Принципы ведения радиосвязи. Канал и линия радиосвязи

12.05.2019

Любой вид связи предназначен для передачи информации на расстояние. Информация - это совокупность сведений о событиях в окружающем мире. Формой представления информации является сообщение, которое может представлять собой речь, текст, последовательность чисел и т.д.

Чтобы передать сообщение от источника информации получателю, необходимо использовать любой физический процесс, способный распространяться с некоторой скоростью от источника к получателю информации, например: звуковые колебания, электрический ток в проводниках, свет, электромагнитное поле и др.. физическая величина, определяющая данный процесс, изменяющаяся во времени и отображающая передаваемое сообщение (сила тока, интенсивность электромагнитного поля, яркость света и т.д.называется сигналом. Сигналы не являются передаваемым сообщением, а лишь отображают его. Часто сигнал, полученный в результате преобразования сообщения, называют первичным электрическим сигналом.

В зависимости от характера сообщения.первичные электрические сигналы могут быть непрерывными или дискретными

Непрерывные сигналы принимают любые значения по состояниям в некотором интервале. Такие сигналы описываются на некотором достаточно большом интервале времени непрерывными функциями времени. Типичным примером непрерывного сигнала является речевой сигнал, его амплитуда непрерывно меняется во времени в пределах ±Umax. При передаче такого телефонного сигнала необходимо в первую очередь учитывать его спектр частот.

Известно, что спектр звуков, воспринимаемых человеческим ухом, занимает полосу частот в пределах от 16 до 20000 Гц. Однако передача такого широкого спектра частот по каналам связи сопряжена с определёнными трудностями, связанными с увеличением полосы частот, занимаемой каналом связи, а, следовательно, и с уменьшением количества каналов связи, обеспечиваемых в определённом диапазоне частот. Поэтому при телефонной связи спектр речевого сигнала ограничивают полосой частот от 300 до 3400 Гц, в которой расположены основные частотные составляющие и основная энергия звуков человеческой речи (рис. 2.1).

При этом такое ограничение спектра частот телефонного сигнала не ведёт к заметному искажению сигнала. Ширина спектра 0,3¸3,4 КГц получила название стандартного телефонного канала.

Дискретные сигналы принимают конечное число вполне определённых значений по состоянию. Наиболее общим примером дискретных сигналов могут служить телеграфные сигналы, отображающие текст сообщения с помощью определённого алфавита (кода). При этом каждая буква или цифра кода выражается вполне определённым дискретным состоянием сигнала. На рис.2.2. показаны дискретные состояния, которые принимает сигнал при передаче буквы «Ж» с помощью кода Морзе.


Передача телеграфных сигналов может осуществляться с различной скоростью телеграфирования. Скорость телеграфирования определяется количеством элементарных импульсов, передаваемых в единицу времени (1с) и измеряется в Бодах (Б).

1 Б = 1 имп / 1 с

Для большинства буквопечатающих телеграфных аппаратов скорость телеграфирования составляет 50 Бод.

Первичный электрический сигнал независимо от его вида носит низкочастотный характер. Он может быть непосредственно переданным по проводным линиям связи, но не может эффективно излучаться в среду распространения радиоволн, так как практически невозможно создать антенны, геометрические размеры которых были бы соизмеримы с длинной волн сигнала.

Например, при F=1кГц длина волны l=300(км), а длина антенны L=l/4 = 75(км), что практически не осуществимо.

Следовательно, для передачи по радио первичный электрический сигнал должен быть преобразован в высокочастотный сигнал, способный эффективно излучаться в окружающее пространство.

Такой сигнал принято называть радиосигналом. Преобразование первичных низкочастотных электрических сигналов в радиосигналы осуществляется в радиопередатчиках, являющихся основной частью радиопередающих устройств. Процесс преобразования непрерывных первичных сигналов в радиосигналы носит название модуляции, а дискретных - манипуляции.

Радиосигнал, сформированный и излучённый в окружающую среду в виде радиоволн, распространяясь с определённой скоростью, достигает места расположения получателя информации. При прохождении радиосигнала в среде распространения на него воздействуют другие сигналы, определяемые как свойствами самой среды распространения, так и другими источниками электрических сигналов. В точке получения переданной информации необходимо произвести обратное преобразование радиосигнала в сообщение. Преобразование радиосигналов, пришедших в точку приёма, в исходное сообщение осуществляется радиоприёмным устройством. Задача преобразования принимаемого радиосигнала в сообщение более сложная, чем преобразование сообщения в радиосигнал, так как преобразованию подвергаются не только переданный радиосигнал, а его смесь с другими сигналами (помехами), которые могут исказить переданное сообщение.

Источник информации, радиопередающее устройство, среда распространения радиоволн, радиоприёмное устройство и получатель информации образуют линию радиосвязи (рис. 2.3).

