Pia vpn не работает в китае. VPN для Китая или как разблокировать Facebook, Instagram, Youtube, Vkontakte и сервисы Google

14.03.2019

- (греч., от hyperbole гипербола, и eidos сходство). Несомкнутая кривая поверхность 2 го порядка, происходящая от вращения гиперболы. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГИПЕРБОЛОИД греч., от hyperbole,… … Словарь иностранных слов русского языка

гиперболоид - а, м. hyperboloïde m. мат. Незамкнутая поверхность, образуемая вращением гиперболы вокруг одной из ее осей. БАС 2. Гиперболоид инженера Гарина. Лекс. Ян. 1803: гиперболоида; САН 1847: гиперболои/д: БАС 1954: гиперболо/идный … Исторический словарь галлицизмов русского языка

ГИПЕРБОЛОИД, гиперболоида, муж. (мат.). Поверхность, образуемая вращением гиперболы (в 1 знач.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Сущ., кол во синонимов: 2 коноид (4) поверхность (32) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Гиперболоид - Однополостный гиперболоид. ГИПЕРБОЛОИД (от гипербола и греческого eidos вид), поверхность, которая получается при вращении гиперболы вокруг одной из осей симметрии. В одном случае образуется двуполостный гиперболоид, в другом однополостный… … Иллюстрированный энциклопедический словарь

гиперболоид - hiperboloidas statusas T sritis fizika atitikmenys: angl. hyperboloid vok. Hyperboloid, m rus. гиперболоид, m pranc. hyperboloïde, m … Fizikos terminų žodynas

- (мат.) Под этим названием известны два вида поверхностей второго порядка. 1) Однополый Г. Эта поверхность, отнесенная к осям симметрии, имеет уравнение x2/a2 + y2/b2 z2/c2 = 1. Однополый Г. есть поверхность линейчатая и на ней лежат две системы… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

М. Незамкнутая поверхность, образуемая вращением гиперболы [гипербола II] вокруг одной из её осей (в геометрии). Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Гиперболоид, гиперболоиды, гиперболоида, гиперболоидов, гиперболоиду, гиперболоидам, гиперболоид, гиперболоиды, гиперболоидом, гиперболоидами, гиперболоиде, гиперболоидах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов

Незамкнутая центральная поверхность второго порядка. Существуют два вида Г.: однополостный Г. идвуполостный Г. В надлежащей системе координат (см. рис.) уравнение однополостного Г. имеет вид: а двуполостного вид: Числа а, b и с(и отрезки такой… … Математическая энциклопедия

Книги

  • , Алексей Толстой. В книгу вошли научно-фантастические романы А. Н. Толстого, созданные в 20-е годы прошлого века…
  • Гиперболоид инженера Гарина. Аэлита , Алексей Толстой. Роман "Гиперболоид инженера Гарина" и повесть "Аэлита" положили начало советской научно-фантастической литературе. Они отличаются тем, что темы фантастические даются в сочетании с…

вокруг той оси, которая ее пересекает (вокруг действительной оси).

Для того, чтобы перейти от уравнения линии (43) к уравнению поверхности вращения, заменимх на
, получим уравнение двуполостного гиперболоида вращения

.

В результате сжатия этой поверхности получается поверхность, задаваемая уравнением

. (44)

Поверхность, которая в некоторой декартовой прямоугольной системе координат имеет уравнение вида (44), называется двуполостным гиперболоидом. Двум ветвям гиперболы здесь соответствуют две несвязанные между собой части («полости») поверхности, в то время как при построении однополостного гиперболоида вращения каждая ветвь гиперболы описывает всю поверхность (рис. 60).

Асимптотический конус для двуполостного гиперболоида определяется так же, как и для однополостного (рис. 61).

Рассмотрим теперь пересечения двуполостного гиперболоида (44) с плоскостями, параллельными координатным.

Плоскость z = h при |h | < c пересекает поверхность (44) по мнимым эллипсам, при |h | > c по вещественным. Если а = b , то эти эллипсы являются окружностями, а гиперболоид – есть гиперболоид вращения. При |h | = c получаем

,

т. е. пару сопряженных прямых с одной вещественной точкой (0; 0; с ) (или (0; 0; –с ) соответственно).

Плоскости x = α и y = β пересекают гиперболоид (44) по гиперболам

и
.

