Руководство по разгону Lynnfield на материнской плате Asus P7P55D Deluxe. Разгон при статической реализации технологии Turbo Boost

24.04.2019

Введение

Запуск платформы Intel LGA 1156 оказался очень успешным, публикации в онлайновых изданиях и мнения пользователей оказались весьма позитивными. Наши первые статьи насчёт Core i5 охватывали технологии процессоров и платформ , а также производительность в играх . Теперь настало время изучить возможности разгона новых процессоров. Насколько хорошо можно разогнать последнюю платформу Intel? Каково будет влияние технологии Turbo Boost? Как насчёт энергопотребления на увеличенных тактовых частотах? На все эти вопросы мы постараемся ответить в статье.

P55: “Следующий BX?”

Эту фразу часто используют для описания нового чипсета или платформы, у которой есть потенциал стать стандартом де-факто, то есть доминировать над всеми прямыми конкурентами большее время, чем подразумевает жизненный цикл обычного продукта. Давным-давно чипсет 440BX, с которым работало второе поколение Pentium II, стал наиболее популярным набором системной логики, хотя некоторые конкуренты предлагали на бумаге большие характеристики. BX обеспечивал немало за свою цену, и журналисты очень часто вспоминают название этого продукта.

Многие пользователи всё ещё работают на Pentium 4, Pentium D или Athlon 64/X2 или даже на первом поколении систем Core 2 - и они хотят сделать апгрейд до четырёх ядер, а также, возможно, поставить Windows 7. Core i5 - один из самых привлекательных вариантов по соотношению цена/производительность на сегодня, особенно для пользователей с серьёзными амбициями разгона.

Есть ли у платформы P55 потенциал стать следующей BX? И да, и нет. С одной стороны, Intel будет продвигать интерфейс сокета LGA 1156 не меньше пары лет, хотя раскладка контактов и электрические спецификации могут меняться. Из того, что мы знаем сегодня, можно предположить, что базовая платформа доживёт до 2011 года, и на этот сокет можно будет устанавливать все 32-нм процессоры Westmere. Так что да, хорошие перспективы у него есть.

Впрочем, есть некоторые функции, которые обещают вскоре стать актуальными и которые платформа P55 сегодня не поддерживает. Первая - USB 3.0. Вторая - SATA с интерфейсом 6 Гбит/с. Конечно, ускоренный интерфейс SATA будет существенно влиять только на SSD на основе флэш-памяти и на оснастки eSATA, у которых подключаются несколько накопителей через один интерфейс eSATA. Но USB 3.0, как нам кажется, должен стать обязательным стандартом после своего появления, поскольку большинство внешних накопителей обычно ограничены пропускной способностью всего 30 Мбайт/с из-за "узкого места" в виде интерфейса USB 2.0.

Разгон: хорошие скорости, но некоторые препятствия

Для нашего проекта мы использовали материнскую плату MSI P55-GD65, планируя разогнать процессор Core i5-750 начального уровня до 4,3 ГГц. Однако мы смогли достичь частот чуть выше 4 ГГц, выключив некоторые важные функции процессора.

Выбор лучшего процессора LGA 1156 для разгона


Нажмите на картинку для увеличения.

Intel пока что выпустила три разных процессора, все из которых базируются на интерфейсе LGA 1156: Core i5-750 на 2,66 ГГц, Core i7-860 на 2,8 ГГц и самый быстрый Core i7-870 на 2,93 ГГц. Эти процессоры отличаются не только штатной тактовой частотой, но и реализацией функции ускорения Turbo Boost. Процессоры линейки 800 могут ускорять отдельные ядра более агрессивно, чем другие модели. Позвольте привести небольшую таблицу.

Turbo Boost: доступные шаги (в допустимых пределах TDP/A/Temp)
Модель процессора Штатная частота 4 ядра активны 3 ядра активны 2 ядра активны 1 ядро активно
Core i7-870 2,93 ГГц 2 2 4 5
Core i7-860 2,8 ГГц 1 1 4 5
Core i5-750 2,66 ГГц 1 1 4 4
Core i7-975 3,33 ГГц 1 1 1 2
Core i7-950 3,06 ГГц 1 1 1 2
Core i7-920 2,66 ГГц 1 1 2 2

Многие ожидают, что более быстрые модели процессоров будут разгоняться лучше, но это не всегда подтверждается на практике. Поскольку ядра у всех существующих процессоров LGA 1156 одинаковые, мы решили сначала проанализировать цены. И цена при покупке в партии 1000 штук у Core i7-870 составляет $562. Мы считаем, что это несколько дороговато для энтузиастов, желающих получить оптимальное соотношение цена/производительность, поэтому мы решили обратить внимание на оставшиеся модели: Core-i7-860 за $284 и i5-750 за $196.

Поскольку в нашем обзоре в момент запуска процессора и связанных с ним статьях мы обычно использовали более быстрые модели, то мы изначально решили в проекте разгона взять процессор начального уровня. Действительно, эта модель будет наиболее привлекательной для большинства наших читателей.

Мы начнём со штатной тактовой частоты 2,66 ГГц, причём реализация Turbo Boost у данной модели может увеличивать тактовую частоту до максимума 3,2 ГГц. Так как процессор Core i7-870 достигает частоты 3,6 ГГц при максимальном режиме Turbo Boost для одного ядра, мы решили начать разгон с частоты 3,6 ГГц, после чего мы проверим, какую максимальную частоту сможет достичь самый доступный процессор Core i5.

Описание платформы


Нажмите на картинку для увеличения.

В Интернете можно найти много результатов успешного разгона разных платформ на архитектуре LGA 1156 (есть также результаты, которых лучше избежать; дополнительные детали мы привели в обзоре материнских плат начального уровня на чипсете P55 ). Все крупные производители материнских плат считают чипсет P55 ключевым продуктом, поэтому все они инвестируют в разработку немало средств. Мы уже использовали три разных материнских платы на чипсете P55 в статье, посвящённой выпуску процессора , поэтому для разгона решили взять флагманскую модель MSI P55-GD65. На рынке также присутствует модель P55-GD80, у которой более крупная система охлаждения на тепловых трубках, а также три слота x16 PCI Express 2.0 вместо двух. Однако три слота P55-GD80 ограничены числом линий 16, 8 и 4, а плата P55-GD65 работает в конфигурациях с 16 и 8 линиями.

MSI реализовала динамический стабилизатор напряжения с семью фазами, систему охлаждения с тепловыми трубками и многие другие функции, которые производители материнских плат обычно устанавливают на модели для оверклокеров. Плату MSI отличает от многих других небольшая особенность: система облегчения разгона OC Genie - простое решение, которое автоматически разгоняет вашу систему, увеличивая базовую частоту после активации. MSI утверждает, что система сама управляет всеми необходимыми настройками, но данная функция требует высококачественных компонентов платформы. Но для данного обзора мы решили отказаться от всех необычных функций и выбрали традиционный способ разгона.

Мы установили последнюю версию BIOS, которая позволяет выключить защиту Intel Overspeed, после чего приступили к нашему проекту разгона. Самый большой множитель, который мы могли выбрать, соответствовал максимальному режиму Turbo Boost с активными четырьмя ядрами - то есть на один шаг больше 20x по умолчанию (21 x 133 = 2,8 ГГц). Мы получили более высокую тактовую частоту, увеличив базовую частоту до 215 МГц.

Введение

Не так давно мы писали похожее руководство по разгону видеокарты Radeon HD 5750, нам тема разгона показалась интересной и, поэтому мы решили дополнить прошлую статью новой, то есть той, которую вы сейчас читаете. Процессор Core i5 750 сам по себе поразил нас своей производительностью, особенно если учитывать цену на него - 200$. В сравнении с намного более дорогими процессрами Core i7 9хх (LGA1366) данная модель показывает удивительные результаты.

Что нас удивило больше всего, так это то, что между процессорами Core i5 750 и Core i7 860/920 практически нет никакой разницы, когда они работают на одинаковой частоте. В конце концов, результаты тестирования убедили нас в том, что Core i5 750 - это лучший выбор среди четырехядерных процессоров, на данный момент достумный в рознице. И по нашему мнению ПОКА исключений нет.

Более того, они предоставили нам доказательство того, что любому оверклокеру будет интересно поиграть с таким «камнем», не обязательны затраты на дорогостоящие процессоры серии Core i7 8xx, так как Core i5 достаточно просто «гонятся» и достигают очень неплохой производительности, по сути, становясь после разгона процессорами 8хх серии.

Да, пожалуй, особенно приятным будет тот факт, что Core i5 750 разгоняется совершенно просто, и чем лучше у вас остальное «железо», тем больших результатов вы добьетесь. Во время написания этой статьи у нас была полноразмерная материнская плата на чипсете P55, главная особенность таких материнских плат в массе фишек, позволяющих осуществлять качественный разгон компонентов. Здесь то и раскрыла все свои возможности наша материнская плата ASUS P7P55D.

До этого у нас был опыт в разгоне нескольких процессоров Core i5 750 на материнских платах ASUS P7P55D, ASUS P7P55D PRO, ASUS P7P55D EVO и ASUS P7P55D Deluxe. Эти платы стоят от 150$ до 220$, так что, в принципе, их может позволить себе каждый. Что замечательно, так это то, что все эти «мамки» прекрасно разгоняют Core i5 750.

Разгон

Лучшее место для начала любого овекрклокерского приключения - это BIOS материнской платы, и опять же, BIOS материнской платы ASUS P7P55D примерно схож с BIOS’ами прочих материнских плат ASUS на этом чипсете. Да и вообще, практически в любом современном BIOS’е современной материнской платы можно найти параметры, о которых мы будем сейчас говорить, разве что они в некоторых случаях могут называться по-разному.

После того, как вы войдете в основное меню BIOS, пройдите в раздел под названием “Ai Tweaker” - здесь и будет происходить все самое интересное. Первым делом вам нужно будет выставить параметр “Ai Overclock Tuner” в режим «Manual» (то есть вы будете разгонять систему вручную), при ручном разгоне вы сможете менять такие параметры, как частоту системной шины (BCLK Frequency).

По умолчанию частота системной шины выставлена в значение 133МГц, множитель процессора Core i5 750 (с отключенным режимом Turbo Mode) составляет 20x. Если использовать стандартный, родной кулер, поставлявшийся с процессором (так называемый «боксовый»), то у нас здесь не возникнет проблем с температурой если выставить частоту системной шины на 166МГц, правда температура под нагрузкой при этом поднимется с 71 градуса до достаточно «горячих» 95 градусов.

Прежде чем мы будем разгонять процессор дальше, давайте познакомимся с остальными оверклокерскими фишками BIOS’а материнской платы ASUS P7P55D. Когда Ai Overclock Tuner будет установлен в ручной режим (Manual), первой опцией доступной для пользователя станет «CPU Ration Setting». Этот параметр можно оставить в режиме Авто (Auto), таким образом, у нас будет возможность использовать режим Intel Turbo.

Следующий параметр называется Intel SpeedStep - это технология динамического изменения тактовой частоты, встроенная в сам процессор Core i5 750, при помощи этой технологии можно менять частоту процессора из специализированного программного обеспечения (т.е. прямо на лету, не выходя из среды Windows). Таким образом, программа сможет управлять тактовой частотой процессора, понижая во время простоя энергопотребление и тепловыделение.