Структурная схема линии радиосвязи, изображённая на рис.2.3., обеспечивает передачу сообщения только в одном направлении - от источника информации к получателю, т.е. одностороннюю радиосвязь. Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее радиоприемное устройство. В этом случае источник информации и получатель информации периодически меняются функциями, выполняемыми в линии радиосвязи, поэтому их принято объединять одним понятием корреспондент.

Для двусторонней радиосвязи режим работы радиолинии может быть симплексным или дуплексным.

Линия радиосвязи, в которой передача и приём сообщений осуществляются поочерёдно, называется симплексной, если же линия радиосвязи обеспечивает одновременную передачу и приём информации, то такая радиолиния называется дуплексной. Линия радиосвязи, которая позволяет одновременно передавать несколько сигналов, отображающих независимые сообщения, называется многоканальной (двухканальной, трёхканальной и т.д.), если же линия радиосвязи предназначена для передачи только одного сигнала, соответствующего одному сообщению, то она называется одноканальной. Таким образом, под каналом радиосвязи понимают часть линии, обеспечивающую передачу и приём сигнала.

В общем случае под каналом радиосвязи понимают часть радиопередающего устройства, среду распространения радиоволн и часть радиоприёмного устройства. Какие части радиопередающего и радиоприёмного устройства входят в понятие радиоканала, оговаривается отдельно. Наиболее часто канал радиосвязи (радиоканал) ограничивается только средой распространения радиоволн. Это объясняется тем, что наиболее характерные особенности радиоканала, отличающие его от других каналов связи, определяются именно средой распространения. В дальнейшем, если не будет специально оговорено, под радиоканалом будем понимать среду распространения радиоволн.

Таким образом, любое радиопередающее устройство должно обеспечивать выполнение следующих трех функций:

1. Преобразование сообщения в первичный электрический сигнал, которое осуществляется оконечной передающей аппаратурой (микрофон, телеграфный ключ, телеграфный аппарат, передающая телевизионная трубка и т.д.).

2. Преобразование первичного электрического сигнала путём модуляции (манипуляции) высокочастотного колебания в радиосигнал, способный эффективно излучаться и распространяться в виде радиоволн на заданное расстояние. Эту функцию выполняет собственно радиопередатчик.

3. Излучение сформированных радиопередатчиком радиосигналов в виде электромагнитных волн, осуществляемое передающим антенно-фидерным устройством (АФУ).

На приёмном конце линии радиосвязи с помощью радиоприёмного устройства производиться обратное преобразование радиосигналов в сообщение. Радиоприёмное устройство также выполняет следующие три основные функции:

1. Приёмное антенно-фидерное устройство (АФУ) улавливает энергию электромагнитных волн и преобразует её в радиосигнал.

2. Выделение принимаемого радиосигнала из множества сигналов, наводимых в антенне, и преобразование его в первичный низкочастотной сигнал необходимой мощности, осуществляемые радиоприёмником.

3. Преобразование первичного сигнала в сообщение, выполняемое приёмной оконечной аппаратурой (головные телефоны, динамик, приёмный телеграфный аппарат, телевизионная трубка и т.д.). Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее и радиоприёмное устройства, которые организационно, а часто и конструктивно, вместе с устройствами управления объединяются в единый комплекс-радиостанцию.


На рис.2.4 представлена обобщенная структурная схема линии радиосвязи между корреспондентами А и Б.

Основные свойства радиоканала, отличающие его от других каналов связи, определяются, главным образом, свойствами среды распространения. Поэтому, при рассмотрении данного вопроса понятие радиоканала ограничим средой распространения радиоволн.

В радиосвязи в качестве среды распространения используется пространство, окружающее земную поверхность. Такая среда не обладает направленными свойствами, как это имеет место, например в проводных и кабельных линиях связи. В линиях радиосвязи излучённые передающей антенной, распространяются практически во все стороны от излучателя и только незначительная часть их энергии излучается в сторону радиоприёмного устройства корреспондента. Происходит рассеивание энергии радиоволн в среде распространения. Кроме того, за счет поглощения энергии радиоволн в земной поверхности и ионосфере, а также за счет преломления радиоволн происходит дополнительное уменьшение энергии радиоволн, приходящих в точку приёма. В тех случаях, когда энергия радиоволн, пришедших в точку приёма оказывается недостаточной для преобразования её в первичный сигнал, радиосвязь оказывается невозможной.

Первое свойство радиоканала и заключается в том, что в процессе распространения радиоволн из-за их рассеивания и поглощения в земной поверхности и ионосфере происходит резкое уменьшение мощности радиосигналов на входе радиоприёмников. Поэтому радиоканал в отличии от других каналов связи рассматривается, как канал с большим затуханием.

Большое затухание радиоканала приводит к тому, что уровень радиосигнала на входе радиоприёмного устройства оказывается соизмеримым с уровнем флуктуационных токов (собственных шумов) радиоприёмника, что затрудняет, а в некоторых случаях делает и невозможным, распознавание принимаемых сигналов и отделение их от шумов.

«Уменьшить» затухание радиоканала можно за счет выбора оптимальных рабочих частот для данного времени требуемой дальности радиосвязи, а также за счет более направленных и эффективных передающих и приёмных антенных устройств.