8. эллиптический параболоид

При вращении параболы x 2 = 2pz вокруг ее оси симметрии получим поверхность с уравнением

x 2 + y 2 = 2pz ,

называемуюпараболоидом вращения . Сжатие к плоскости у = 0 переводит параболоид вращения в поверхность с уравнением

. (45)

Поверхность, которая имеет такое уравнение в некоторой декартовой прямоугольной системе координат, называется эллиптическим параболоидом.

Внешний вид эллиптического параболоида ясен из способа его построения. Он весь расположен по одну сторону от плоскости z = 0, в полупространстве z > 0 (рис. 62). Сечения плоскостями z = h , h > 0 имеют уравнение:

и являются эллипсами.

Сечения эллиптического параболоида (45) плоскостями у = 0 и х = 0 являются параболами

x 2 = 2a 2 z , y = 0; (46)

y 2 = 2b 2 z , x = 0. (47)

Эти параболы называют главными параболами эллиптического параболоида, при этом параболу (46) условно назовем неподвижной , а параболу (47) – подвижной .

Можно дать следующее очень наглядное построение эллиптического параболоида посредством скольжения одной параболы вдоль другой (система координат предполагается прямоугольной).

Возьмем сечение параболоида (45) плоскостью x = α, получим в этой плоскости, содержащей систему координат O 0 e 2 e 3 , где O 0 = (α, 0, 0), кривую, уравнение которой будет

, x = α

y 2 = 2b 2 (z – γ), x = α, (48)

где
.

Перейдем в плоскости x = α от системы координат O e 2 e 3 к системе координат O e 2 e 3 , где O ′ = (α, 0, γ) есть точка пересечения плоскости x = α с неподвижной параболой x 2 = 2a 2 z , y = 0.

Перенеся начало координат системы O 0 e 2 e 3 в точку O ′, произвели следующее преобразование координат:

y = y ′, z = z ′ + γ.

В результате этого преобразования уравнение (48) получает вид:

y ′ 2 = 2pz ′, x = α.

Кривая (48) – это та же «подвижная» парабола, но перенесенная параллельно себе в плоскость x = α. Этот перенос можно осуществить следующим образом. Вершина подвижной параболы скользит по неподвижной параболе из точки О в точку O ′, а сама парабола при этом перемещается, как твердое тело, оставаясь все время в плоскости, параллельной плоскости yOz .

Этот результат можно сформулировать в виде следующего утверждения.

Эллиптический параболоид есть поверхность, описываемая при движении одной («подвижной») параболы (47) вдоль другой, неподвижной (46), так, что вершина подвижной параболы скользит по неподвижной, а плоскость и ось подвижной параболы остаются все время параллельными самим себе, причем предполагается, что обе параболы (подвижная и неподвижная) обращены вогнутостью в одну и ту же сторону (а именно в положительную сторону оси Oz ).

Заметим, что эллиптический параболоид прямолинейных образующих не имеет. Действительно, прямая, параллельная плоскости xOy , может пересекать лишь сечение параболоида некоторой плоскостью z = h , а это сечение, как уже было отмечено, представляет собой эллипс. И значит, у прямой не более двух общих точек с параболоидом.

Если же прямая не параллельна плоскости xOy , то ее полупрямая лежит в полупространстве z < 0, где нет ни одной точки параболоида. Таким образом, нет прямой, которая всеми своими точками лежала бы на эллиптическом параболоиде.

9. гиперболический параболоид

По аналогии с уравнением (45) можем записать уравнение

. (49)

Поверхность, которая имеет в некоторой системе координат уравнение вида (49) назовем гиперболическим параболоидом .

Исследуем внешний вид гиперболического параболоида с помощью сечений (рис. 63). Сечение плоскостью z = h представляет собой гиперболу, которая в этой плоскости имеет уравнение:

или
.

Для больших значений h полуоси гиперболы
и
велики и уменьшаются с уменьшениемh . При этом ось гиперболы, которая ее пересекает, параллельна вектору e 1 .

При h = 0 гипербола вырождается в пару пересекающихся прямых

=>

,
.

Если h < 0, то ось гиперболы, которая ее пересекает, параллельна вектору e 2 . Полуоси растут с увеличением |h |. Отношение полуосей для всех гипербол при одном знаке h одно и то же. Поэтому, если мы нарисуем все сечения гиперболического параболоида на одной и той же плоскости, то получим семейство всех гипербол, имеющих в качестве асимптот пару пересекающихся прямых с уравнениями

,
.