Далее по списку - функция Intel TurboMode, которая появилась в процессорах Intel Core i5 и Core i7, и известна под названием “Turbo Boost”. Эта технология также помогает распределять нагрузку на ядра процессора, причем при отсутствии этой нагрузки процессор самостоятельно понижает тактовую частоту незагруженных ядер, тем самым, опять же, снижая энергопотребление и выделение тепла. Здесь имеется несколько параметров, позволяющих выставлять лимиты увеличения производительности технологией Intel Turbo Boost, такие как количество активных ядер, ожидаемые напряжения, ожидаемое потребление мощности и температура процессора.

Когда потребности процессора ниже лимитов и задачи пользователя требуют дополнительной производительности, частота шины процессора динамически увеличивается до 133 МГц на короткий период и регулярные интервалы, до тех пор, пока не будет достигнут верхний лимит или лимит максимальное количество активных ядер. Когда потребности процессора достигнут какого-либо лимита его частота сбрасывается до 133МГц, до тех пор, пока в процессе своей работы он не достигнет лимита.

Следующая опция называется “Xtreme Phase Full Power Mode” - эта настройка отключает функции EPU и включает на всех фазах полную мощность. Во время разгона системы рекомендуется включить эту настройку, то есть вы можете сейчас ее активировать.

Другие опции, которые будут для нас интересными - это BCLK Frequency, PCIE Frequency, DRAM Frequency и QPI Frequency. В зависимости от значения частоты системной шины (BCLK frequency), которое вы выбрали, вам будут доступны разные значения параметра частоты памяти (DRAM frequency). К примеру, если вы выставили частоту системной шины на 200МГц, вам будут доступны такие варианты частоты DDR3: 1200МГц, 1600МГц и 2000МГц.

Большинство современных наборов памяти DDR3 работают на частоте 1600МГц в зависимости от таймингов, поэтому этот выбор будет безопасным. Материнские платы ASUS P7P55D поддерживают множители памяти 3x, 4x и 5x. Частота PCIE Frequency также может быть изменена (если это нужно), но мы решили оставить ее на значении 100МГц, а параметр QPI Frequency мы оставили «на автомате», то есть на Auto.

Фактически, кроме параметров BCLK Frequency и DRAM Frequency мы в BIOS’е больше ничего не меняли, и только две эти опции позволили нам разогнать наш процессор Core i5 750 до впечатляющих 4,20ГГц! Материнская плата ASUS P7P55D позволяет выставлять напряжение процессора на автоматическое изменение. Это означает, что материнская плата самостоятельно будет регулировать напряжение процессора в зависимости от его частоты. К примеру, при простое процессор будет питаться от напряжения 1.128В, в то время как под нагрузкой материнская плата автоматически поднимет напряжение до 1.512В.

Ниже мы решили привести список всех параметров нашего BIOS’а, чтобы вы всегда могли проверить, нет ли у вас где ошибки. Такие настройки позволили нам достичь полностью стабильной работы процессора Core i5 на частоте 4.20ГГц. Опять же, все что мы сделали, это выставили AI Overclock Tuner Mode в ручной режим (Manual), а затем поправили значения BCLK Frequency и DRAM Frequency, оставив все остальное выставленным по умолчанию. Поэтому для начала мы советуем загрузить оптимальные настройки BIOS’а а затем попробовать изменить параметры BCLK Frequency и DRAM Frequency…

Примечание: Приведенные ниже настройки были взяты с материнской платы ASUS P7P55D Deluxe с последней версией BIOS под номером “606”, но предыдущая версия, которая изначально была установлена на нашей материнской плате в большинстве своем ничем не отличалась от новой (по крайней мере в плане возможностей разгона и расположения меню).

AI Overclock Tuner

  • AI Overclock Tuner Mode: Manual
  • CPU Ratio Setting:
  • Intel(R) SpeedStep(TM) Tech:
  • Intel(R) TurboMode Tech:
  • Xtreme Phase Full Power Mode:
  • BCLK Frequency: 200MHz
  • PCIE Frequency: 100MHz
  • DRAM Frequency: 1600MHz
  • QPI Frequency:
  • Channel Interleave: 6
  • Rank Interleave: 4

Подменю DRAM Timing Control

1st Information

  • DRAM CAS# Latency (tCL) : 9
  • DRAM RAS# to CAS# Delay (tRCD) : 9
  • DRAM RAS# PRE Tine (tRP) : 9
  • DRAM RAS# ACT Tine (tRAS) : 24
  • DRAM RAS# to RAS# Delay (tRRD) : 6
  • DRAM REF Cycle Time (tRFC) : 89
  • DRAM WRITE Recovery Tine (tWR) : 13
  • DRAM READ to PRE Time (tRTP) : 8
  • DRAM FOUR ACT WIN Time (tFAW) : 31

2nd Information

  • Timing Mode (CMDR) : 1N
  • DRAM Round Trip Latency on CHA: 59
  • DRAM Round Trip Latency on CHB: 61

3rd Information

  • DRAM WRITE To READ Delay(DD) : 6
  • DRAM WRITE To READ Delay(DR) : 6
  • DRAM WRITE To READ Delay(SR) : 18
  • DRAM READ To WRITE Delay(DD) : 10
  • DRAM READ To WRITE Delay(DR) : 10
  • DRAM READ To WRITE Delay(SR) : 10
  • DRAM READ To READ Delay(DD) : 7
  • DRAM READ To READ Delay(DR) : 6
  • DRAM READ To READ Delay(SR) : 4
  • DRAM WRITE To WRITE Delay(DD) : 7
  • DRAM WRITE To WRITE Delay(DR) : 7
  • DRAM WRITE To WRITE Delay(SR) : 4

Подменю Dram Driving & SlewRate Control

  • CMD Driving Up Ctrl:
  • CMD Driving Down Ctrl:
  • DQ Driving Up Ctrl:
  • DQ Driving Down Ctrl:
  • CLK SlewRate Ctrl A:
  • CLK SlewRate Ctrl B:
  • CMD SlewRate Ctrl:
  • CTRL SlewRate Ctrl:
  • DQ SlewRate Ctrl:

Подменю Dram Skew Control

  • Address Floating Control:
  • DRAM CLK Delay Patch Location:
  • DRAM ODTO Delay on Channel A:
  • DRAM CLKO Delay on Channel A:
  • DRAM CMDA Delay on Channel A:
  • DRAM WDQS0 Delay on Channel A:
  • DRAM TXDQO Delay on Channel A:
  • DRAM RXDQSO Delay on Channel A:
  • DRAM ODTO Delay on Channel B:
  • DRAM CLKO Delay on Channel B:
  • DRAM CMDA Delay on Channel B:
  • DRAM WDQS0 Delay on Channel B:
  • DRAM TXDQO Delay on Channel B:
  • DRAM RXDQSO Delay on Channel B:

Продолжение AI Overclock Tuner

  • CPU Voltage Mode:
  • Offset Voltage:
  • IMC Voltage:
  • DRAM Voltage:
  • CPU PLL Voltage:
  • PCH Voltage:
  • DRAM DATA REF Voltage on A:
  • DRAM CTRL REF Voltaqe on A:
  • DRAM DATA REF Voltaqe on B:
  • DRAM GIRL REF Voltaqe on B:
  • Load Line Calibration:
  • CPU Spread Spectrum:
  • PCIE Spread Spectrum:

CPU Settings

  • CPU Ratio Setting:
  • C1E Support:
  • Hardware Prefetcher:
  • Adjacent Cache Line Prefetch:
  • Max CPUID Value Limit:
  • Intel (R) Virtualization Tech:
  • CPU TM Function:
  • Execute-Disable Bit Capability:
  • Active Processor Cores:
  • A2OM:
  • Intel(R) SpeedStep(TI1) Tech:
  • InteI (R) TurboMode Tech:
  • Intel C-Start Tech + :

Тестирование

Спецификации тестовой системы на LGA1366

Железо

  • Процессор Intel Core i7 920 (LGA1366)
  • Три модуля оперативной памяти Kingston HyperX 2Гб DDR3-1333 (CAS 8-8-8-24)
  • Материнская плата ASUS P6T Deluxe (Чипсет Intel X58)
  • Винчестер: Seagate 500Гб 7200-RPM (Serial ATA300)
  • Видеокарта: HIS Radeon HD 5850 (1Гб)

Софт

  • ATI Catalyst 9.10

Спецификации тестовой системы на LGA1156

  • Процессор Intel Core i5 750 (LGA1156)
  • Материнская плата ASUS P7P55D Deluxe (Чипсет Intel P55)
  • Блок питания OCZ GameXStream (700 Ватт)

Софт

  • Microsoft Windows 7 Ultimate (64-битная версия)
  • ATI Catalyst 9.10

Спецификации тестовой системы на LGA775

Железо

  • Процессор: Intel Core 2 Quad Q9650 (LGA775)
  • Два модуля оперативной памяти Kingston HyperX 2Гб DDR3-1333 (CAS 8-8-8-24)
  • Материнская плата ASUS Rampage Extreme (Чипсет Intel X48)
  • Блок питания OCZ GameXStream (700 Ватт)
  • Винчестер Seagate 500Гб 7200-RPM (Serial ATA300)
  • Видеокарта HIS Radeon HD 5850 (1Гб)

Софт

  • Microsoft Windows 7 Ultimate (64-битная версия)
  • ATI Catalyst 9.10

Наш максимальный разгон - до 4.2ГГц дал прирост производительности при чтении в 37% и впечатляющие 53%-й прирост производительности при записи в тестовом пакете MaxxPII. В общем и целом такой разгон сделал пропускную способность памяти процессора Core i5 750 больше пропускной способности памяти процессора Core i7 920!

Тест MaxxPIІ Prime также показал значительное увеличение производительности разогнанного процессора Core i5 750. В однопоточном режиме производительность выросла в два раза, то есть на 50%, в то время как в многопоточном режиме процессор стал работать более чем в два раза быстрее!

Наконец мы загрузили разогнанный процессор Core i5 750 встроенным тестом WinRAR. Многопоточная производительность увеличилась на 34%, в то время, как однопоточная на 31%.

Энергопотребление и температуры

Показанный выше график говорит нам об увеличении энергопотребления процессора относительно его рабочей частоты. Под полной загрузкой работающий на своей стандартной частоте процессор Core i5 750 потребляет со всей системой всего 170 ватт мощности, в то время когда разогнанный до 3.48ГГц процессор требует уже на 36% больше мощности - 231 ватт. Когда процессор был разогнан до своей максимальной частоты - 4,20ГГц, потребление системы выросло до 285 ватт! То есть на целых 68% относительно номинала.

Следующим делом мы получили несколько результатов описывающих ситуацию с выделением процессором тепла. Пожалуйста обратите внимание на то, что разогнанный до 4,20ГГц процессор охлаждался не стандартным «боксовым» кулером, охлаждением процессора занимался кулер Noctua NH-U12P SE2 (иначе охладить такой горячий процессор не удалось бы), при этом на частоте 3,48ГГц процессор охлаждал все еще Intel’овский боксовый кулер. Как вы можете видеть, на частоте 3,48ГГц со стандартным кулером процессор Core i5 750 достигает довольно-таки высокой температуры 95 градусов по Цельсию! Когда мы заменили стандартный кулер на Noctua NH-U12P SE2, мы не только спокойно достигли рубежа в 4,20ГГц, но и удержали температуру на отметке 85 градусов, что ниже 95 градусов, который были на частоте 3,48ГГц со стандартным кулером.