Вторым свойством радиоканала является изменение затухания во времени в
весьма широких пределах, поэтому радиоканал принято считать каналом связи с
переменными параметрами.

Изменение затухания радиоканала может происходить по различным причинам. На величину затухания в радиоканале влияют изменения взаимного расположения радиостанций на местности и расстояний между ними, что особенно заметно при осуществлении радиосвязи земными волнами. Поскольку напряжённость электромагнитного поля убывает практически пропорционально квадрату длины пути, проходимому волной в процессе распространения, то любое изменение расстояния между работающими радиостанциями приводит к изменению мощности радиосигнала в точке приёма. Очевидно, что эти изменения особенно сильно влияют на обеспечение радиосвязи между подвижными объектами. Но даже в случаях, когда расстояние между работающими радиостанциями остаётся постоянным, а изменяется только их взаимное расположение на местности, могут происходить достаточно резкие изменения затухания в радиоканале, вызываемые изменениями параметров почвы, а, следовательно, и её поглощающих свойств. Параметры сухой почвы отличаются от параметров влажной почвы и от параметров водной поверхности, а также зависят от вида самой почвы - песок, глина и т.д.

В диапазоне метровых волн, на поглощающие свойства среды распространения сильное влияние оказывают рельеф местности и местные предметы - холмы, горы, растительный покров, строения и т.д. Всё это приводит к изменению величины затухания радиоканала, которое может достигать сотен децибел.

Третьим свойством радиоканала является его общедоступность, т.е. возможность использования одной и той же среды распространения любыми радиотехническими устройствами. Общедоступность среды распространения обеспечивает возможность одновременного функционирования большого количества линий радиосвязи.

Таким образом, на входе приёмного устройства всегда кроме принимаемого радиосигнала будут присутствовать помехи, которые искажают его, а. следовательно, и первичный сигнал, непосредственно отображающих переданное сообщение. Степень искажения первичною сигнала определяет правильность принятого сообщения, т.е. его достоверность.

Итак, для повышения надежности радиосвязи и обеспечения высокой достоверности принятого сообщения необходимо принимать следующие меры:

Осуществлять радиосвязь на оптимально выбранных по радио прогнозам частотах, свободных от помех;

Использовать такие виды радиосигналов, которые обеспечивают требуемую надёжность радиосвязи при возможно меньших значениях степени превышения сигнала над помехой;

Применять эффективные и направленные передающие и приёмные антенны;

Уменьшать полосу пропускания радиоприёмника до возможно меньших значений, определяемых спектром принимаемого радиосигнала.

Глава З

ОСНОВЫ РАДИОСВЯЗИ

СТРУКТУРА И ОСНОВНЫЕ ЭЛЕМЕНТЫ РАДИОСВЯЗИ

Радиосвязь - вид связи, осуществляемой посредством радиоволн, т.е. это обмен сообщениями между двумя и более абонентами с помощью электрических сигналов, переносимых через пространство радиоволнами. В основе радиосвязи лежит преобразование электрической энергии высокой частоты в электромагнитные колебания радиопередатчиком, распространение их (радиоволн) в пространстве и обратное преобразование радиоприемником электромагнитных колебаний (радиоволн) в электрические колебания.

В зависимости от формы сообщений различают телефонную, телеграфную и телевизионную радиосвязь.

На рис. 3.1 показана структурная схема радиосвязи. Микрофон (М) преобразует звуковые колебания речи в электрические колебания тока звуковой (низкой) частоты. Одним из основных блоков радиопередатчика является задающий генератор (ЗГ) (или генератор высокой частоты), преобразующий энергию постоянного тока (специального источника питания) в энергию колебаний токов высокой частоты (ВЧ). Усиленный в усилителе низкой частоты (УНЧ) ток звуковой частоты поступает на модулятор (Мод), воздействуя на один из параметров (амплитуду, частоту или фазу) тока высокой частоты, вырабатываемого задающим генератором. В результате в антенну передатчика попадаются токи высокой частоты (радиочастоты), изменяющиеся по амплитуде, частоте или фазе в соответствии с передаваемым и звуковыми колебаниями (передаваемым первоначальным сообщением). Процесс воздействия на один из параметров ВЧ-сигнала по закону изменения передаваемого первоначального сообщения называется модуляцией, соответственно амплитудной, частотной или фазовой.

Рис. 3.1. Структурная схема радиосвязи

Токи высокой частоты, проходя по антенне передатчика, образуют вокруг нее электромагнитное поле. Электромагнитные волны (радиоволны) отделяются от антенны и распространяются в пространстве со скоростью 300 000 км/с.

С помощью специальных форм и конструкций передающих антенн добиваются направленного излучения радиоволн, те. излучения в сторону приемной радиостанции. Так как радиоволны представляют собой модулированные токи высокой частоты, то и сами они как бы переносят передаваемые звуковые колебания (первоначального сообщения).