Сечения гиперболического параболоида с плоскостями у = 0 и х = 0 являются двумя «главными параболами»:

x 2 = 2a 2 z , y = 0 (50)

– неподвижная парабола, и

y 2 = –2b 2 z , x = 0 (51)

– подвижная парабола.

Эти параболы обращены вогнутостью в противоположные стороны: неподвижная – «вверх» (т.е. в положительном направлении оси Oz ), а подвижная – «вниз» (т.е. в отрицательном направлении оси Oz ). Сечение в плоскости x = α имеет в системе координат O 0 e 2 e 3 , где O 0 = (α, 0, 0), уравнение

, x = α

y 2 = –2b 2 (z z 0), x = α, (52)

где
.

После перенесения начала координат в точку O ′ = (α, 0, z 0), уравнение (51) примет вид:

y ′ 2 = –2b 2 z ′, x = α,

где y = y ′, z = z ′ + z 0 . Последнее уравнение показывает, что кривая (52) – это та же подвижная парабола (51), только сдвинутая параллельно себе при скольжении ее вершины вдоль неподвижной параболы из точки О в O ′.

Отсюда вытекает следующее утверждение. Гиперболический параболоид, заданный (в прямоугольной системе координат) уравнением (49) есть поверхность, описываемая параболой y 2 = –2b 2 z , х = 0 при ее движении вдоль неподвижной параболы (50) так, что вершина подвижной параболы скользит по неподвижной параболе, а плоскость и ось подвижной параболы остаются все время параллельными себе самим, при этом обе параболы вогнутостью все время обращены в противоположные стороны: неподвижная – вогнутостью «вверх», т. е. в положительном направлении оси Oz , а подвижная – «вниз».

Из этого построения видно, что гиперболический параболоид имеет вид седла.

Гиперболический параболоид, как и однополостной гиперболоид, имеет два семейства прямолинейных образующих (рис. 64). Через каждую точку гиперболического параболоида проходят две прямые, которые всеми точками лежат на этой плоскости.

Найдем уравнения прямолинейных образующих. Перепишем уравнение (49) в виде

.

Рассмотрим прямую, заданную как пересечение двух плоскостей

(53)

Очевидно, что любая точка, удовлетворяющая уравнениям (53), удовлетворяет и уравнению (49), которое является произведением уравнений (53)

.

А это значит, что каждая точка прямой (53) принадлежит гиперболическому параболоиду (49).

Аналогично рассматривается прямая

Прямая (54) также всеми своими точками лежит на гиперболическом параболоиде.

Однополостным гиперболоидом

\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1.

Двуполостным гиперболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат Oxyz каноническим уравнением

\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1.

В уравнениях (4.48), (4.49) a,b,c - положительные параметры, характеризующие гиперболоиды, причем a\geqslant b .

Начало координат называют центром гиперболоида. Точки пересечения гиперболоида с координатными осями называются его вершинами. Это четыре точки (\pm a,0,0), (0,\pm b,0) однополостного гиперболоида (4.48) и две точки (0,0,\pm c) двуполостного гиперболоида (4.49). Три отрезка координатных осей, соединяющих вершины гиперболоидов, называются осями гиперболоидов. Оси гиперболоидов, принадлежащие координатным осям Ox,\,Oy , называются поперечными осями гиперболоидов, а ось, принадлежащая оси аппликат Oz , - продольной осью гиперболоидов. Числа a,\,b,\,c , равные половинам длин осей, называются полуосями гиперболоидов.

Плоские сечения однополостного гиперболоида

Подставляя z=0 в уравнение (4.48), получаем уравнение \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 линии пересечения однополостного гиперболоида с координатной плоскостью Oxy . Это уравнение в плоскости Oxy определяет эллипс, который называется горловым. Линии пересечения однополостного гиперболоида с другими координатными плоскостями являются гиперболами. Они называются главными гиперболами. Например, при x=0 получаем главную гиперболу \frac{y^2}{b^2}-\frac{z^2}{z^2}=1 , а при y=0 - главную гиперболу \frac{x^2}{a^2}-\frac{z^2}{c^2}=1

Рассмотрим теперь сечение однополостного гиперболоида плоскостями, параллельными плоскости Oxy . Подставляя z=h , где h - произвольная постоянная (параметр), в уравнение (4.48), получаем

\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{h^2}{c^2}=1 \quad \Leftrightarrow \quad \frac{x^2}{a^2}+\frac{y^2}{b^2}=1+\frac{h^2}{c^2}.