Заключение

Процессор Core i5 750 - это просто великолепный процессор! Нет, без дураков, этот процессор потряс нас своей возможностью разгоняться и своей производительностью в разогнанном состоянии. Более того, он значительно дешевле процессора Core i7 920, который в тестах значительно отстает от разогнанного i5. Как бы то ни было, комбинация процессора Core i5 750 и материнской платы ASUS P7P55D удивила нас, по крайней мере, когда дело дошло до оверклокинга. Мы уже тестировали несколько материнских плат (от производителей Asrock, DFI, ECS, EVGA, Gigabyte и MSI) с чипсетом P55 и процессором Core i5 750 и несмотря на то, что у некоторых из них получилось воспроизвести такой впечатляющий результат как разгон до 4,20ГГц, ни в одной из них этот результат не удавалось получить так просто.

Существует много отличных и качественных материнских плат на чипсете P55, и мы верим, что у вас получится успешно разогнать свой процессор на вашем экземпляре. Единственное, что нужно вспомнить, так это то, что мы не трогали настройки напряжения на Core i5 750 в BIOS материнской платы для того, чтобы достичь частоты 4,20ГГц, Asus P7P55D сама повысила напряжение до 1,512 вольт, дабы обеспечить процессору стабильность, поэтому, если ваша материнская плата не умеет автоматически подстраивать напряжения, вы должны метить на 1,512В.

Конечно же, не у каждого получится приобрести процессор Core i5 750 в комплекте с материнской платой ASUS P7P55D и достичь 4.20ГГц с первого же запуска. Но мы верим, что у вас будет такой шанс, мы протестировали на нашей материнской плате уже четыре процессора Core i5 750, и все процессоры держали эту «волшебную частоту» 4.20ГГц. Во всех тестах была показана стопроцентная стабильность. Но лучше все же начинать с более низкой частоты и постепенно поднимать ее до целевой отметки.

Для начала мы вам советуем перейти с базовой частоты системной шины 133МГц на частоту 166МГц и провести несколько часов стресс-тестирования и последить при этом за температурами. Если все будет окей, можете поднимать частоту до заветных 200 мегагерц и проводить тесты заново. Опять же, не забудьте про напряжение - если ваша материнская плата не меняет его автоматически, следует поменять его вручную.

Кстати говоря, мы используем последнюю версию программы Prime95 для того, чтобы устроить стресс-тест нашим процессорам, однако существуют и другие программы, которые занимаются тем же самым. Также стоит упомянуть что мы используем EVEREST Ultimate Edition для мониторинга температур и опять же, существует масса аналогичных программ, которые позволят сделать тоже самое.

Когда мы тестировали разогнанные процессоры на стабильность, мы оставляли программу вроде Prime95 на несколько часов чтобы удостовериться, что во время игры в требовательные к ресурсам игрушки система не выдаст ошибку или не «вылетит» совсем. Помимо этого, в процессе стресс-теста смотрите, чтобы температура не превышала 90 градусов по Цельсию. Если эта температура превышается, стоит обратить внимание на качество охлаждения или снизить тактовую частоту.

Как всегда при оверклокинге стоит следить за качеством охлаждения, мы нашли, что стандартный боксовый кулер от Intel ведет себя крайне неадекватно уже на 3,48ГГц, потому как температура во время стресс-тестирования достигла 95 градусов. Несмотря на это, используя высокопроизводительный и качественный кулер, такой как Noctua NH-U12P SE2 нам удалось удержать температуру на отметке 85 градусов даже на частоте 4,20ГГц.

Как бы то ни было, учитывайте, что Noctua NH-U12P SE2 стоит 65$, хотя в эту цену и входит два дополнительных 120мм вентилятора. А это значит, что комбинация из Core i5 750, ASUS P7P55D и Noctua NH-U12P SE2 будет стоить вам больше 400$. Неплохо для конфигурации, которая сметает практически любой десктоп парой нехитрых настроек в BIOS’е.

Пожалуйста, не стесняйтесь постить комментарии и вопросы к этой статье. Более того, если у вас возникнут какие-то проблемы с разгоном, мы будем рады попытаться вам помочь решить их. Также мы хотели бы услышать от наших читателей интересные истории об успешном разгоне их процессоров Core i5 750, пользовались ли вы при этом нашим руководством, или нашли свое собственное решение.

2009 год ознаменовался выходом обновленной процессорной архитектуры Lynnfield, наиболее доступным представителем которой был на тот момент чип «Кор i5-750». Характеристики этого полупроводникового продукта не так уж и сильно отличаются от современных четырехядерных ЦПУ этого производителя. Поэтому этот процессор все еще продолжает быть актуальным и позволяет решать большинство всевозможных задач на текущий момент.

Ниша процессорного рынка, на которую был ориентирован герой данного обзора

С выходом платформы LGA1156 «Интел» разделила микропроцессорный рынок на следующие сегменты:

    ПК начального уровня базировались на процессорах Celeron (эти чипы обеспечивали минимальный уровень быстродействия, достаточный для офисных компьютеров) и Pentium (в этом случае можно было рассчитывать даже на запуск некоторых новых игрушек с минимальными настройками, но игровым такой системный блок можно было назвать лишь с натяжкой). Разница между этими двумя продуктами заключалась в увеличении размера кеша и повышении тактовой частоты функционирования процессора, и это позволяло получить на практике дополнительные проценты быстродействия.

    Сегмент среднего уровня занимали чипы семейств i3 и i5. Именно к этой группе ЦПУ и принадлежало рассматриваемое в рамках этого материала процессорное решение. Младшие модели i3 включали лишь только 2 физических блока обработки программного кода. Но за счет внедрения фирменной технологии HT этот полупроводниковый кристалл на уровне софта мог уже обрабатывать информацию в 4 потока. А вот i5 являлись полноценными процессорами с 4 физическими ядрами. Также у них был увеличен объем кеш-памяти и внедрена поддержка технологии TurboBoost. Последняя позволяла регулировать частоту ЦПУ в зависимости от степени оптимизации программного кода под многопоточность, теплового состояния полупроводникового кристалла и уровня сложности решаемой задачи.

    Наиболее производительные системные блоки как тогда, так и сейчас основываются на чипах семейства i7. У них 4 физических блока обработки кода, но поддержка технологии НТ позволяет на уровне программного обеспечения получить 8 потоков. Также частотная формула в этом случае увеличена, как и кеш-память.

Хоть формально герой данного обзора и относится к процессорным продуктам среднего класса, тем не менее среди практически всего существующего на тот момент программного обеспечения именно он мог с легкостью составить достойную конкуренцию флагманскому микропроцессору. Большая часть софта даже сейчас ориентирована на использование 4 физических ядер, и именно по этой причине большой разницы в плане производительности между старшими ЦПУ данного производителя на текущий момент не существует.

Комплект поставки

Данный продукт продавался в двух вариантах комплектации. Более скромная из них называлась TRAY. В этом случае, кроме самого ЦПУ, приобреталось руководство по эксплуатации, гарантийный талон и наклейка с наименованием модели чипа для лицевой панели. Подобная комплектация нацелена, в первую очередь, на крупных сборщиков системных блоков, но также она иногда приобреталась компьютерными энтузиастами. Второй вариант комплектации данного процессорного продукта назывался BOX. В простонародье за ним закрепилось название «коробочная версия». В этом случае перечень поставки дополнялся кулером и термопастой.

Процессорный разъем

На установку в был ориентирован «Кор i5-750». Характеристики этого процессорного разъема указывали на то, что он был ориентирован на сборку одночиповых системных блоков. Этот сокет позволял в 2009 году организовывать совершенно разные по назначению и стоимости вычислительные системы. Эта компьютерная платформа сохраняла свою актуальность вплоть до 2011 года, когда ей на смену пришла LGA1155. Но даже сейчас продукты данной серии продолжают быть актуальными хотя бы одной той причине, что уровень их быстродействия все же позволяет решать большинство задач.

Технология производства полупроводникового кристалла

По типичной технологии на начало 2009 года производился «Кор i5-750». Характеристики всего этого поколения чипов указывают на то, что все они производились по техпроцессу 45 нм. Он на тот момент был прекрасно отработан и каких-либо существенных проблем с выходом годных кремниевых пластин в этом случае не возникало. В дальнейшем ему на смену пришла технология с нормами допуска в 32 нм.

Кеш

Как и все современные наиболее прогрессивные процессорные продукты, трехуровневый кеш имеет Intel i5-750. Характеристики этого полупроводникового продукта в данном случае такие:

    Первый уровень включал 4 сегмента по 64 Кб, привязанные к определенному вычислительному модулю.

    Аналогичным образом организованные 4 блока по 256 Кб на втором уровне.

    Кеш-память на третьем уровне была общей для всех ресурсов ЦПУ и имела общий размер 8 Мб.

Оперативная память

Существенно была переработана подсистема оперативной памяти в решениях на базе LGA1156, в том числе и в Core i5-750. Характеристики этого продукта указывали на то, что вместе с контроллером оперативной памяти был перенесен с материнской платы на полупроводниковый кристалл центрального процессора. Это позволило существенно увеличить быстродействие ОЗУ. Но, с другой стороны, интеграция контроллера ОЗУ привела к тому, что чип мог функционировать лишь только с определенным перечнем планок оперативной памяти. В данном случае этот набор ограничивался DDR3-1066. Также в сочетании с этим ЦПУ можно было применять и более скоростные платы оперативной памяти, но частота их работы ограничивалась всего лишь одним значением — 1066 МГц. Чего-то большего в этом случае получить было невозможно.

Температурный диапазон. Тепловой пакет

На тепловой пакет в 95 Вт был рассчитан процессор i5-750. Характеристики данной модели центрального процессора указывают на максимально допустимое значение температуры в 72 градуса. В обычном же режиме температурный режим этого чипа ограничивался значениями 40-50 градусов. В случае же разгона этот диапазон возрастал и находился уже в границах 50-60 градусов. На практике загрузить этот ЦПУ так в номинальном рабочем диапазоне, чтобы он достиг максимально возможного значения было невозможно. Выйти за установленные границы можно было лишь только в двух случаях. Один из них — это поломка системы охлаждения, а второй — разгон чипа в сочетании с комплектным кулером и запуск на ПК нескольких ресурсоемких приложений.

Частоты

В 2,7 ГГц было установлено начальное значение частоты для Характеристикиэтого ЦПУ указывали на поддержку технологии TurboBoost. То есть этот процессор мог регулировать значение частоты и количество активных блоков вычислений. При использовании всех четырех блоков максимальное значение частоты ограничивалось значением 2,8 ГГц. Если же процессор функционировал в двухпоточном режиме, то значение частоты равнялось 2,93 ГГц. Ну а в случае когда работал только один блок выполнения вычислений это значение вообще могло повышаться до 3,2 ГГц. Также существовала возможность разгона этого ЦПУ. Как показывает опыт, при должной комплектации системного блока можно было этот процессор разогнать до 4 ГГц и получить за счет этого практически 30% прирост быстродействия.

Архитектура ЦПУ

Как было отмечено ранее, 4 физических модуля обработки программного кода включал Intel Core i5-750. Характеристики этого продукта указывали на то, что в нем отсутствовала поддержка технологии HyperTrading. Поэтому на уровне программного обеспечения он был представлен все теми же 4 потоками. И это значение даже на сегодняшний день продолжает быть актуальным по причине того, что большая часть софта оптимизирована максимум под 2 или 4 потока. В этом случае разница с более дорогостоящими ЦПУ семейства i7 практически не ощущалась.

Мнение владельцев. Цена

В 213 долларов была оценена данная модификация Core i5. CPU 750 (характеристики у него действительно были отличные как для 2009 года) позволял решать любые задачи. И даже сейчас этот ЦПУ с легкостью может справиться практически со всеми нагрузками. Лишь только с наиболее свежими игрушками могут возникнуть проблемы. Но в этом случае можно понизить качество выводимого изображения, что позволит полноценно погрузиться в отличный геймплей.

