - подтверждение качества программного комплекса путем систематической отладки приложений в тщательно контролируемых условиях, определение их полноты и корректности, а также обнаружение скрытых ошибок.

Методы можно разделить на статические и динамические.

К первым относятся неформальное, контрольное и техническое рецензирование, инспекция, пошаговый разбор, аудит, а также статический анализ потока данных и управления.

Динамические техники следующие:

  1. Тестирование методом белого ящика. Это подробное исследование внутренней логики и структуры программы. При этом необходимо знание исходного кода.
  2. Тестирование методом черного ящика. Данная техника не требует каких-либо знаний о внутренней работе приложения. Рассматриваются только основные аспекты системы, не связанные или мало связанные с ее внутренней логической структурой.
  3. Метод серого ящика. Сочетает в себе предыдущие два подхода. Отладка с ограниченным знанием о внутреннем функционировании приложения сочетается со знанием основных аспектов системы.

Прозрачное тестирование

В методе белого ящика используются тестовые сценарии контрольной структуры процедурного проекта. Данная техника позволяет выявить ошибки реализации, такие как плохое управление системой кодов, путем анализа внутренней работы части программного обеспечения. Данные методы тестирования применимы на интеграционном, модульном и системном уровнях. Тестировщик должен иметь доступ к исходному коду и, используя его, выяснить, какой блок ведет себя несоответствующим образом.

Тестирование программ методом белого ящика обладает следующими преимуществами:

  • позволяет выявить ошибку в скрытом коде при удалении лишних строк;
  • возможность использования побочных эффектов;
  • максимальный охват достигается путем написания тестового сценария.

Недостатки:

  • высокозатратный процесс, требующий квалифицированного отладчика;
  • много путей останутся неисследованными, поскольку тщательная проверка всех возможных скрытых ошибок очень сложна;
  • некоторая часть пропущенного кода останется незамеченной.

Тестирование методом белого ящика иногда еще называют тестированием методом прозрачного или открытого ящика, структурным, логическим тестированием, тестированием на основе исходных текстов, архитектуры и логики.

Основные разновидности:

1) тестирование управления потоком - структурная стратегия, использующая поток управления программой в качестве модели и отдающая предпочтение большему количеству простых путей перед меньшим числом более сложных;

2) отладка ветвления имеет целью исследование каждой опции (истинной или ложной) каждого оператора управления, который также включает в себя объединенное решение;

3) тестирование основного пути, которое позволяет тестировщику установить меру логической сложности процедурного проекта для выделения базового набора путей выполнения;

4) проверка потока данных - стратегия исследования потока управления путем аннотации графа информацией об объявлении и использовании переменных программы;

5) тестирование циклов - полностью сосредоточено на правильном выполнении циклических процедур.

Поведенческая отладка

Тестирование методом черного ящика рассматривает ПО как «черный ящик» - сведения о внутренней работе программы не учитываются, а проверяются только основные аспекты системы. При этом тестировщику необходимо знать системную архитектуру без доступа к исходному коду.

Преимущества такого подхода:

  • эффективность для большого сегмента кода;
  • простота восприятия тестировщиком;
  • перспектива пользователя четко отделена от перспективы разработчика (программист и тестировщик независимы друг от друга);
  • более быстрое создание теста.

Тестирование программ методами черного ящика имеет следующие недостатки:

  • в действительности выполняется избранное число тестовых сценариев, результатом чего является ограниченный охват;
  • отсутствие четкой спецификации затрудняет разработку тестовых сценариев;
  • низкая эффективность.

Другие названия данной техники - поведенческое, непрозрачное, функциональное тестирование и отладка методом закрытого ящика.

1) эквивалентное разбиение, которое может уменьшить набор тестовых данных, так как входные данные программного модуля разбиваются на отдельные части;

2) краевой анализ фокусируется на проверке границ или экстремальных граничных значений - минимумах, максимумах, ошибочных и типичных значениях;

3) фаззинг - используется для поиска погрешностей реализации с помощью ввода искаженных или полуискаженных данных в автоматическом или полуавтоматическом режиме;

4) графы причинно-следственных связей - методика, основанная на создании графов и установлении связи между действием и его причинами: тождественность, отрицание, логическое ИЛИ и логическое И - четыре основных символа, выражающие взаимозависимость между причиной и следствием;

5) проверка ортогональных массивов, применяемая к проблемам с относительно небольшой областью ввода, превышающей возможности исчерпывающего исследования;

6) тестирование всех пар - техника, набор тестовых значений которой включает все возможные дискретные комбинации каждой пары входных параметров;

Тестирование методом черного ящика: примеры

Техника основана на спецификациях, документации, а также описаниях интерфейса программного обеспечения или системы. Кроме того, возможно использование моделей (формальных или неформальных), представляющих ожидаемое поведение ПО.