В приемной антенне радиоволнами (электромагнитным полем) наводится ЭДС радиочастоты, создающая модулированный ток ВЧ, который в точности повторяет все изменения тока в передающей антенне. Токи высокой частоты от приемной антенны по фидерной линии попадаются на избирательный усилитель высокой частоты (УВЧ). Избирательность обеспечивается резонансным контуром, чаще всего состоящим из параллельно включенных катушки индуктивности и конденсатора, образующих параллельный колебательный контур, имеющий резонанс тока на частоте электромагнитных колебаний, передаваемых передатчиком. К передатчикам радиостанций, работающих на других частотах, данный радиоприемник практически нечувствителен.

Усиленный сигнал подается на детектор (Дет), преобразующий принятые сигналы ВЧ в токи звуковых колебаний, изменяющиеся подобно токам звуковой частоты, создаваемым микрофоном на передающем пункте. Такое преобразование называется детектированием (демодуляцией). Полученный после детектирования ток звуковой или низкой частоты (НЧ) обычно еще усиливается в УНЧ и передается на громкоговоритель (динамик или наушники), который преобразует этот ток НЧ в звуковые колебания.

Радиосвязь бывает одно- и двухсторонней. При односторонней радиосвязи одна из радиостанций осуществляет только передачу, а другая (или другие) - только прием. При двухсторонней радиосвязи радиостанции осуществляют одновременно передачу и прием.

Симплексная радиосвязь - это двухсторонняя радиосвязь, при которой каждый абонент ведет только передачу или только прием поочередно, выключая свой передатчик на время приема (рис. 3.2). Для симплексной связи достаточно одной радиочастоты (одночастотная симплексная радиосвязь). Каждая радиостанция имеет одну антенну, которая при приеме и передаче переключается соответственно на вход радиоприемника или на выход радиопередатчика.

Симплексная радиосвязь используется, как правило, при наличии относительно небольших информационных потоков. Для радиосетей с большой нагрузкой характерна дуплексная радиосвязь.

Рис. 3.2. Структурная схема симплексной радиосвязи

Дуплексная радиосвязь - это двухсторонняя радиосвязь, при которой прием и передача ведутся одновременно. Для дуплексной радиосвязи требуются две разные несущие частоты, а передатчики и приемники должны иметь свои антенны (рис. 3.3). Кроме того, на входе каждого приемника устанавливают специальный фильтр (дуплексер), не пропускающий колебаний радиочастоты собственного передатчика. Достоинствами дуплексной радиосвязи являются ее высокая оперативность и пропускная способность радиосети.

Введение


В системах управления различного назначения для передачи сообщений очень широко применяются различные виды электрической связи и в их числе и радиосвязь, осуществляемая посредством радиоволн.

Рис.1 Обобщенная структурная схема системы радиосвязи.

Отправителем и получателем сообщений могут выступать как человек, так и технические устройства. Сообщения могут быть в виде речи, буквенно-цифрового текста, изображения и т. д.

По своему характеру сообщения могут быть дискретно-значимыми или дискретными и непрерывнозначными или непрерывными.

Дискретно-значныминазываются сообщения, принимающие конечное или счетное число значений. Например: буквенно-цифровой текст, буквы, цифры, знаки препинания. Множество возможных сообщений с их вероятностными характеристиками образуют ансамбль сообщений. Выбор конкретных сообщений из ансамбля осуществляет отправитель сообщений.

Непрерывнозначными называются сообщения, возможные значения которых неотделимы и непрерывно заполняют некоторую область значений. Например: речь, музыка, подвижные изображения и т. д. Они характеризуются плотностью вероятности.

Для передачи по каналу связи любой вид сообщения должен быть преобразован в первичный электрический сигнал. Между сообщением и сигналом должно быть однозначное соответствие, чтобы при обратном преобразовании в пункте приема можно было получить переданное сообщение.

Звуковое давление при передаче речевых сообщений преобразуется микрофоном в электрическое напряжение. Электрические сигналы, являющиеся аналогами непрерывнозначных сообщений, называются аналоговыми.

Первичные электрические сигналы, соответствующие дискретно-значным сообщениям, называют цифровыми.

Процесс преобразования дискретно-значных сообщений в цифровые сигналы называется кодированием.

Систему соответствия между дискретно-значными сообщениями и кодовыми комбинациями единичных элементов принято называть первичным кодом.

В системе передачи, как правило, используются двоичные коды. Это позволяет широко использовать в аппаратуре связи стандартные элементы цифровой техники. Символы единичных элементов кодовых комбинаций «1» и «0» называют битами.

Аналоговые сигналы можно преобразовать в цифровые сигналы. Преобразование аналогового сигнала в цифровой достигается его дискретизацией по времени и квантованием по уровню.

При импульсно-кодовой модуляции аналоговый сигнал путем дискретизации, квантования отсчетов и их кодирования преобразуется в цифровой сигнал.