Итоги

Достойным процессорным продуктом для 2009 года стал «Кор i5-750». Характеристики его продолжают по сей день быть актуальными и позволяют все еще решать большинство задач. Также к преимуществам данной модели ЦПУ необходимо доступную стоимость, наличие четырех физических блоков обработки кода и отличную энергоэффективность, как для чипа 2009 года. Но все же владельцам таких системных блоков уже очень скоро придется задуматься о плановом обновлении своей вычислительной системы.

С момента появления платформы Nehalem прошло чуть больше года, но цены на новые процессоры по-прежнему нельзя назвать доступными. Расширение современной линейки CPU за счет моделей на базе ядра Lynnfield под LGA1156 никак не повлияли на ценообразование старших собратьев, да и они сами не отличались демократичной стоимостью. До недавнего времени самым экономным процессором на базе новой архитектуры был Core i5-750, что и привело к довольно большой популярности данной модели. И даже недавнее появление процессоров Clarkdale из этой же серии вряд ли пошатнут позиции «старичка», который обладает реальными четырьмя ядрами против четырех «виртуальных» у новинок. Но Clarkdale у нас будет посвящен отдельный материал, а в данной статье, как вы уже догадались, мы сосредоточимся именно на Core i5 750.

В розничную продажу Intel Core i5 750 поставляется в коробочной версии, но иногда можно встретить и tray-варианты, которые обеспечиваются 12-месячной гарантией от продавца.


Стандартный кулер имеет довольно компактные размеры и небольшую высоту радиатора, сердцевина выполнена из меди. По конструкции не отличается от систем охлаждения у процессоров с конструктивом LGA775.



Архитектура процессоров Lynnfield была в подробностях рассмотрена нами в одном из прошлых материалов . Северный мост полностью обосновался в процессоре, который сам обеспечивает поддержку 16 линий PCI Express 2.0. Отсюда, кстати, вытекает и небольшой недостаток платформы, связанный с ограничением пропускной способности интерфейсов двух видеокарт, работающих в режиме CrossFireX. В отличие от предшественников под Socket LGA1366 новые CPU обладают только двухканальным контроллером памяти DDR3. Благодаря множителю x6 (эффективный х12) новые процессоры Core i7 в номинальных режимах могут работать с DDR3-1600 (не официально поддерживаемый стандарт), а младшие Lynnfield, Core i5 750 в частности, при множителе х5 (эффективный x10) с DDR3-1333. Более высокие частоты памяти могут быть задействованы лишь при поднятии базовой частоты (BCLK), и если вы используете высокочастотную память, то для ее профиля X.M.P. плата автоматически поднимет BCLK и снизит множитель на процессоре при соответствующей корректировке напряжений. Для DDR3-2000 опорная частота будет установлена в 200 МГц, а множитель на процессоре Core i7 750 на х14 вместо х20. Если же память не имеет профилей X.M.P. под процессоры LGA1156, то все корректировки пользователю необходимо будет производить в ручном режиме. Частота блока Uncore, включающего контроллер памяти и общий кэш третьего уровня, зафиксирована относительно базовой частоты за счет множителя х16 на 2130 МГц. Шина QPI связывает процессор теперь только лишь с контроллером PCI Express, частота ее формируется как произведение BCLK на x18 (x36), что дает 2400 МГц (4800 ГТ/с). Вручную можно установить и более низкий множитель x16 (x32).



Частота процессора в номинальном режиме 2,66 ГГц при множителе x20. Поддержки Hyper-Threading у четырехъядерного Core i5 750 нет.


Благодаря технологии Turbo Boost при работе приложений, слабо оптимизированных под многопоточность, может повышаться частота отдельных ядер. Этот разгон может составлять до 4 пунктов (по 133 МГц) для одного из ядер. А если точнее, то в однопоточных приложениях загруженное ядро будет функционировать на 3,2 ГГц. Если нагрузка ложится на два ядра, то их частота поднимается до промежуточных значений, и даже при нагрузке на все ядра частота всех их поднимется на один пункт. В последнем случае мы фактически получаем четырехъядерный CPU на частоте 2,8 ГГц (при множителе x21) вместо 2,66 ГГц. Кстати такой множитель можно изначально установить вручную для Core i5 750 в BIOS практически всех материнских плат LGA1156 и без активации режима Turbo Boost.



Для тестов в номинальном режиме мы использовали комплект памяти объемом 4 ГБ (Team TXD34096M2000HC9DC-L), который работал с таймингами 7-7-7-20. Все прочие задержки и настройки отображены ниже на скриншоте утилиты CPU-Tweaker.


Ну и немного слов о разгоне. Осуществляется он повышением базовой частоты. Поскольку от нее зависят частоты других блоков и памяти DDR3, то при необходимости на них понижаются соответствующие множители. Так для DDR3 можно выставить минимальный множитель x6, что в номинале даст частоту 800 МГц, а при разгоне BCLK до 200 МГц уже 1200 МГц. Снижение частоты QPI у процессоров Lynnfield практической пользы для разгона не несет (по крайней мере, при воздушном охлаждении). А вот снизить частоту Uncore в разгоне не выйдет вообще, и при 200 МГц по BCLK этот блок будет работать уже на 3200 МГц. Впрочем, повышение частоты L3-кэша скажется на производительности только положительным образом.

При воздушном охлаждении всем процессорам Core i5 покоряется частота BCLK около 200-220 МГц. Имея в наличии несколько бюджетных материнских плат под Socket LGA1156, мы выяснили, что пределом нашего CPU по базовой частоте (при воздушном охлаждении) являются 220 МГц. При более высоких значениях наблюдалась значительная нестабильность системы. Таким образом, при максимальном множителе x21 «на воздухе» теоретически можно получить даже 4620 МГц. На деле же мы остановились на отметке 4066 МГц, при которых сохранялась полная стабильность в стресс-тестах (OCCT, LinX и пр.). Отметим, что данный результат достигнут на плате Gigabyte GA-P55M-UD2 при напряжении CPU Vcore 1,4 В и QPI/Vtt Voltage около 1,35 В. Дальнейший разгон требовал существенного повышения напряжений для стабильности, что влекло за собой перегрев в стресс-тестах.


Все настройки памяти при разгоне отображены на следующем скриншоте:


Как вы могли заметить выше, частота памяти в разгоне составила лишь 642 МГц (эффективные 1284 МГц). Вообще-то сам комплект памяти Team рассчитан на 2000 МГц, но именно с платой Gigabyte GA-P55M-UD2 при разгоне процессора установить память в более производительный режим было просто невозможно. При более высоком множителе система зависала до загрузки операционной системы, и поднятие соответствующих напряжений не помогло. Да и в номинальном режиме у платы возникли проблемы с работой профиля X.M.P., но данные нюансы мы осветим уже в отдельной статье по этой плате. Из-за «несовместимости» высокой частоты CPU и высоких множителей на памяти (кстати, с чем-то похожим мы встречались у отдельных экземпляров AMD Phenom II) пришлось ограничиться невысоким значением частоты DDR3, но при задержках 6-6-6-16, которые должны хоть как-то компенсировать отставание даже от номинальных 1333 МГц. Для небольшого повышения частоты памяти при минимальном ее множителе специально был снижен и множитель на CPU, чтобы можно было еще выше поднять частоту BCLK.Сравнительные характеристики

Для сравнения производительности рассматриваемого Intel Core i5-750 мы подобрали следующие четырехъядерные процессоры:

  • Intel Core 2 Quad Q8300;
  • Intel Core 2 Quad Q9505;
  • Intel Core 2 Quad Q9450;
  • Intel Core 2 Quad Q9550;
  • AMD Phenom II X4 810;
  • AMD Phenom II X4 940 BE;
  • AMD Phenom II X4 955 BE.
Все эти модели фигурировали в нашем последнем большом тестировании процессоров, откуда вы можете почерпнуть детали о них. Core 2 Quad Q9450 у нас «виртуальный», он получен из Core 2 Quad Q9550 путем снижения множителя с x8,5 до x8 и добавлен в тесты специально, чтобы можно было наглядно оценить преимущества архитектуры Lynnfield над Yorkfield-12M при одной и той же частоте 2,66 ГГц. Так же довольно интересно будет взглянуть насколько выросла производительность младшего четырехъядерного CPU нового поколения относительно младшего представителя прошлого поколения от Intel (Core 2 Quad Q8300) и младшего представителя AMD (Phenom II X4 810). Для того чтобы определить преимущества Turbo Boost, наш Intel Core i5 750 тестировался при зафиксированной стандартной частоте 2,66 ГГц, т.е. с отключенной данной технологией, и, соответственно, при активации ее.
Intel Core 2 Quad Q9550 Intel Core 2 Quad Q9450 Intel Core 2 Quad Q9505 Intel Core 2 Quad Q8300 AMD Phenom II X4 955 BE AMD Phenom II X4 940 BE AMD Phenom II X4 810
Ядро Lynnfield Yorkfield Yorkfield Yorkfield Yorkfield Deneb Deneb Deneb
Разъем LGA1156 LGA775 LGA775 LGA775 LGA775 AM3 AM2+ AM3
Техпроцесс, нм 45 high-k 45 high-k 45 high-k 45 high-k 45 high-k 45 SOI 45 SOI 45 SOI
Кол-во транзисторов, млн. 774 820 820 820 820 758 758 758
Площадь кристалла, кв. мм 296 214 214 214 214 258 258 258
Частота, МГц 2666 (до 3200 в Turbo Boost) 2833 2666 2833 2500 3200 3000 2600
Множитель x20 (до x24 в Turbo Boost) x8,5 x8 x8,5 x7,5 x16 x15 x13
Базовая частота, МГц 133 - - - - 200 200 200
Шина QPI/FSB/HT, МГц, ГТ/с* 4800 1333 1333 1333 1333 4000 3600 4000
Кэш L1, КБ (32+32) x 4 (32+32) x 4 (32+32) x 4 (32+32) x 4 (32+32) x 4 (64+64) x 4 (64+64) x 4 (64+64) x 4
Кэш L2, КБ 256 x 4 6144 x 2 6144 x 2 3072 x 2 2048 x 2 512 x 4 512 x 4 512 x 4
Кэш L3, КБ 8192 - - - - 6144 6144 4096
Напряжение питания, В 0,65—1,4 0,85—1,3625 0,85—1,3625 0,85—1,3625 0,85—1,3625 0,875—1,5 0,875—1,5 0,875—1,425
TDP, Вт 95 95 95 95 95 95 125 125

* — для шин QPI (Intel Core i5-750) и HyperTransport (AMD Phenom II) указана скорость в ГТ/с.

Тестовые конфигурации

Тестовая конфигурация Intel LGA1156:

  • Материнская плата: Gigabyte GA-P55M-UD2;
  • Память: Team TXD34096M2000HC9DC-L (2х2GB DDR3);
  • Видеокарта: Point of View GF9800GTX 512MB GDDR3 EXO (@818/1944/2420 МГц);
  • Звуковая карта: Creative Audigy 4 (SB0610);
  • Жесткий диск: WD3200AAKS (320 ГБ, SATA II);
  • Блок питания: FSP FX700-GLN (700 Вт);
  • Операционная система: Windows Vista Ultimate SP1 x64;
  • Драйвер видеокарты: ForceWare 190.62.
Теперь приведем отличия в тестовых стендах остальных платформ, которые использовались для сравнения с Core i5-750.