Обычно данный метод отладки применяется для пользовательских интерфейсов и требует взаимодействия с приложением путем введения данных и сбора результатов - с экрана, из отчетов или распечаток.

Тестировщик, таким образом, взаимодействует с ПО путем ввода, воздействуя на переключатели, кнопки или другие интерфейсы. Выбор входных данных, порядок их введения или очередность действий могут привести к гигантскому суммарному числу комбинаций, как это видно на следующем примере.

Какое количество тестов необходимо произвести, чтобы проверить все возможные значения для 4 окон флажка и одного двухпозиционного поля, задающего время в секундах? На первый взгляд расчет прост: 4 поля с двумя возможными состояниями - 24 = 16, которые необходимо умножить на число возможных позиций от 00 до 99, то есть 1600 возможных тестов.

Тем не менее этот расчет ошибочен: мы можем определить, что двухпозиционное поле может также содержать пробел, т. е. оно состоит из двух буквенно-цифровых позиций и может включать символы алфавита, специальные символы, пробелы и т. д. Таким образом, если система представляет собой 16-битный компьютер, то получится 216 = 65 536 вариантов для каждой позиции, результирующих в 4 294 967 296 тестовых случаев, которые необходимо умножить на 16 комбинаций для флажков, что в общей сложности дает 68 719 476 736. Если их выполнить со скоростью 1 тест в секунду, то общая продолжительность тестирования составит 2 177,5 лет. Для 32 или 64-битных систем, длительность еще больше.

Поэтому возникает необходимость уменьшить этот срок до приемлемого значения. Таким образом, должны применяться приемы для сокращения количества тестовых случаев без уменьшения охвата тестирования.

Эквивалентное разбиение

Эквивалентное разбиение представляет собой простой метод, применимый для любых переменных, присутствующих в программном обеспечении, будь то входные или выходные значения, символьные, числовые и др. Он основан на том принципе, что все данные из одного эквивалентного разбиения будут обрабатываться тем же образом и теми же инструкциями.

Во время тестирования выбирается по одному представителю от каждого определенного эквивалентного разбиения. Это позволяет систематически сокращать число возможных тестовых случаев без потери охвата команд и функций.

Другим следствием такого разбиения является сокращение комбинаторного взрыва между различными переменными и связанное с ними сокращение тестовых случаев.

Например, в (1/x) 1/2 используется три последовательности данных, три эквивалентных разбиения:

1. Все положительные числа будут обрабатываться таким же образом и должны давать правильные результаты.

2. Все отрицательные числа будут обрабатываться так же, с таким же результатом. Это неверно, так как корень из отрицательного числа является мнимым.

3. Ноль будет обрабатываться отдельно и даст ошибку «деление на ноль». Это раздел с одним значением.

Таким образом, мы видим три различных раздела, один из которых сводится к единственному значению. Есть один «правильный» раздел, дающий достоверные результаты, и два «неправильных», с некорректными результатами.

Краевой анализ

Обработка данных на границах эквивалентного разбиения может выполняться иначе, чем ожидается. Исследование граничных значений - хорошо известный способ анализа поведения ПО в таких областях. Эта техника позволяет выявить такие ошибки:

  • неправильное использование операторов отношения (<,>, =, ≠, ≥, ≤);
  • единичные ошибки;
  • проблемы в циклах и итерациях,
  • неправильные типы или размер переменных, используемых для хранения информации;
  • искусственные ограничения, связанные с данными и типами переменных.

Полупрозрачное тестирование

Метод серого ящика увеличивает охват проверки, позволяя сосредоточиться на всех уровнях сложной системы путем сочетания методов белого и черного.

При использовании этой техники тестировщик для разработки тестовых значений должен обладать знаниями о внутренних структурах данных и алгоритмах. Примерами методики тестирования серого ящика являются:

  • архитектурная модель;
  • унифицированный язык моделирования (UML);
  • модель состояний (конечный автомат).

В методе серого ящика для разработки тестовых случаев изучаются коды модулей по технике белого, а фактическое испытание выполняется на интерфейсах программы по технологии черного.