Поскольку передача первичного электрического сигнала на большие расстояния невозможна, то он в радиопередающем устройстве (ПРД) при помощи модуляции или манипуляции преобразуется в радиосигнал. Этот радиосигнал передается через пространство-линию связи к радиоприёмному устройству (ПРМ).


Модуляцией называется процесс изменения одного или нескольких параметров радиочастотного колебания в соответствии с представляющим параметром первичного электрического сигнала.

Изменяемые при этом параметры называются информационными, остальные - сопутствующими.

Модуляцию радиочастотного колебания первичным цифровым сигналом называют манипуляцией.

Модуляцию радиочастотного колебания первичным импульсным сигналом (последовательностью импульсов) - называют импульсной модуляцией.

В радиоприёмном устройстве (ПРМ) из принятого радиосигнала выделяется первичный электрический сигнал, который затем используется для восстановления сообщения.

Совокупность ПРД, линии связи, ПРМ называется каналом радиосвязи.

Отправитель, канал радиосвязи, получатель образуют систему радиосвязи.

Наличие помех, искажений в линии связи и самой аппаратуре отличают сообщение на выходе ПРМ от передаваемого. Способность системы радиосвязи противостоять вредному воздействию радиопомех и искажений характеризуется помехоустойчивостью.

Помехи делятся на аддитивные n(t) и мультипликативные .

Если принимаемое сообщение можно представить в виде суммы сигнала S(t) и помехи n(t): , то эта помеха называется аддитивной.

Аддитивные помехи бывают: флюктуационными, импульсными, стационарными.

Флюктуационная помеха обладает равномерным энергетическим спектром, ширина которого превышает спектр радиосигнала (это может быть собственный шум ПРМ).

Импульсной помехой называется регулярная или случайная последовательность импульсов, длительность которых значительно меньше периода их следования (грозовые разряды, зажигание автомобилей).

Стационарная помеха это помехи от соседних радиостанций и других радиотехнических устройств, а также прицельные помехи.

При воздействии мультипликативной помехи принимаемый сигнал представлен в виде произведения передаваемого сигнала S(t) и помехи :

Могут быть и другие способы взаимодействия полезного сигнала и помехи. К мультипликативным помехам относится замирание радиосигнала, приход в точку приема сдвинутых относительно друг друга радиосигналов по времени.

В общем случае, на принимаемый сигнал воздействуют мультипликативные и аддитивные помехи.

Ниже достаточно кратко рассматриваются особенности структурных схем передатчика и приемника типовых СРС с ППРЧ.

Основные элементы структурных схем передатчика и приемника СРС с ППРЧ при цифровой одноканальной модуляции изображены на рис. 1.7, а, б.

На рис.1.8 приведен фрагмент ЧВМ сигнала одноканальной СРС с ППРЧ, где квадратами с наклонной штриховкой обозначены частотные каналы, занятые элементами сигнала.

В такой СРС в интервале между переключениями частот имеется только одна несущая частота и соответствующий канал передачи. При одноканальной модуляции в СРС используется, как правило, медленная ППРЧ, а в качестве информационной модуляции может применяться ЧМ без разрыва фазы, при которой сигнал изменяет несущую частоту от одного скачка к другому, сохраняя в то же время непрерывность фазы. Частотная манипуляция без разрыва фазы позволяет сформировать сигналы со сравнительно узкой шириной спектра. Наиболее эффективная демодуляция таких сигналов может быть осуществлена с помощью ограничителя-дискриминатора . Структурная схема приемного устройства СРС с ППРЧ и ЧМ без разрыва фазы сигнала изображена на рис.1.9.

На рис.1.10, а, б изображены типовые структурные схемы передатчика и приемника СРС с ППРЧ, двоичной ЧМ и смежными по частоте каналами.

В соответствии с потоком исходных двоичных данных частотный манипулятор и генератор обеспечивают перенос двоичных символов 1 и 0 на частоты и . С помощью синтезатора частот и генератора псевдослучайного кода осуществляется перестройка рабочей частоты. В приемном устройстве за счет смесителя и синтезатора частот, управляемого ГПС кода, скачки рабочей частоты устраняются, в результате информационные символы 1 и 0 переносятся на первоначально выбранные частоты и . Принимаемый полезный сигнал СРС с ППРЧ и двоичной ЧМ на выходе ШПФ во время j-го скачка частоты можно записать в виде:

где - частота модуляции; - начальная фаза -го скачка частоты, .

В случае идеальной синхронизации между принятым и опорным сигналами на входе демодулятора будет действовать полезный сигнал

(1.4)

В результате демодуляции принятых сигналов решающее устройство выдает оценку информационной последовательности, .

Реализация ЧВМ со случайной двоичной ЧМ, при которой основной и дополнительный каналы приема разнесены между собой случайным для постановщика помех образом, возможна с помощью приемного устройства, структурная схема которого изображена на рис. 1.11.