Тестовая конфигурация Intel LGA775:

  • Кулер: Thermalright Ultra-120 eXtreme;
  • Материнская плата: ASUS Rampage Formula (Intel X48, Socket LGA775);
  • Память: OCZ OCZ2FXE12004GK (2х2GB DDR2-1200);
Тестовая конфигурация AMD AM2+/AM3:
  • Кулер: Thermalright Ultra-120 eXtreme;
  • Материнские платы: MSI 790XT-G45 (AMD 790X, Socket AM2+), MSI 790FX-GD70 (AMD 790FX, Socket AM3);
  • Память: OCZ OCZ2FXE12004GK (2х2GB DDR2-1200), Kingston KHX1600C9D3K2/4G (2X2GB DDR3-1600);
В операционной системе были отключены Windows Defender, User Account Control и Superfetch. Файл подкачки фиксировался на уровне 1024 МБ. Как отмечалось выше, процессор Core i5-750 тестировался в двух номинальных режимах — с отключенной и включенной технологией Turbo Boost. Режим с активным Turbo Boost на диаграммах обозначен как «Core i5-750 TB». Основные характеристики тестовых стендов и режимы работы памяти для номинальных режимов и в разгоне по каждому процессору приведены ниже в виде двух таблиц. В них вы можете увидеть, что данные по частоте некоторых CPU и их блоков могут отличаться на пару мегагерц относительно стандартных спецификаций, что связано с завышением или занижением опорной частоты и FSB непосредственно самими платами.

Характеристики системы в номинальных режимах:

Процессор Частота процессора, МГц Тип памяти Частота памяти, МГц
Intel Core i5 750 Turbo Boost 2660-3198 DDR3 1330 7-7-7-20 2128 -
2660 DDR3 1330 7-7-7-20 2128 -
Intel Core 2 Quad Q9550 2839 DDR2 1069 5-5-5-18 - 1336
Intel Core 2 Quad Q9450 2672 DDR2 1069 5-5-5-18 - 1336
Intel Core 2 Quad Q9505 2839 DDR2 1069 5-5-5-18 - 1336
Intel Core 2 Quad Q8300 2505 DDR2 1069 5-5-5-18 - 1336
AMD Phenom II X4 955 3200 DDR3 1600 8-8-8-22 2000 -
AMD Phenom II X4 940 3000 DDR2 1067 5-5-5-18 1800 -
AMD Phenom II X4 810 2600 DDR3 1600 8-8-8-22 2000 -

Характеристики системы при разгоне:
Процессор Частота процессора, МГц Тип памяти Частота памяти, МГц Основные задержки (CL, tRCD, tRP, tRAS) Частота Uncore для Intel, NB для AMD, МГц Частота FSB для Intel LGA775, МГц
4066 DDR3 1284 6-6-6-16 3424 -
Intel Core 2 Quad Q9550 3962 DDR2 1165 5-5-5-16 - 466 (1864)
Intel Core 2 Quad Q9505 4004 DDR2 1178 5-5-5-16 - 471 (1884)
Intel Core 2 Quad Q8300 3548 DDR2 1183 5-5-5-16 - 473 (1892)
AMD Phenom II X4 955 3793 DDR3 1640 8-8-8-22 2255 -
AMD Phenom II X4 940 3675 DDR2 1120 5-5-5-18 2100 -
AMD Phenom II X4 810 3725 DDR3 1589 9-8-7-20 2384 -

Методика тестирования

Методика тестирования описана в прошлом материале. Из списка тестов исключен POV-Ray, поскольку встроенный тест производительности в используемой нами версии 3.7 beta 27 работал на платформе LGA1156 некорректно, а в более новых версиях значительно изменились результаты и на старых процессорах. За неимением возможности заново повторить тест в новой версии POV-Ray на процессорах из нашего списка пришлось обойтись без данной программы. Для обшей информации можем лишь отметить, что в POV-Ray 3.7 beta 35 процессор Intel Core i5 750 продемонстрировал результат почти на 10% ниже, чем Core 2 Quad Q9550, а с включенным Turbo Boost на 5% ниже. Из игровых тестов исключен Resident Evil 5 из-за странного поведения «фиксированного теста» и «ограничения» производительности на четырехъядерных CPU после запуска приложения на двухъядерных конфигурациях.
Результаты тестирования

Синтетика. Прикладное ПО

PCMark Vantage


Первый синтетический тест демонстрирует безоговорочное превосходство Core i5-750 над остальными участниками тестирования, превосходя даже Phenom II X4 955, работающий на 3,2 ГГц. В сравнении с Core 2 Quad на базе Yorkfield у Lynnfield преимущество около 13% на одной частоте.


В этом тесте разница уже не столь велика, хотя снова преимущество Lynnfield над старшим Yorkfield стремится к 10%. В отличие от прошлого теста в разгоне Core 2 Quad Q9505 и Core i5-750 демонстрируют идентичные результаты.


В тесте Productivity Suite мы вновь наблюдаем преимущество Lynnfield над Yorkfield с 12МБ кэша около 10%. Если старший процессор AMD в этом тесте обходит соперников Intel прошлого поколения, то Core i5 ему уже «не по зубам».


В этом архиваторе наблюдается и вовсе огромное преимущество Lynnfield над предшественниками — более 30%. Активация Turbo Boost помогает выиграть еще пару процентов, но не более. Лидерские позиции Core i5 с разгоном только укрепляются, и при частоте 4066 МГц этот процессор демонстрирует уже преимущество в 40% над Q9550 и 47% над Phenom II X4 955. Впрочем, результаты теста производительности в WinRar сильно зависят от производительности подсистемы памяти, и при реальном архивировании разница может уже быть не столь ошеломительная.


Архиватор 7-Zip к процессору Lynnfield относится довольно прохладно. Производительность Core i5 лишь немногим выше, чем у Core 2 Quad Q9450. Обойти Q9550 ему удается при активации Turbo Boost. В этом же режиме рассматриваемый процессор не дотягивает лишь 0,6% до показателей Phenom II X4 940, работающего на 3 ГГц. С разгоном Core i5-750 снова оказывается впереди всех.

Paint.Net


В этом тесте Lynnfield на частоте 2,66 ГГц оказался производительнее Yorkfield с 12 МБ кэша с такой же частотой лишь на 1%. В режиме Turbo Boost наш процессор уже идет на равных с Core 2 Quad Q9550. С разгоном же вполне традиционно Core i5 превосходит других соперников, разница с Core 2 Quad вновь не велика, но уже более 3%.

Adobe Photoshop


В Adobe Photoshop младший Lynnfield уверенно обходит всех других соперников Intel даже без Turbo Boost, уступая 11 секунд только AMD Phenom II X4 955. В турбо-режиме Core i5 вне конкуренции, обгоняя старший процессор Phenom II уже более чем на минуту. С разгоном Core i5-750 справляется с задачей почти на две минуты быстрее старших Core 2 Quad, работающих на частотах около 4 ГГц, и почти на три минуты быстрее чем разогнанные до 3,7-3,8 ГГц соперники от AMD.

CineBench


При одной и той же частоте разница между Lynnfield и Yorkfield с 12 МБ кэша достигает 13% в пользу первого. В режиме Turbo Boost процессор Core i5 демонстрирует результаты больше, чем у стальных соперников. Без «турбирования» CPU уступает только Phenom II X4 955 и то менее одного процента. А на частоте 4066 МГц рассматриваемый процессор и вовсе оказывается вне конкуренции: Core 2 Quad на 4 ГГц уступают ему до 19%, а Phenom II X4 на частотах 3,7-3,8 ГГц до 33%.

Кодирование видео Xvid в VirtualDub


И снова никаких неожиданностей. Core i5 справляется с задачей быстрее всех. Только без Turbo Boost идентичный уровень производительности демонстрирует один лишь Phenom II X4 955 (и это при большей на 540 МГц частоте). При одинаковой частоте Lynnfield выигрывает у Yorkfield практически минуту. При разгоне до 4,07 ГГц преимущество Core i5-750 над остальными соперниками при повышенных частотах исчисляется еще большими цифрами. Интересно, что младший Core 2 Quad Q8300 даже на 3,5 ГГц по производительности немного уступает Core i5-750 с Turbo Boost. Да и старший Phenom II X4 только с разгоном до 3,8 ГГц выигрывает у рассматриваемого процессора в таком режиме всего лишь семь секунд.

X264 Benchmark


В номинальных режимах Core i5-750 уступает одному Phenom II X4 955, да и то, не так уж и много. Преимущество Lynnfield над Yorkfield при одной частоте достигает 12%. С разгоном ни один процессор просто не состоянии достойно соперничать с рассматриваемым CPU, который обходит своих предшественников почти на 16%, а представителей AMD на 20% и более.

PHP Benchmark


В этом тесте, чувствительном в основном лишь к частоте самого процессора, Core i5-750 тоже не ударил лицом в грязь, и в режиме Turbo Boost оказался не хуже чем высокочастотный Phenom II X4 955. С разгоном же процессор вновь справляется с задачей быстрее всех, хотя разница с Core 2 Quad уже минимальна.

Fritz Chess Benchmark


Core i5 немного производительнее Core 2 Quad Q9550 только в режиме Turbo Boost. На 2,66 ГГц он незначительно уступает старшим четырехъядерным CPU прошлого поколения, обходя Core 2 Quad Q9450 лишь на 2,8%. С разгоном младший Lynnfield укрепляет свои позиции, обходя ближайших конкурентов (Core 2 Quad Q9505 и Q9550) примерно на 7%.

Super Pi


В этом тестовом приложении Core i5-750 демонстрирует весьма внушительное преимущество над всеми процессорами в номинальном режиме даже без активации Turbo Boost. Относительно Core 2 Quad на ядре Yorkfield с кэшем 12 МБ при одной и той же частоте у Lynnfield преимущество почти 23%. Остальные соперники с разгоном в лучшем случае демонстрируют такой же результат как Core i5 без разгона, но с Turbo Boost.Игровые приложения




Первый игровой тест демонстрирует полное превосходство Core i5-750 над остальными соперниками. Младший Lynnfield умудряется обойти Core 2 Quad Q9550 и Phenom II X4 955 даже без активации Turbo Boost. А при включении этого режима Core i5 демонстрируют такие же результаты, как разогнанные AMD Phenom II X4. У предшественников Intel под Socket LGA775 не все так печально, но с разогнанным Lynnfield они тоже не могут соперничать, не смотря на то, что с разгоном они все достигли частот близких к 4 ГГц.

Battlestations: Pacific




В этой игре, несмотря на высокий fps, мы «уперлись» в возможности видеокарты, и, как следствие, разница в результатах минимальна. Это объясняется и особенностью выбранной скриптовой сценки, которая создает минимальную нагрузку на CPU. В любом случае Core i5 вместе с Core 2 Quad Q9550 демонстрируют самые высокие результаты в этой игре. При активации Turbo Boost заметно минимальное падение производительности, но говорить о чем-то конкретном при такой малой разнице сложно.

X3 Terran Conflict




В этой игре для того, чтобы обойти соперников, Core i5-750 даже не нужен режим Turbo Boost. При активации оного результат рассматриваемого CPU оказывается на 5-10% выше, чем у старшего Core 2 Quad и на 9-17% выше чем у Phenom II X4 955. С разгоном отставание процессоров AMD достигает огромных 25-28%, а Q9550 при своих 3,96 ГГц отстает от лидера с частотой 4,07 ГГц на 8-10%. Младшие Core 2 Quad и Phenom II X4 с разгоном только достигают показателей не разогнанного Core i5 с Turbo Boost.