Такие методы тестирования обладают следующими преимуществами:

  • сочетание преимуществ техник белого и черного ящиков;
  • тестировщик опирается на интерфейс и функциональную спецификацию, а не на исходный код;
  • отладчик может создавать отличные тестовые сценарии;
  • проверка производится с точки зрения пользователя, а не дизайнера программы;
  • создание настраиваемых тестовых разработок;
  • объективность.

Недостатки:

  • тестовое покрытие ограничено, так как отсутствует доступ к исходному коду;
  • сложность обнаружения дефектов в распределенных приложениях;
  • многие пути остаются неисследованными;
  • если разработчик программного обеспечения уже запускал проверку, то дальнейшее исследование может быть избыточным.

Другое название техники серого ящика - полупрозрачная отладка.

1) ортогональный массив - использование подмножества всех возможных комбинаций;

2) матричная отладка с использованием данных о состоянии программы;

3) проводимая при внесении новых изменений в ПО;

4) шаблонный тест, который анализирует дизайн и архитектуру добротного приложения.

тестирования ПО

Использование всех динамических методов приводит к комбинаторному взрыву количества тестов, которые должны быть разработаны, воплощены и проведены. Каждую технику следует использовать прагматично, принимая во внимание ее ограничения.

Единственно верного метода не существует, есть только те, которые лучше подходят для конкретного контекста. Структурные техники позволяют найти бесполезный или вредоносный код, но они сложны и неприменимы к крупным программам. Методы на основе спецификации - единственные, которые способны выявить недостающий код, но они не могут идентифицировать посторонний. Одни техники больше подходят для конкретного уровня тестирования, типа ошибок или контекста, чем другие.

Ниже приведены основные отличия трех динамических техник тестирования - дана таблица сравнения между тремя формами отладки ПО.

Аспект

Метод черного ящика

Метод серого ящика

Метод белого ящика

Наличие сведений о составе программы

Анализируются только базовые аспекты

Частичное знание о внутреннем устройстве программы

Полный доступ к исходному коду

Степень дробления программы

Кто производит отладку?

Конечные пользователи, тестировщики и разработчики

Конечные пользователи, отладчики и девелоперы

Разработчики и тестировщики

Тестирование базируется на внешних внештатных ситуациях.

Диаграммы БД, диаграммы потока данных, внутренние состояния, знание алгоритма и архитектуры

Внутреннее устройство полностью известно

Степень охвата

Наименее исчерпывающая и требует минимума времени

Потенциально наиболее исчерпывающая. Требует много времени

Данные и внутренние границы

Отладка исключительно методом проб и ошибок

Могут проверяться домены данных и внутренние границы, если они известны

Лучшее тестирование доменов данных и внутренних границ

Пригодность для тестирования алгоритма

Автоматизация

Автоматические методы тестирования программных продуктов намного упрощают процесс проверки независимо от технической среды или контекста ПО. Их используют в двух случаях:

1) для автоматизации выполнение утомительных, повторяющихся или скрупулезных задач, таких как сравнение файлов в нескольких тысяч строк с целью высвобождения времени тестировщика для концентрации на более важных моментах;

2) для выполнения или отслеживания задач, которые не могут быть легко осуществимы людьми, таких как проверка производительности или анализ времени отклика, которые могут измеряться в сотых долях секунды.

Тестовые инструменты могут быть классифицированы по-разному. Следующее деление основано на поддерживаемых ими задачах:

  • управление тестированием, которое включает поддержку управления проектом, версиями, конфигурациями, риск-анализ, отслеживание тестов, ошибок, дефектов и инструменты создания отчетов;
  • управление требованиями, которое включает хранение требований и спецификаций, их проверку на полноту и многозначность, их приоритет и отслеживаемость каждого теста;
  • критический просмотр и статический анализ, включая мониторинг потока и задач, запись и хранение комментариев, обнаружение дефектов и плановых коррекций, управление ссылками на проверочные списки и правила, отслеживание связи исходных документов и кода, статический анализ с обнаружением дефектов, обеспечением соответствия стандартам написания кода, разбором структур и их зависимостей, вычислением метрических параметров кода и архитектуры. Кроме того, используются компиляторы, анализаторы связей и генераторы кросс-ссылок;
  • моделирование, которое включает инструменты моделирования бизнес-поведения и проверки созданных моделей;
  • разработка тестов обеспечивает генерацию ожидаемых данных исходя из условий и интерфейса пользователя, моделей и кода, управление ими для создания или изменения файлов и БД, сообщений, проверки данных исходя из правил управления, анализа статистики условий и рисков;
  • критический просмотр путем ввода данных через графический интерфейс пользователя, API, командные строки с использованием компараторов, помогающих определить успешные и неудавшиеся тесты;
  • поддержка сред отладки, которая позволяет заменить отсутствующее оборудование или ПО, в т. ч. симуляторы оборудования на основе подмножества детерминированного выхода, эмуляторы терминалов, мобильных телефонов или сетевого оборудования, среды для проверки языков, ОС и аппаратного обеспечения путем замены недостающих компонентов драйверами, фиктивными модулями и др., а также инструменты для перехвата и модификации запросов ОС, симуляции ограничений ЦПУ, ОЗУ, ПЗУ или сети;
  • сравнение данных файлов, БД, проверка ожидаемых результатов во время и по окончании тестирования, в т. ч. динамическое и пакетное сравнение, автоматические «оракулы»;
  • измерение покрытия для локализации утечек памяти и некорректного управления ею, оценки поведения системы в условиях симулированной нагрузки, генерации нагрузки приложений, БД, сети или серверов по реалистичным сценариям ее роста, для измерения, анализа, проверки и отчета о системных ресурсах;
  • обеспечение безопасности;
  • тестирование производительности, нагрузки и динамический анализ;
  • другие инструменты, в т. ч. для проверки правописания и синтаксиса, сетевой безопасности, наличия всех страниц веб-сайта и др.

Перспектива

С изменением тенденций в индустрии ПО процесс его отладки также подвержен изменениям. Существующие новые методы тестирования программных продуктов, такие как сервис-ориентированнае архитектура (SOA), беспроводные технологии, мобильные услуги и т. д., открыли новые способы проверки ПО. Некоторые из изменений, которые ожидаются в этой отрасли в течение следующих нескольких лет, перечислены ниже:

  • тестировщики будут предоставлять легковесные модели, с помощью которых разработчики смогут проверять свой код;
  • разработка методов тестирования, включающих просмотр и моделирование программ на раннем этапе, позволит устранить многие противоречия;
  • наличие множества тестовых перехватов сократит время обнаружения ошибок;
  • статический анализатор и средства обнаружения будут применяться более широко;
  • применение полезных матриц, таких как охват спецификации, охват модели и покрытие кода, будет определять разработку проектов;
  • комбинаторные инструменты позволят тестировщикам определять приоритетные направления отладки;
  • тестировщики будут предоставлять более наглядные и ценные услуги на протяжении всего процесса разработки ПО;
  • отладчики смогут создавать средства и методы тестирования программного обеспечения, написанные на и взаимодействующие с различными языками программирования;
  • специалисты по отладке станут более профессионально подготовленными.

На смену придут новые бизнес-ориентированные методы тестирования программ, изменятся способы взаимодействия с системами и предоставляемой ими информацией с одновременным снижением рисков и ростом преимуществ от бизнес-изменений.

Традиционный подход к автоматическим тестам выглядит примерно так - тестописатель изучает тестируемую систему и после этого руками пишет каждый отдельный сценарий для проверки искомой системы. Кто-то может написать тут гордое слово "handcrafted", а я называю это словом "handjob". А все потому, что обычно этот подход к созданию и написанию тестов страдает от двух проблем:

  • "Парадокс пестицида", описанный Борисом Бейзером в 1990-м году. Заключается он в том, что тесты все менее и менее эффективны в отлове багов, так как баги, для обнаружения которых эти тесты написаны, уже найдены и починены. Если же этого не происходит, то возникают серьезные вопросы к написанному коду и к рабочим процессам
  • Тесты статичны и их сложно менять, в то время как тестируемая система имеет свойство постоянно эволюционировать, обрастать новым функционалом и менять поведение старого. И тесты нужно менять каждый раз, когда функционал изменяет внешний вид программы или ее поведение. И с ростом сложности обновления тестов оправдывать чудовищные издержки на поддержку тестов становиться все сложнее.

Model-Based Testing данные проблемы практически полностью игнорирует, поскольку тесты создаются автоматически из точной модели приложения. Это сильно упрощает как поддержку уже существующих, так и генерацию новых, крайне полезных и гибких тестов.

Что такое модель?

Модель - это описание тестируемой системы. Формальная спецификация вполне сойдет. Модель должна быть сильно проще описываемой системы и как-то помогать нам понимать и предсказывать поведение тестируемого продукта.