Схема приемника состоит из двух одинаковых частей, каждая из которых осуществляет обработку своего информационного символа. Наличие двух независимых синтезаторов частот позволяет излучать передатчиком такие пары частот, разность между которыми может иметь различные значения при каждом скачке частоты. Такое формирование сигналов с ППРЧ затрудняет их разведку, в частности не позволяет определить частоту дополнительного канала, воздействие помех на который может быть более эффективным, чем на канал передачи информации.

Структурная схема приемника, обеспечивающего прием и обработку сигналов с внутрибитовой ППРЧ и неслучайной двоичной ЧМ, приведена на рис. 1.12, где обозначено: – выходные выборки квадратичных детекторов (КД) огибающей, формируемые в моменты времени , - число субсимволов в бите информации; – нормированные выборки; – статистики решения; - выходная статистика.

Применение сигналов с внутрибитовой ППРЧ в условиях помех может быть эффективным при нормировании (взвешивании) выборок и последующим их сложении.

В данной схеме нормирование выборок осуществляется с помощью весовых множителей ( – дисперсия помех), для формирования которых используется канал измерения мощности помехи.

Принцип разнесения (повторения) элементов сигнала находит широкое применение в СРС с ППРЧ для защиты от организованных помех. При этом неотъемлемой частью процедуры демодуляции (или декодирования) является, как указывалось выше, взвешивание и сложение разнесенных сигналов.

Наиболее эффективными методами взвешивания выборок каждого частотного элемента сигнала в СРС с -ичной ЧМ, достаточно устойчивыми к изменениям стратегии постановщика помех и хорошо работающими в условиях наихудших шумовых помех в части полосы, являются :

адаптивное взвешивание выходной выборки квадратичного детектора в каждом канале приемника , при котором нормированная выборка на входе сумматора имеет вид:

,

где - дисперсия помехи и собственных шумов в -м частотном канале, оценка которой обеспечивается дополнительным каналом измерения мощности помехи,

самонормирующееся взвешиванне выходной выборки квадратичиого детектора , при котором нормированная выборка на входе сумматора формируется путем деления на сумму выборок по всем каналам приемника

фактически сумма в раз больше возможного значения дисперсии помехи на -м скачке частоты; поэтому вероятностные характеристики СРС с таким взвешиванием близки к характеристикам СРС с методом адаптивного взвешивания выходной выборки КД;

взвешивание выходной выборки квадратичного детектора за счет деления на максимальное значение по всем каналам приемника, в результате чего нормированная выборка на входе сумматора

максимум фактически является оценкой наибольшего значения дисперсии в одном из каналов приемника; в силу этого вероятностные характеристики СРС с данным взвешиванием практически соответствуют характеристикам СРС с адаптивным взвешиванием выходной выборки КД;

взвешивание выходной выборки квадратичного детектора за счет применения мягкого ограничителя , который при анализе вероятностных характеристик СРС моделируется -уровневым квантователем.

После формирования взвешенных выборок указанными выше методами осуществляется их некогерентное сложение и последующее принятие мягких решений о передаче информационных символов 1 или 0.

При использовании принципа частотного разнесения или повторения информационных символов в СРС с ППРЧ может использоваться демодулятор с принятием жестких решений для каждого субсимвола (скачка частоты). При этом выборка имеет вид:

а решение о передаче соответствующего информационного символа принимается на основе мажоритарной логики.

Влияние различных методов взвешивания выходных выборок квадратичного детектора и суммирования субсимволов на вероятностные характеристики СРС с внутрибитовой ППРЧ и двоичной ЧМ детально рассматривается в четвертой главе.

Типовая структурная схема приемника СРС с -ичной ЧМ для случая, когда частотные каналы всего сегмента частот являются смежными, но каждый сегмент может иметь случайно выбранное положение внутри обшей полосы частот , изображена на рис. 1.13, где СВМ-схема выбора максимума.

При использовании в системе радиосвязи -ичной ЧМ блок из бит закодированной цифровой информации передается при помощи одной частоты, выбираемой из частот (а не из двух частот как при двоичной ЧМ) в интервале отведенного времени для передачи каждого частотного элемента. Переход от двоичной к -ичной ЧМ при постоянной скорости передачи информации и энергии сигнала на бит для канала с АБГШ приводит к уменьшению вероятности ошибки в основном канале приема. При -ичной ЧМ передающее устройство СРС может осуществлять передачу па любой рабочей частоте, которая формируется синтезатором. Для такой -ичной СРС демодулятор является обобщением двоичного демодулятора.

На рис. 1.14 представлена более сложная структурная схема приемника СРС со случайной -ичной ЧМ, при которой каждая частота из -набора частот выбирается случайным образом, частотные каналы в этом случае разнесены.

Такая структурная схема приемника, как и для СРС со случайной двоичной ЧМ, обеспечивает более высокую помехоустойчивость СРС при воздействии организованных помех.

Однако необходимость выбора некоторого множества частот из значительно большего числа частот требует анализировать одновременно все частот. Один из способов преодоления этой трудности при неслучайной -ичной ЧМ состоит в использовании специального набора частот, в котором каждая из возможных частот имеет строго определенную связь с остальными частотами . Такая СРС, обеспечивая передачу нескольких бит информации на одной частоте, позволяет реализовать достаточно простой способ обработки сигналов, при котором используется всего лишь один приемник и -демодуляторов.