При любом значении параметра h уравнение определяет эллипс с полуосями a"=a\sqrt{1+\frac{h^2}{c^2}}, b"=b\sqrt{1+\frac{h^2}{c^2}}, . Следовательно, сечение однополостного гиперболоида плоскостью z=h представляет собой эллипс, центр которого лежит на оси аппликат, а вершины - на главных гиперболах. Среди всех эллипсов, получающихся в сечениях плоскостями z=h при различных значениях параметра h , горловой эллипс (при h=0 ) является эллипсом с наименьшими полуосями.

Таким образом, однополостный гиперболоид можно представить как поверхность, образованную эллипсами, вершины которых лежат на главных гиперболах (рис.4.42,а)

Плоские сечения двуполостного гиперболоида

Сечения двуполостного гиперболоида координатными плоскостями Oyz и Oxz представляют собой гиперболы (главные гиперболы).

Рассмотрим теперь сечения двуполостного гиперболоида плоскостями, параллельными плоскости Oxy . Подставляя z=h , где h - произвольная постоянная (параметр), в уравнение (4.49), получаем

\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{h^2}{c^2}=-1 \quad \Leftrightarrow \quad \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{h^2}{c^2}-1.

При |h|c получаем уравнение эллипса \frac{x^2}{(a")^2}+\frac{y^2}{(b")^2}=1 с полуосями a"=a\sqrt{\frac{h^2}{c^2}-1}, b"=b\sqrt{\frac{h^2}{c^2}-1} . Следовательно, сечение двуполостного гиперболоида плоскостью z=h при |h|>c представляет собой эллипс с центром на оси аппликат, вершины которого лежат на главных гиперболах.

Таким образом, двуполостный гиперболоид можно представить как поверхность образованную эллипсами, вершины которых лежат на главных гиперболах (рис.4.43,а).

Гиперболоиды вращения

Гиперболоид, у которого поперечные полуоси равны (a=b) , называется гиперболоидом вращения . Такой гиперболоид является поверхностью вращения, а его сечения плоскостями z=h (для двуполостного гиперболоида при |h|>c ) представляют собой окружности с центрами на оси аппликат. Однополостный или двуполостный гиперболоиды можно получить, вращая вокруг оси Oz гиперболу \frac{y^2}{b^2}-\frac{z^2}{c^2}=1 (рис.4.42,б) или сопряженную гиперболу \frac{y^2}{b^2}-\frac{z^2}{c^2}=-1 (рис.4.43,б) соответственно. Заметим, что уравнение последней можно записать в форме -\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 .

Гиперболоид, у которого поперечные оси различны (a\ne b) , называется трехосным (или общим).

Замечания 4.9

1. Плоскости х x=\pm a,\,y=\pm b,\,z=\pm c определяют в пространстве основной прямоугольный параллелепипед , вне которого находится двуполостный гиперболоид (рис.4.43,в). Две грани (z=\pm c) параллелепипеда касаются гиперболоида в его вершинах.

2. Сечение однополостного гиперболоида плоскостью, параллельной оси аппликат и имеющей одну общую точку с горловым эллипсом (т.е. касающейся его), представляет собой две прямые, пересекающиеся в точке касания. Например, подставляя x=\pm a в уравнение (4.48), получаем уравнение \frac{y^2}{b^2}-\frac{z^2}{c^2}=0 двух пересекающихся прямых (см. рис.4.42,а).

3. Однополостный гиперболоид является линейчатой поверхностью, т.е. поверхностью, образованной движением прямой (см. рис.4.42,в). Например, однополостный гиперболоид вращения можно получить, вращая прямую вокруг другой прямой, скрещивающейся с ней (но не перпендикулярной).

4. Начало канонической системы координат является центром симметрии гиперболоида, координатные оси - осями симметрии гиперболоида, координатные плоскости - плоскостями симметрии гиперболоида.