Обычно в качестве модели используется или граф состояний или какой-нибудь конечный автомат. При этом граф состояний уже третий десяток лет используется в тестировании для представления тестируемого софта и дизайна тестов. Подробнее про эту технику дизайна тестов можно почитать . А лучше в целой куче книжек по тестированию, которые были выпущены за последние 25 лет.

Если вкратце, то можно описать так: тестируемое ПО начинает работу в каком-то состоянии ("главная страничка открыта"), принимает какой-то пользовательский ввод ("посмотреть фоточки котяток") и, в зависимости от этого ввода, переходит в новое состояние ("альбом с фоточками котяток появился"). Мы используем модели все время чтобы понять поведение того куска софта с которым работаем ("Хм... если я нахожусь тут и делаю вот это , то я окажусь вон там "). Да в общем-то все тестирование можно рассматривать как перемещение тестировщика через различные состояния системы и проверку того, что эти перемещения происходят корректно (что значит "корректно" это отдельная тема, так что пока мы ее пропустим).

Что такое Model-Based Testing?

Это довольно немолодая идея использовать формально описанные модели для того, чтобы сделать тестирование ПО более дешевым и простым занятием. Само Model-Based Testing это такая "продвинутая" техника тестирования через "черный ящик". У нее есть ряд бонусов перед традиционными методами:

  • Модель можно начинать собирать еще до того, как появятся первые строчки кода
  • Моделирование подразумевает основательную работу над спецификацией и архитектурой разрабатываемого ПО, что, как правило, позволяет на ранних этапах избавляться от фундаментальных проблем и банальных разночтений
  • Модель будет содержать информацию, которую можно будет переиспользовать в нуждах тестирования в будущем, даже если спецификация изменится
  • Модель сильно проще поддерживать, чем огромную кучу разрозненных тестов

И самое важное - формально описанные модели в комбинации с зачатками теории графов помогает легко и непринужденно генерировать сотни тестов.

Зоркий поклонник Agile может воскликнуть "эй! у нас есть BDD и оно покрывает первые три пункта и еще это спецификация!". Я же отвечу "нихрена подобного - ваши примеры станут нормальной спецификацией только тогда, когда короля Шака Зулу можно будет считать спецификацией на все человечество".

А теперь отбросим споры и посмотрим, как при помощи теории графов выбивать из модели то, что вам нужно для тестов.

Короткий ликбез по теории графов

Теория графов зародилась в 1736-м году в стареньком Прусском городе Кёнингсберге. Город стоял на двух берегах реки и попутно занимал еще и пару островов посреди этой самой реки. Жители этого города от безделья пытались придумать как посетить все семь мостов не проходя ни по одному дважды. Решали на практике, во время прогулок, и в теории, во время кухонных посиделок. Долгое время никто не мог доказать или опровергнуть возможность существования данного маршрута, пока не пришел зануда Эйлер и не испортил горожанам праздник.

Эйлер придумал изобразить каждый кусок суши как вершину графа, а мосты - ребрами графа.

И тут внезапно стало понятно, что нужного маршрута не существует. И все потому, что все вершины имеют нечетное число ребер. Ведь если у вершины четное число ребер, то гуляющий гражданин каждый раз заходя на этот кусок суши может выйти оттуда по новому мосту. Таким образом получается, что прогуляться по всем мостам не пересекая какой-то мост дважды не получится.

С тех пор граф, в котором все вершины имеют четное количество ребер называется "Эйлеровым Графом". А полный обход этого графа носит гордое имя "Эйлерова пути".

И после этого жителям Кёнингсберга пришлось найти себе другое развлечение. Только один китайский математик Мэй-Ку Куан все морочил себе голову этими мостами. А беспокоил его следующий вопрос:

Если нельзя построить маршрут так, чтобы каждый мост пересекался ровно один раз, то какое минимальное количество дополнительных пересечений моста нужно совершить для полного обхода.

А это уже сильно похоже на проблему, с которой встречаются почтальоны. Допустим, каждая вершина это почтовый ящик, куда нужно вкинуть писем. И, допустим, наш постальон должен вкинуть писем в каждый ящик не совершая лишних движений.

Куан предложил считать повторное пересечение моста добавлением еще одного ребра графа. Добавление ребер должно привести к тому, что у всех вершин графа будет четное количество ребер. Эту процедуру принято называть "Эйлеризацией" графа. И после того как граф "Эйлеризован" мы можем построить Эйлеров путь по нему.

И в честь Куана эту задачку назвали "задачей китайского почтальона".