Для цифровых СРС, в которых для передачи данных используется многоуровневая ЧМ, форма переданного сигнала в -м интервале передачи в общем случае имеет вид:

где - несмещенная минимальная несущая частота; – минимальный разнос по частоте между сигналами в -ичной последовательности; - значение -го символа данных, взятое из последовательности целых чисел, .

В соответствии с (1.5) собственную форму переданных сигналов на каждом скачке частоты (без учета модуляции данных методом -ичной ЧМ, которая не влияет на основную форму выражения и не изменяет спектральных свойств сигнала) можно записать следующим образом:

(1.6)

Для повышения помехоустойчивости СРС с ППРЧ могут применяться -ичная ЧМ, кодирование и разнесение символов по частоте . На рис. 1.15, а, б представлены обобщенные структурные схемы передающего и приемного устройства СРС с ППРЧ, -ичной ЧМ, кодированием данных и сложением разнесенных символов.

На рисунке обозначено: - скорость передачи информации в битах; - частота следования элементарных посылок; - скорость -ичных символов, ; - скорость переключения частотных каналов; - уровень разнесения символов (избыточность); - общая скорость кодирования в информационных битах, приходящихся на -составной канал, .

Реализация такой СРС обеспечивает внутрисимвольную ППРЧ, при котором . -ичные символы образуются путем генерирования одного из возможных тональных сигналов со скоростью передачи знаков . Эта частота смешивается затем со скачкообразно изменяемой несущей частотой, перестраиваемой со скоростью .

На приемной стороне скачки рабочей частоты устраняются, сигнал восстанавливается и поступает на -канальный демодулятор, далее сигнал обрабатывается в соответствии с функциональной схемой приемника СРС. Схема сложения разнесенных по частоте символов соединяется с декодером, что способствует уменьшению вероятности ошибки до уровня, обеспечивающего эффективную работу декодера.

В современных СРС возможно и совместное (комплексное) применение различных методов расширения спектра сигнала.

Наиболее широко используется метод ППРЧ одновременно с методом непосредственной модуляции несущей ПСП. Информационный сигнал в такой СРС сначала расширяется с помощью непосредственной модуляции несущей ПСП , а затем – за счет скачкообразного изменения рабочей частоты. На основе (1.6) собственная форма переданных сигналов ППРЧ-ПСП может быть записана в виде:

, (1.7)

Из выражения (1.7) следует, что в СРС с ППРЧ-ПСП разнос между частотными элементами будет равен , т.е. в раз больше, чем в случае расширения спектра сигнала только за счет одного метода ППРЧ (1.6). Достоинство таких сигналов состоит в том, что можно осуществлять скачки по частоте, величина которых больше ширины спектра ФМШПС. В результате гибридная система радиосвязи с ППРЧ-ПСП осуществляет распределение энергии сигнала по полосе частот значительно большей, чем в СРС с ФМШПС. При этом использование метода ППРЧ позволяет избежать наложения помехи на часть спектра сигнала в течении определенного интервала времени. В случае, если сигнал такой гибридной СРС «попадает» на помеху, то спектр помехи расширяется и фильтруется точно так же, как это осуществляется в СРС с ФМШПС.

Структурные схемы передатчика и приемника гибридной СРС с ППРЧ-ПСП изображены на рис. 1.16,а и на рис. 1.17,а. На рис. 1.16,б и на рис. 1.17,б показаны спектральные плотности мощности сигнала и узкополосной помехи в характерных точках структурных схем.

Как видно на рис. 1.16 информационный сигнал расширяется до ширины полосы , а затем преобразуется в радиосигнал, несущая частота которого скачкообразно с заданным периодом перестраивается в рабочем диапазоне частот .

На приемной стороне СРС вначале устраняются скачки рабочей частоты, сигнал переводится на постоянную несущую частоту, а затем спектр полезного сигнала свертывается до своей первоначальной полосы. Спектр мощности других сигналов, некоррелированных с полезным сигналом, расширяется. Следует отметить, что при реализации гибридных систем ППРЧ-ПСП один и тот же ГПС кода может использоваться как для управления переключением частотных каналов синтезатора, так и для получения модулирующего сигнала при псевдослучайной модуляции.

Комплексное применение различных методов расширения спектра сигналов, наряду с улучшением характеристик помехоустойчивости гибридных СРС, в ряде случаев позволяет преодолеть трудности технической реализации, которые могут возникнуть при формировании сигналов в СРС только с помощью одного из методов расширения спектра .