H.A.W.X.



Одно из немногих игровых приложений, в котором процессоры AMD ощутимо производительнее старых Intel Core 2 Quad, да и то, лишь в низком разрешении. Но более новый Core i5-750, в отличие от предшественников, не уступает конкурентам из «зеленого лагеря», обходя при 2,66 ГГц старший их процессор с частотой 3,2 ГГц на целых 15%. Превосходство Lynnfield над старшими Yorkfield при одной частоте достигает почти 35%! Зато режим Turbo Boost почти никак не сказывается на результате — лишь плюс 3%. При разгоне отрыв лидера от прочих соперников не менее внушительный.


А вот при максимальном качестве изображения расстановка сил меняется. Такой шустрый в более слабом режиме, Core i5-750 внезапно занимает последние места. И что интересно, режим Turbo Boost уже никак не сказывается на производительности, да и от разгона толк небольшой.

World in Conflict



Intel Core i5 в очередной раз демонстрирует недостижимый для соперников уровень производительности. Преимущество над Yorkfield около 30%. Все процессоры кроме Core 2 Quad Q9550 с разгоном лишь приближаются к показателям лидера, работящего в номинале. Да и у Core 2 Quad Q9550 на 3,96 ГГц не особо-то и внушительное преимущество над Core i5-750 с Turbo Boost, учитывая огромную разницу в частоте.


Более высокое разрешение и более тяжелые настройки графики немного умеряют пыл «неудержимого» Core i5-750, и теперь всем разогнанным Core 2 Quad удается обойти его результат в номинальном режиме. По минимальному fps лидер сдает позиции старшим Core 2 Quad еще более ощутимо, и даже в номинале по этому параметру не обходит Core 2 Quad Q9550.

Unreal Tournament 3




В Unreal Tournament 3 несменный лидер отодвигает всех соперников «на задворки». Для процессоров AMD все и вовсе печально — они даже при разгоне до 3,8 ГГц не могут продемонстрировать такие же результаты как Core i5-750 при 2,66 ГГц. Да и над предшественником Core 2 Quad Q9450 преимущество достигает почти 30%, а Core 2 Quad Q9550 уступает значительные 20%. Режим Turbo Boost повышает показатели Lynnfield не более чем на 4%. С разгоном соотношение сил между процессорами Intel почти не меняется, а вот отставание AMD от них лишь увеличивается.

S.T.A.L.K.E.R.: Clear Sky


В отличие от предыдущей игры в этом отечественном проекте Core i5-750 закрепляет за собой лидерство без каких-либо оговорок. Преимущество его над старшими моделями Core 2 Quad и Phenom II X4 достигает почти 30% в низком разрешении и 23% в высоком. Да и с разгоном конкурентам слабо удается хоть как-то наверстать такое отставание. Процессоры AMD по традиции при разгоне до 3,7-3,8 ГГц не достигают показателей Core i5 на номинальных 2,66 ГГц.

Far Cry 2


В низком разрешении Core i5-750 как обычно оказывается «шустрее» всех и «бедные» процессоры AMD снова не могут достигнуть таких же результатов при повышении частот до 3,7-3,8 ГГц.


А вот при максимальных настройках совершенно неожиданно Core i5 вновь становится аутсайдером, как это было в H.A.W.X. И снова никаких преимуществ Turbo Boost не дает, как и разгон (в основном прирост по минимальному fps).


В низком разрешении все вполне предсказуемо и лидерские позиции Core i5-750 неоспоримы. Преимущество Lynnfield над Yorkfield с 12 МБ кэша при одинаковой тактовой частоте 2,66 ГГц составляет 26%. С активированным Turbo Boost (который приносит лишь 3%) преимущество над старшими Core 2 Quad Q9550 и Phenom II X4 955 достигает 21-22%, а при разгоне эти соперники уменьшает свое отставание лишь до 17-20%.


В высоком же разрешении в номинальных режимах лидерство Core i5 тоже не вызывает вопросов, даже несмотря на то, что в таком режиме производительность уже заметно упирается в наш видеоадаптер. А вот с разгоном CPU почему-то демонстрирует результат чуть ниже, чем старшие Core 2 Quad. Разница конечно мизерная, но все же это не погрешность, которая по результатам нескольких прогонов теста обычно укладывается в значительно меньшие рамки.

Crysis Warhead



Crysis Warhead не преподносит сюрпризов и во всех разрешениях Core i5 безоговорочный лидер, а идентичные результаты с Q9550 в 1280х1024 при разгоне вполне объясняются недостаточной мощностью видеокарты, которая и сыграла роль «ограничителя». В низком разрешении преимущество Lynnfield над Yorkfield при одной частоте 2,66 ГГц достигает 17,5%. Активация Turbo Boost помогает повысить результат на 4,5 %, причем таких показателей соперники от AMD не могут достигнуть и в разгоне. Занявший второе место на «пьедестале» Core 2 Quad Q9550 уступает лидеру от 10% (без Turbo Boost) до 16% в номинале и 10% при разгоне.

Grand Theft Auto 4




По результатам тестирования в этой чрезвычайно процессорозависимой игре видно, что и требования к видеоподсистеме у нее тоже довольно высокие, несмотря на далеко не передовую графику. В итоге, что в низком, что в высоком разрешениях мы уперлись в некий «потолок» и различия между процессорами исчисляются совсем мизерными значениями, что при нестабильности самого встроенного бенчмарка зачастую можно списать и на погрешности измерений. Правда, это не мешает в разрешении 1024х768 при средних настройках Core i5-750 вполне уверенно занимать место лидера, а вот при более высоких настройках он уже немного уступает Phenom II X4 955. Зато в этом же режиме (при разрешении 1280х1024) с разгоном, когда результаты всех процессоров, казалось бы, уперлись в граничное значение 56 кадров и выше, уже не «пускает» видеокарта, Core i5 внезапно продемонстрировал более высокий (почти на 1 кадр) результат. А это уже явно выходит за рамки погрешности, и лишний раз демонстрирует мощный потенциал Lynnfield.

Armed Assault 2



Низкие результаты процессоров AMD в этом тестовом приложении мы уже отмечали в недавнем материале . Напомним, что мы используем предрелизную демо-версию игры, которая оснащена своим игровым тестом. Вполне возможно, что в полной версии игры, обросшей огромным числом патчей, производительность Phenom II значительно подросла.

Объект же нашего обзора, Intel Core i5-750, вполне ожидаемо является лидером, но и Core 2 Quad Q9550 отстает от него буквально на считанные проценты. С разгоном же Core i5 при 4,07 ГГц обходит Core 2 Quad Q9550 на 3,96 ГГц уже на более существенные 10%.

Cryostasis: Sleep of Reason (Анабиоз)


В этом слабо оптимизированном под многоядерные процессоры приложении Core i5-750 удается обойти старшие Core 2 Quad Q9505 и Core 2 Quad Q9550 только при активации Turbo Boost. С разгоном наиболее существенное преимущество Lynnfield по минимальному fps (что для этого бенчмарка при программной обработке NVIDIA PhysX как раз более актуально), а по среднему fps с ним наравне идет разогнанный старший Core 2 Quad.

Выводы

Настало время подвести некоторые итоги нашего тестирования. Рассмотренный нами Intel Core i5-750 оказался вне конкуренции на фоне остальных процессоров прошлого поколения и на фоне решений AMD. Почти во всех приложениях он продемонстрировал уровень производительности выше, чем работающий на более высокой частоте Core 2 Quad Q9550, иногда даже и без активации Turbo Boost. Сама же польза от этой технологии авторазгона разных ядер приносит в среднем прирост не более 5%, хотя в редких однопоточных задачах (к примеру, в тесте SuperPi) он может достигать и всех 15%.

Наиболее значительное преимущество у младшего представителя Lynnfield оказалось в игровых тестах, но надо признать, что в ряде приложений ситуация сложилась неоднозначная. При значительном преимуществе над всеми другими CPU при низких настройках Core i5-750 мог немного уступать им при качественной графике в более высоком разрешении. Наиболее ярко это проявилось в FarCry 2, когда при разрешении 1024х768 отрыв Lynnfield от ближайших конкурентов составил чуть ли не 17-20%. Но в то же время при 1280х1024 и рендеринге в DirectX 10 эти же конкуренты демонстрируют результат на 15% выше. В подобных же приложениях и разгон самого CPU приносит минимальную пользу, а активация Turbo Boost и вовсе почти не сказывается на результате. Механизм такого снижения производительности не совсем ясен, можно лишь констатировать, что не всегда Core i5-750 хорош в высоких разрешениях и при высоких настройках графики. Но это не уменьшает достоинств данного процессора. Может он где-то и уступает конкурентам в определенных условиях, но в большей части игр он демонстрирует недостижимую для них производительность, часто при одной и той же частоте превосходство над предшественниками на ядре Yorkfield (с максимальным для них 12 МБ L2-кэша) достигает 30% и более! Показательно и то, что младший Yorkfield с 4 МБ кэш-памяти в ряде приложений достигает сопоставимого уровня производительности только с разгоном до 3,5 ГГц. А ведь и Core i5-750 — это тоже младший представитель своего семейства. Прогресс, как говорится, налицо.

Впрочем, и старшие Core 2 Quad на фоне Core i5-750 в низких разрешениях также не впечатляют, но благодаря разгону до 4 ГГц они еще более-менее сопоставимы с новичком в некоторых игровых приложениях. Что же до разгона самого объекта нашей статьи, его частотный потенциал относительно предшественников немного подрос. Полученные нами 4,07 ГГц вроде и не сильно отличаются от 4 ГГц у Core 2 Quad Q 9505 или 3,96 ГГц у Core 2 Quad Q 9550, но дальнейший разгон Lynnfield ограничился в основном из-за недостаточной производительности кулера Thermalright Ultra-120 eXtreme. Если учитывать, что мы использовали мощный вентилятор на максимальных оборотах, то при работе в тихих режимах с воздушными системами охлаждения в повседневном использовании частотный предел у всех этих процессоров будет примерно один и тот же. А вот пользователи СВО вполне могут рассчитывать и на большие результаты разгона Core i5-750.

Из-за ценовой политики Intel, направленной на продвижение новых продуктов смысла в покупке старшего Core 2 Quad Q9550 сейчас нет, ведь Core i5-750 на локальном рынке обойдется вам как минимум на 65 долларов дешевле при более высокой производительности. Да и Core 2 Quad Q9500 или Core 2 Quad Q9505 тоже не особо привлекательны по цене. Такая ситуация заставляет многих пользователей Core 2 Duo вместо апгрейда на Core 2 Quad задуматься о полной смене платформы. И Core i5-750 в этом случае будет идеальным выбором, ведь при своем уровне производительности это лучший процессор за $200-220.

Процессоры AMD на фоне Core i5-750 вообще смотрятся удручающе, особенно в игровых приложениях. В частности, Phenom II X4 955 при разнице в частоте около 500 МГц в играх почти всегда уступает младшему Lynnfield. На данный момент рассматривать процессоры AM3 как базу для перспективной игровой платформы просто нельзя, и это грустно. Можно парировать, что стоимость продуктов AMD ниже и за цену решения Intel можно взять топовый Phenom II X4 965 с частотой 3,4 ГГц. Вот только помогут ли эти дополнительные 200 МГц, если и 500 МГц не особо помогли Phenom II X4 955?.. Хотелось бы видеть все-таки более достойные и конкурентоспособные решения от AMD, которые смогли бы противостоять не только процессорам прошлого поколения Intel, но и более новым моделям. Будем надеяться, что грядущие Phenom II X6 оправдают наши ожидания.