Несколько лет спустя нашлись еще зануды, которым стало интересно что будет, если по ребрам графа можно будет ходить только в одну сторону. Как раз получается проблема, похожая на головную боль таксиста в Нью-Йорке, строящего маршрут по односторонним улочкам.

Тут мы введем еще один термин - орграф. Или ориентированный граф. Это такой граф, ребра которого можно пересекать только в указанном направлении. Направленные же ребра так же называются "дугами".

И если в случае Эйлерова Пути или Проблемы Китайского Почтальона мы оперировали дугами касающимися вершин, то тут приходится принимать во внимание еще и направление движения. И доля "Эйлеризации" такого графа нам требуется чтобы количество входящих в вершину дуг равнялось количеству исходящих. И считая каждую входящую дугу как "+1", а исходящую как "-1" мы можем вычислять "полярность" каждой вершины орграфа. Например вершина в двумя входящими и одной исходящей дугой имеет полярность "2 - 1 = 1".

Для того чтобы Эйлеризовать орграф нам нужно пририсовывать дуги между положительными и отрицательными вершинами. Это "выравнивание" числа входящих и исходящих дуг нам нужно для того же, для чего мы добивались четного числа ребер в неориентированном графе - любой посетитель вершины графа должен иметь возможность ее покинуть.

Причем тут тестирование?

Предположим, что у тестировщика есть модель поведения тестируемой системы. Так же предположим, что эта модель выглядит как диграф, где вершины представляют собой состояние системы, а дуги являются действиями, которые тестировщик может предпринять для изменения состояния системы.

Первое что захочет селать тестировщик - выполнить все возможные действия с тестируемой системой. Но как мы можем это выполнить эффективно? Тут сообразительному тестировщику в голову приходит задачка про таксиста из Нью-Йорка, которая просто слегка замаскировалась. И поскольку у нас уже есть модель тестируемой системы в виде графа, то нам нужно просто применить к ней подходящий алгоритм его обхода, который может быть сгенерирован автоматически.

С другой стороны, исполнение всех возможных действий это хорошо, но даже самый недалекий тест-менеджер понимает, что это банальное "покрытие состояний" в терминах тестирования сырого кода. Но у множителей есть одно неприятное свойство - у них, как правило, очень много "следующих" состояний у каждой вершины. Что же нам делать, если мы хотим проверить все возможные комбинации действий? Решения задач вроде задачи Китайского Почтальона не подходят, поскольку они гарантируют только посещение каждой дуги, но никак не посещение всех возможных комбинаций дуг.

Такой подход как раз активно использовался для тестирования конечных автоматов. К тому же это требование естественно вытекает из комбинаторной техники дизайна тестов под названием "все пары".

Решение предложил некий де Брюийн. Алгоритм выглядит примерно так:

  • Рисуем сбоку граф, где каждое ребро исходного графа является вершиной.
  • Там где у исходного графа дуга "1" входит в вершину, откуда выходит дуга "2" рисуем в свежеиспеченном графе дугу из вершины "1" в вершину "2".
  • Эйлеризуем полученный граф.
  • Рисуем Эйлеров путь на данном графе.

В принципе можно не напрягаться и просто сделать случайный обход графа. Что примечательно - такая стратегия достаточно устойчива к "парадоксу пестицида". С другой стороны, у любого мало-мальски сложного приложения довольно развесистый граф состояний, на которых можно потратить кучу времени, прежде чем получить хоть какое-то покрытие "случайным обходом".

Про то, зачем сюда добавляют Цепи Маркова, и как обычно решается распараллеливание таких тестов я напишу позже. А пока подведем краткие итоги.

Итого

Модели - это отличный способ представления и осмысления тестируемого приложения, но еще они дают нам довольно простой способ обновлять тесты и поспевать за постоянно эволюционирующим приложением.

Тестирование приложения мы можем рассматривать как обход графа, построенного на основе модели приложения. В свою очередь Теория Графов дает достаточный инструментарий для того, чтобы использовать информацию о поведении системы, описанную в модели, для генерации новых блестящих тестов.

И, поскольку Теория Графов позволяет нам работать непосредственно с моделью:

  • Новые обходы можно автоматически генерировать при изменении модели
  • Наши тесты могут легко и непринужденно меняться в рамках одной и той же модели
  • Различные алгоритмы обхода могут удовлетворять различным потребностям тестирования
  • Полученные алгоритмы обхода легко можно переиспользовать в совершенно новой среде