Для разрабатываемой функциональной схемы передающей части канала из структурной схемы выбираются: коммутатор К, усилитель мощности, который может состоять из двух каскадов предварительного усиления ПОК1 и ПОК2 и оконечного усилителя мощности ОК. Схема синтезатора-возбудителя предназначена для формирования высокочастотного ЧМ колебания с амплитудой не менее 0,5 В, которое используется для возбуждения предварительного усилителя мощности ПОК1. Диапазон частот возбудителя 151,725 - 156,000 МГц, шаг сетки частот 25 кГц. В состав возбудителя входят: ГУН 1 на транзисторе ГТ311Е и варикапах КВ121А, буферный усилитель на двух транзисторах того же типа, включенных по каскадной схеме ОЭ - ОБ, большая интегральная схема синтезатора частоты типа КФ1015ПЛ4Б (КР1015ХК2). Опорный сигнал частотой 10 МГц для передающего и приёмного синтезаторов вырабатывает высокостабильный генератор "Топаз - 03", выпускаемый на Российских предприятиях по техническим условиям ШИ3.423.009ТУ в виде малогабаритного конструктивного устройства, питаемого стабилизированным напряжением +9 В. В проекте его можно использовать, как функциональный блок без представления принципиальной схемы.

На вход синтезатора частоты поступает сигнал с ГУН 1 через буферный усилитель. Входом является входящий в синтезатор делитель частоты с переменным коэффициентом деления ДПКД, с выхода которого сигнал поступает на один из входов частотно-фазового детектора ЧФД. На второй вход детектора подается высокочастотный сигнал опорного генератора ОГ, прошедший через делитель опорной частоты ДОЧ. ЧДФ формирует сигнал ошибки, пропорциональный разности фаз входных сигналов. Это напряжение ошибки по цепи фазовой автоподстройки ФАПЧ через фильтр низких частот ФНЧ подаётся на управляющий вход ГУН 1 , что приводит к изменению его частоты до требуемого, определяемого коэффициентом ДПКД значения. Синтезатор имеет выход сигнала детектора захвата частоты петлёй ФАПЧ. На ГУН 1 одновременно осуществляются частотная модуляция и автоподстройка его частоты. Чтобы не происходило снижения девиации частоты за счёт схемы ФАПЧ, постоянная времени фильтра низких частот ФНЧ на выходе синтезатора выбрана много больше, чем период низкой частоты (F МИН = 300 Гц) спектра НЧ сигнала. При этом ФАПЧ работает на частотах ДF<< 300 Гц и не реагирует на сравнительно быстрые изменения частоты при её девиации, что делает возможным одновременное сосуществование частотной модуляции и автоподстройки. Информация о частоте конкретного канала поступает в регистр синтезатора по цепям "Запись", "Данные" и "Синхронизация". Сигнал "Запись" содержит байт информации о включении или выключении передатчика. Сигнал "Данные" содержит ещё три байта информации для передачи трёхзначного номера канала, общее число которых составляет в диапазоне частот 151,725 - 156,000 МГц N = 172. Т.о. для хранения информации "Запись" и "Данные" должно использоваться 32 - разрядное (4 - байтовое) управляющее слово, формируемое в блоке автоматики. Запись номера канала, по которому устанавливается в ДПКД синтезатора необходимый коэффициент деления, производится двоичным последовательным кодом, продвигаемым через регистр синтезатора с каждым синхроимпульсом, поступающим по цепи "Синхронизация". При этом внутри синтезатора последовательный код преобразуется в параллельный, что обеспечивает нормальное функционирование режима ФАПЧ возбудителя. Все сигналы поступают в синтезатор через буферную микросхему 564ПУ4Б D 1 . Сигнал синтезатора подаётся также на схему контроля для формирования сигнала исправности его работы. Особое место в схеме передающего тракта занимает модулятор, который выполняет следующие функции:

а) обеспечивает номинальную девиацию частоты Дf НОМ;

б) ограничивает максимальное значение девиации частоты Дf МАКС;

в) осуществляет необходимую предкоррекцию амплитудно-частотной характеристики тракта АЧХ по закону +6 дБ/октава.

Для выполнения указанных функций схема модулятора содержит:

Усилитель звуковой частоты, охваченный петлей автоматической регулировки усиления АРУ, которая производит сжатие динамического диапазона входных сигналов;

Амплитудный ограничитель, устраняющий перемодуляцию передатчика;

Фильтр низких частот, служащий для ограничения полосы пропускания модулирующих сигналов в пределах от 0,3 до 3,4 кГц;

Формирователь сигнала исправности модулятора.

Расчёт режима модулятора в данном проекте не выполняется, в принципиальную и функциональную схемы вставляется лишь его функциональный блок и перечисляются все вышеприведенные функции, которые реализует модулятор. Параметры стандартного модулятора:

а) чувствительность модуляционного входа модулятора при R ВХ = 600 Ом должна быть не менее 300 мВ;

б) отклонение амплитудно-частотной модуляционной характеристики передатчика АЧМХ от характеристики с предкоррекцией + 6 дБ/октава должно быть в пределах ± 12,5 дБ;

Функциональная схема передающего канала приведена на рисунке 3.1. В соответствии с этой схемой производятся расчёты предварительных параметров передающей части.

Рисунок 3.1 - Функциональная схема передающей части канала