Тестовое оборудование было предоставлено следующими компаниями:

  • AMD — процессоры AMD Phenom II X4 940 и Phenom II X4 955;
  • DCLink — процессоры Intel Core i5-750, Core 2 Quad Q9550, Core 2 Quad Q9505, Core 2 Quad Q8300, плата Gigabyte GA-P55M-UD2 и память Team TXD34096M2000HC9DC-L;

  • MSI — процессор AMD Phenom II X4 810, платы MSI 790XT-G45 и 790FX-GD70;
  • SerOl — видеокарта Point of View GF9800GTX 512MB GDDR3 EXO;
  • Спецвузавтоматика — память Kingston KHX1600C9D3K2/4G;
  • —жесткий диск WD3200AAKS.
Для всех нас, кто интересуется компьютерными технологиями, недавний анонс новой платформы Intel LGA1156 не мог остаться незамеченным. Новые процессоры получились очень интересными, не без недостатков, конечно, зато с рядом очевидных достоинств. Впрочем, вы наверняка и сами всё это знаете, особенно, если уже успели ознакомиться с нашим обзором «Второе пришествие Nehalem: платформа LGA1156 и процессоры Core i7-870 и Core i5-750 ». Как это обычно бывает с новыми системами, сразу возникают вопросы по поводу разгона. Формально основные принципы разгона процессоров не менялись уже очень давно. Следует повышать базовую частоту, при этом стараясь удержать в рамках допустимого все остальные связанные частоты. Для улучшения результатов при необходимости можно поднимать напряжения, внимательно следя за температурным режимом. Всё просто, однако начинающие осваивать технологии разгона обычно теряются и не могут найти соответствия со своей современной системой, когда отсылаешь их к руководствам по разгону процессоров, скажем, Intel Pentium II. Поэтому лучше всего объяснять на конкретных примерах, чем мы сегодня и займёмся.

Новые процессоры Lynnfield относятся к микроархитектуре Nehalem, поэтому базовые принципы разгона, описанные в статье «Разгон Core i7-920: подробное руководство », справедливы и для них. Однако имеется ряд особенностей, связанных как с интеграцией контроллера шины PCI Express в процессор и переходом от двух- к одночиповым наборам микросхем, так и с иной, улучшенной реализацией турбо-режима. На примере процессоров Intel Core i5-750 и Intel Core i7-860 мы узнаем, как они разгоняются при использовании статического и динамического варианта технологии «Intel Turbo Boost», однако, прежде всего, нужно познакомиться с возможностями LGA1156 материнской платы Asus P7P55D Deluxe, основанной на логике Intel P55 Express, на которой будет проводиться разгон.

Упаковка и комплектация

Нам давно знакомы коробки, в которых поставляются системные платы Asus, базирующиеся на наборах микросхем Intel. В оформлении используется преимущественно синяя гамма, как дань цвету логотипа Intel, лицевая сторона нередко дополняется откидной крышкой, что позволяет увеличить площадь поверхности, на которой размещается информация о возможностях и особенностях платы. Именно так, как ожидалось, выглядит упаковка материнской платы Asus P7P55D Deluxe.

Когда мы говорим о комплектации плат, то обычно обходимся перечнем аксессуаров и небольшой иллюстрацией. Вряд ли найдётся читатель, который станет внимательно, в деталях рассматривать кабели, шлейфы или дополнительные планки на заднюю панель, которые он уже видел неоднократно. На этот же раз мы предлагаем вам ознакомиться с увеличенной фотографией и всё благодаря тому, что помимо стандартного набора комплектующих к материнской плате Asus P7P55D Deluxe прилагается дистанционный пульт управления TurboV Remote. Он представляет собой Г-образную планку с кнопками, которые позволят включить или выключить компьютер, выбрать режим автоматической или ручной регулировки энергосбережения, а главное, даёт возможность моментально переключаться между тремя заранее заданными профилями работы. К примеру, можно быстро перейти от экономичного режима для работы в сети Интернет к производительному режиму для игр. Кроме того, можно прямо с пульта менять базовую частоту и даже обнулить CMOS с помощью утопленной кнопки на обратной стороне TurboV Remote, но эти возможности уже вряд ли будут пользоваться большой популярностью. Пульт дистанционный, но не беспроводной, что в данном случае скорее достоинство, чем недостаток - не потеряется. Откуда-нибудь с дивана удобно управлять мультимедийными приложениями, а TurboV Remote будет полезен лишь в тех случаях, когда вы находитесь рядом с компьютером, к тому же его полутораметровый соединительный провод в большинстве вариантов позволит найти устройству наиболее удобное место.



Помимо самой материнской платы и пульта TurboV Remote в комплекте к Asus P7P55D Deluxe можно найти следующий набор аксессуаров:

шлейф PATA;
шесть SATA-кабелей с металлическими защёлками, половина кабелей с Г-образными разъёмами, а оставшиеся три кабеля с прямыми;
дополнительную планку для задней панели системного блока с портом eSATA и парой USB;
гибкий мостик для объединения двух видеокарт в режиме SLI;
заглушку на заднюю панель (I/O Shield);
комплект переходников Asus Q-Connector, включающий модули для упрощения подключения кнопок и индикаторов передней панели системного блока и разъёма USB;
руководство пользователя;
DVD-диск с программным обеспечением и драйверами;
наклейку «Powered by ASUS» на системный блок.

В списке обращает на себя внимание дополнительная планка для задней панели системного блока с портом eSATA и парой USB - такое сочетание нам ещё не встречалось. Дело в том, что, как мы увидим далее, на заднюю панель материнской платы Asus P7P55D Deluxe выведен порт IEEE1394 (FireWire), а eSATA нет, для чего и понадобилась такая планка.

В итоге можно резюмировать, что системная плата Asus P7P55D Deluxe оснащена неплохим набором безусловно полезных аксессуаров и пультом TurboV Remote. Пульт вряд ли можно отнести к предметам первой необходимости, однако ненужным его тоже назвать нельзя, наверняка найдутся владельцы, которые станут использовать его возможности на постоянной основе. К тому же это именно одна из тех особенностей, которые отличают плату класса Deluxe от всех остальных плат в линейке.

Дизайн и возможности

Материнские платы LGA1156, основанные на логике Intel P55 Express, выглядят немного непривычно, благодаря переходу на одночиповую компоновку и отсутствию северного моста, возможности которого перенесены в центральный процессор. Впрочем, в будущих обзорах мы увидим и примеры более традиционного дизайна. На ряде системных плат единственная микросхема Intel P55 Express - Platform Controller Hub, находится на привычном месте северного моста. При этом она обычно оснащается явно избыточной системной охлаждения с использованием тепловых трубок, как и раньше. Место южного моста занимают дополнительные контроллеры, обеспечивающие подключение PATA- и SATA-накопителей, эти микросхемы накрываются отдельным радиатором, как ранее южный мост набора микросхем. В итоге новая плата выглядит почти так же, как и платы на предшествующих наборах логики, но к Asus P7P55D Deluxe это не относится. Привыкайте, примерно так должна выглядеть материнская плата, предназначенная для процессоров Lynnfield.


Раз уж мы начали разговор о системах охлаждения, то давайте отдадим должное разработчикам платы Asus P7P55D Deluxe, которые очень тщательно и внимательно отнеслись к этому аспекту. Единственная микросхема Intel P55 Express находится на месте южного моста, её охлаждает большой по площади, но очень невысокий радиатор, чего вполне достаточно и никакие тепловые трубки ему в помощь не требуются. Зато радиаторы, установленные на 16-фазном преобразователе питания процессора, не просто для красоты используют прочное винтовое крепление и недаром объединены тепловой трубкой. Именно на них, помимо процессорного радиатора, конечно, приходится основная тепловая нагрузка, которая заметно увеличивается при разгоне. Именно поэтому тепло, выделяемое преобразователем питания процессора, с обратной стороны платы через теплопроводящий интерфейс отводится на пару дополнительных металлических пластин.



Чтобы дать более взвешенную, всесторонне обоснованную и более объективную оценку плате Asus P7P55D Deluxe, параллельно тесты новых процессоров проводились и на плате Gigabyte GA-P55-UD3, с обзором которой мы познакомим вас чуть позже. Несмотря на то, что это одна из самых младших плат в линейке, она тоже имеет пару довольно крупных радиаторов на преобразователе питания процессора, только крепятся они обычными пластиковыми защёлками и не имеют дополнительных пластин для отвода тепла с обратной стороны платы. При разгоне был отмечен чрезвычайно высокий нагрев радиаторов, а позже было обнаружено, что даже текстолит платы под ними изменил свой цвет и потемнел из-за перегрева.



На плате Asus P7P55D Deluxe такого сильного нагрева радиаторов замечено не было. Вполне вероятно, что это произошло благодаря большему количеству фаз питания процессора, но, возможно, свой вклад внесло более плотное винтовое крепление и дополнительные радиаторы с обратной стороны. В общем, хочется сразу поставить первый «плюс» разработчикам Asus P7P55D Deluxe за достаточно эффективную, но при этом неизбыточную систему охлаждения платы.

Возможности материнской платы Asus P7P55D Deluxe, как нетрудно догадаться даже по её названию, несколько выше, чему у обычной среднестатистической платы, базирующейся на логике Intel P55 Express. Начнём с того, что на современных платах LGA1156 имеется один разъём PCI Express 2.0 x16, либо два, которые при использовании пары видеокарт переходят в режим PCI Express 2.0 x8. Их работу обеспечивает контроллер PCI Express, который теперь находится в центральном процессоре. На плате Asus P7P55D Deluxe имеется и третий разъём для видеокарты, однако он появился благодаря оставшимся свободными четырём линиям PCI Express чипсета и максимальная скорость работы установленной в этот разъём видеокарты не превысит PCI Express 2.0 x4.



Чтобы обеспечить подключение накопителей с интерфейсом PATA, поддержка которых уже давно отсутствует в наборах микросхем компании Intel, разработчикам пришлось использовать дополнительный контроллер JMicron JMB363. При этом один порт SATA выведен, так сказать, в чистом виде, его разъём чёрного цвета, а второй с помощью контроллера JMicron JMB322 разделён ещё на два (разъёмы тёмно-синего и серого цветов). Подключенные к этим двум разъёмам накопители не требуют установки драйверов, их легко можно объединить в массивы RAID уровней 0 или 1 даже не обладая специальными знаниями. В терминологии Asus это называется технология Drive Xpert. В итоге к плате Asus P7P55D Deluxe можно подключить девять накопителей SATA: шесть портов обеспечивает Intel P55 Express и ещё три дополнительные контроллеры.

Дизайн материнской платы Asus P7P55D Deluxe выглядит удобным не только в целом, но и в частностях. Имеются подсвечивающиеся во время работы кнопки для включения питания и перезагрузки, а так же небольшая кнопочка «MemOK!», которая поможет при первом запуске, если система не может стартовать из-за некорректных параметров работы памяти. Чуть выше разъёмов для памяти имеются переключатели, которые позволяют подать повышенное напряжение на процессор, интегрированный в него контроллер памяти и на сами модули DDR3. Рядом с переключателями горят зелёные светодиоды, которые меняют цвет на предупреждающий оранжевый, когда мы подаём дополнительное напряжение. Разъёмы для памяти оснащены защёлками только с одной, дальней от видеокарты стороны, так что установленная видеокарта не сможет помешать замене модулей памяти. На практике удалось оценить удобство использования широких «лапок» крепления на разъёмах для видеокарт. Процессорный кулер Scythe Zipang 2, который мы применяли на этот раз, очень широкий и почти вплотную подходит к видеокарте, установленной в первый разъём. На любой другой плате неизбежно возникли бы проблемы, а на Asus P7P55D Deluxe лёгкое нажатие отвёрткой на «лапку» тут же освободило видеокарту.