В самом деле, если точка M(x,y,z) принадлежит гиперболоиду, то точки с координатами (\pm x,\pm y,\pm z) при любом выборе знаков также принадлежат гиперболоиду, поскольку их координаты удовлетворяют уравнению (4.48) или (4.49) соответственно.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Очень много написано статей на эту тему, я сам лично искал информацию, каким VPN лучше всего пользоваться в Китае. «Перерыл» много материала и протестировал множество различных VPN. Хочу заметить, что не все сервисы работали через моего провайдера. Возможно и вы столкнетесь с такой же проблемой. Поэтому, я порекомендую один VPN для компьютера, который стабильно работает в Китае. Другой - для телефона. Итак...

Как я уже говорил ранее, не все VPN стабильно работают в Китае. Причины могут быть разными, на мой взгляд, одна из них - это то, что китайский фаервол уже «научился» определять VPN клиенты. Поэтому, протестировав многие сервисы я остановился на одном, а именно на ASTRILL. Для пользователей, которые находятся в Китае, имеется отдельный адрес сайта. По этому адресу можно зайти и зарегистрировать аккаунт. Впрочем, он работает не только в стране Мао Цзэдуна, но и в других странах. Итак, для регистрации переходим по ссылке www.astrill4u.com . На мой взгляд это самый лучший VPN для Китая.

Внимание! Какое-то время ASTRILL не работал в КНР, в настоящий момент все налажено и можно пользоваться. Альтернатива - VPN от компании Betternet

Особенности VPN ASTRILL:

1. Сервис платный, примерно 5 долларов в месяц (бывают проходят акции, если попасть под акцию, можно значительно сэкономить)
2. Большой выбор серверов
3. Клиенты для любой операционной системы.


В целом, я очень доволен выбранной мной компанией. Советую тем, кто собирается в Поднебесную или уже проживает тут, остановить свой выбор именно на этом VPN.

VPN Betternet

Для владельцев продукции Apple посоветую VPN от компании Betternet. Все что нужно для использования - это скачать приложение на устройство и пользоваться. Betternet совершено бесплатный продукт (по крайней мере в настоящий момент).

3. Windscribe - на данный момент самый стабильный VPN в Китае

Даже платный Астрил иногда не работает стабильно. Сейчас я пользуюсь Windscribe, за четыре месяца ни одного сбоя. Иногда надо переключать страны для более стабильного соединения. Проф работы на сайте порой мешают соединению, но не критично, просто выберите другое подключение.

Часто задаваемые вопросы

Китайское правительство приказало местным интернет-провайдерам блокировать тысячи веб-сайтов, существенно оградив китайский народ от остального мира.

Независимо от того, являитесь ли вы жителем Китая, который хочет попасть в Facebook, Google, Twitter или любой другой заблокированный сайт, или бизнесмен, которому необходимо подключиться к внешнему миру, VPN - единственный способ обойти так называемый «Великий Китайский Файервол».

1 февраля 2018 года Министерство промышленности и информационных технологий Китая (МИИТ) признало незаконным использование VPN в Китае.

Как было сказано ранее, мы отчаянно верим в интернет-нейтралитет и в то, что все люди должны иметь доступ к свободному интернет-пространству.

Который идет в комплекте с несколькими протоколами безопасности, а защита от утечки IP и ваших данных будет сохранять вас анонимными в Интернете и поможет избежать обнаружения китайскими властями.

Очевидно, что гораздо легче приехать в Китай с уже установленным на вашем компьютере или мобильном устройстве VPN.

Однако, если вы окажетесь в Китае без VPN, есть способ купить и установить его, находясь там.

Есть несколько международных отелей, таких как Grand Hyatt Beijing, которые имеют VPN на своих маршрутизаторах Wi-Fi для определенных гостей. Другой вариант - найти кого-то, у кого в настоящее время есть VPN, и использовать его как точку доступа для покупки и установки VPN.

Третий вариант - использовать прокси-сервер, такой как Shadowsocks, который позволит вам быстро получить доступ к заблокированному веб-сайту, и вы можете установить свою VPN при использовании данной опции.

Китай является одним из немногих мест, где нет доступа к Netflix, благодаря Великому Китайскому Файерволу.

Однако, если у вас есть VPN, который , вы можете подключиться к своим американским серверам и наслаждаться всеми трансляциями, которое будут доступны.