Неплохо выглядит и набор разъёмов на задней панели системной платы. В их числе:

PS/2-разъёмы для клавиатуры и мышки;
кнопка для обнуления CMOS;
оптический и коаксиальный S/PDIF, а также шесть аналоговых звуковых разъёмов, работу которых обеспечивает десятиканальный (!) кодек VIA VT2020;
восемь портов USB, а ещё шесть можно подключить к разъёмам на плате;
порт IEEE1394 (FireWire) реализован благодаря контроллеру VIA VT6308P, второй порт можно найти в виде разъёма на плате;
два разъёма локальной сети (сетевые адаптеры построены на гигабитных контроллерах Realtek RTL8112L и RTL8110SC).



Дизайн материнской платы Asus P7P55D Deluxe не просто хороший, он отличный. Мне удалось заметить лишь один, но очень незначительный сегодня недостаток - неудобное расположение COM-разъёма, очень высоко, правее модулей памяти. Лишний раз оценить особенности компоновки поможет схема расположения элементов из руководства к плате.




Завершает наше визуальное знакомство с материнской платой Asus P7P55D Deluxe таблица с перечнем её технических характеристик.

Первоначальное изучение материнской платы Asus P7P55D Deluxe оставляет чрезвычайно благоприятное впечатление. У платы отличный, продуманный дизайн, великолепный комплект возможностей, набор приятных мелочей, которые делают работу с платой ещё удобнее. Хочется надеяться, что изучение возможностей BIOS не испортит нашей предварительной оценки, которая пока выглядит как «9 баллов из 10». Один балл мы скидываем не за какие-то недостатки, которых заметить практически не удалось, а просто так, на всякий случай. Это же первая плата на Intel P55 Express, которую мы изучаем, вдруг завтра в нашей тестовой лаборатории появится плата ещё более удобная, функциональная и при этом недорогая? Однако пока лучшего, чем Asus P7P55D Deluxe, даже желать не приходится. Продолжаем наш обзор.

Изучаем BIOS Setup

Нам хорошо знаком характерный внешний вид и структура BIOS материнских плат Asus, который базируется на существенно переработанном коде AMI.



Опуская детальное изучение всех возможностей, обратим своё внимание лишь на наиболее важные для настройки и контроля параметров системы разделы. Основным с этой точки зрения, безусловно, является «Ai Tweaker». Несмотря на то, что его обширное содержимое никак не может уместиться на одном экране, такая система подачи кажется мне намного более удобной и информативной, чем ряд многочисленных тематических подразделов. При настройке мы последовательно проходим сверху вниз, изменяя значения параметров при необходимости, и это проще, чем «прыгать» по подразделам. Лишь тайминги памяти вынесены на отдельную страницу, но это вполне оправданно, учитывая их большое количество.


Значение параметра «Ai Overclock Tuner» можно поменять на «Manual» и в этом случае мы получим полный доступ к изменению всех параметров по собственному усмотрению. Можно выбрать «D.O.C.P.» - DRAM OverClocking Profiles (профили разгона памяти). В этом случае плата самостоятельно будет подбирать оптимальные параметры системы для заданного режима работы. К примеру, если при использовании процессора Intel Core i7-860 мы захотим разогнать память до 1800 МГц, то плата повысит базовую частоту с номинальных 133 до 150 МГц, чтобы получить нужную частоту работы памяти. При этом она уменьшит коэффициент умножения процессора, чтобы его итоговая частота работы была наиболее близка к штатным 2,8 ГГц.



Если используемые вами модули памяти поддерживают технологию X.M.P. (eXtreme Memory Profile), то плата поступает схожим образом. Чтобы перевести наши модули памяти DDR3 Corsair Dominator GT CM3X2G2000C8GT на частоту 2000 МГц, пришлось повысить базовую частоту до 167 МГц и одновременно снизить коэффициент умножения до x17.



Приведённые примеры справедливы для процессора Intel Core i7-860, а при использовании Intel Core i5-750 действия платы изменятся. Дело не только в том, что у этого процессора ниже номинальная частота и придётся установить иной коэффициент умножения. Как известно, Intel Core i5-750 оказался урезан по возможностям гораздо больше, чем ожидалось. У него отсутствует множитель 12 для памяти, который использовала плата, а максимальным является множитель 10. В этом случае для достижения частоты памяти 2000 МГц базовая частота будет увеличена до 200 МГц, а коэффициент умножения процессора снижен до x13.

Почему мы так много внимания уделяем работе платы при выборе значений «D.O.C.P.» и «X.M.P.» для параметра «Ai Overclock Tuner»? Это ведь не новые возможности, они и раньше имелись у материнских плат Asus. Дело в том, что раньше изменение коэффициента умножения процессора автоматически жёстко фиксировало его на заданном значении, множитель переставал снижаться в состоянии покоя, при отсутствии нагрузки на процессор. Понятно, что это негативно сказывается на энергопотреблении системы и на всех связанных аспектах, таких как тепловыделение и уровень шума, поэтому подобные способы разгона воспринимались как баловство, не более того. Сейчас же это вполне реальный и применимый на практике способ поднять производительность системы, поскольку теперь при изменении коэффициента умножения процессора он всё равно будет уменьшаться в покое. Эта новая способность открывает довольно широкие возможности по оптимальной настройке системы. К примеру, вы можете увеличить базовую частоту таким образом, чтобы получить наиболее благоприятную для ваших модулей памяти частоту её работы. При этом можно снизить коэффициент умножения процессора, чтобы избежать необходимости увеличения на нём напряжения и в итоге получить достаточно быструю и энергетически эффективно работающую систему.

Новой возможностью является встроенная в BIOS утилита для разгона «OC Tuner Utility». При её выборе плата начнёт перезагружаться раз за разом, на каждом этапе слегка увеличивая базовую частоту. Как только на этапе прохождения стартовой процедуры POST появятся ошибки, плата немного отступит от достигнутого значения, чтобы избежать их в будущем при работе.



Конечно, это всё ещё достаточно примитивный способ разгона, зато он практически не требует вмешательства пользователя и проходит в автоматическом режиме. У нас немного возможностей для того, чтобы повлиять на результат работы «OC Tuner Utility». Мы можем лишь изменить значение параметра «OC Tuner Limit Value» с «Good Performance» на «Better Performance». Однако это всё же лучше, чем прежняя возможность разгона «CPU Level Up», когда, как и в случае с памятью, использовались заранее заготовленные профили разгона процессора. На этот раз система не втискивает наш в процессор в кем-то заданные рамки, а сама пытается подстроиться под способности конкретного экземпляра.

Как мы уже говорили, единственным подразделом раздела «Ai Tweaker» является «DRAM Timing Control», позволяющий проконтролировать текущие значения и при необходимости изменить тайминги памяти.


Следующая группа параметров раздела «Ai Tweaker» позволяет управлять напряжениями. Очень удобно, что рядом с каждым из важных параметров мы видим его текущее значение.



В обзоре платы Asus Rampage II Gene мы уже встречали возможность задать для процессора не абсолютное и постоянное, а относительное значение напряжения (Offset), однако у обыкновенной, не относящейся к элитной серии «Republic of Gamers» материнской платы, мы такие способности видим впервые. Трудно переоценить важность этой возможности. Формальное достоинство материнских плат Asus для процессоров Intel, давно превратившееся в недостаток, когда платы самостоятельно повышали напряжение на процессоре при его разгоне, никуда не исчезло. Однако теперь эта особенность плат Asus перестала быть проблемой для любителей энергоэффективного разгона. Теперь при увеличении напряжения на процессоре энергосберегающие технологии Intel спокойно продолжат свою работу, снижая напряжение в покое и повышая при появлении нагрузки на процессор. Более того, шаг изменения напряжения на процессоре очень мал, всего лишь 0,00625 В. Так что можно повысить на это микроскопическое значение напряжение на процессоре, фактически оставив его номинальным, и тем самым избежать автоматического повышения при разгоне. Кстати, можно не увеличивать, а уменьшать напряжение, если необходима не максимальная производительность, а более экономичная и тихая работа системы.

Всем хорош раздел «Ai Tweaker», однако в нём лишь частично представлены возможности, относящиеся к процессору. Чтобы получить полный доступ к процессорным технологиям, следует заглянуть в подраздел «CPU Configuration» раздела «Advanced». Лично я предпочёл бы, чтобы этот подраздел целиком перенесли в «Ai Tweaker».


Далее мы переходим к подразделу «Hardware Monitor» раздела «Power». Раньше он бы вызвал наше недовольство за скудость контролируемых значений, однако не будем забывать, что теперь все важнейшие напряжения нам известны прямо в разделе «Ai Tweaker». Они указаны непосредственно рядом с каждым из изменяющих напряжения параметров. Так что в подраздел «Hardware Monitor» нам нужно заглянуть лишь для того, чтобы включить автоматическую регулировку скорости вращения вентиляторов и выбрать подходящий режим. Кстати, даже при разгоне процессоров со значительным повышением напряжения питания, система регулировки «Q-Fan» спокойно справлялась с их охлаждением в режиме «Standard».



Последний раздел BIOS материнской платы Asus P7P55D Deluxe, на который мы сегодня обратим внимание - это «Tools». В принципе нам знакомы все его возможности, новинкой является лишь последний параметр «ID LED». Рассматривая плату, мы упоминали о наличии светодиодов различного назначения, если они вас раздражают, то с помощью этого параметра можно отключить подсветку.



Существенно расширившиеся в последнее время возможности подраздела «O.C. Profile» позволяют сохранить несколько полных профилей настроек BIOS. Каждому можно дать напоминающее о его содержимом название, выбранный профиль легко загрузить, имеется возможность сохранения профилей не только во внутренней памяти, но и на внешних носителях.



Удобная утилита «EZ Flash 2» поможет сохранить текущую версию BIOS и обновить её до самой последней.



Подводя очередные промежуточные итоги изучения материнской платы Asus P7P55D Deluxe, можно увидеть, что в основном структура и возможности BIOS изменились не сильно по сравнению с моделями на других наборах микросхем. Это ничуть не удивительно, ведь BIOS современных системных плат отрабатывался и шлифовался годами. Вместе с тем, нельзя не отметить и ряд новых возможностей, таких как система автоматического разгона процессоров или возможность отключить подсветку. Однако наибольшее впечатление производят новые способности платы по изменению коэффициента умножения процессора и его напряжения без нарушения работы энергосберегающих технологий. Они открывают широчайшие возможности по оптимальной настройке системы в зависимости от состава текущей конфигурации.

Кроме того, нельзя не отметить, что наши тесты проходили на первой из официально доступных версии BIOS 0504. Вполне естественно, что снимки именно этой версии вы видели в текущей главе обзора, а далее вы узнаете о достигнутых с её помощью результатах. Однако именно сейчас, когда платы поступили в продажу и пошли отзывы со стороны пользователей, интенсифицировалась работа над устранением ошибок и расширением возможностей BIOS. В новых версиях появилась поддержка низковольтной памяти DDR3, постоянно шлифуются алгоритмы работы встроенной «OC Tuner Utility». Появились «Turbo Profile» - это профили, позволяющие разгонять одновременно и процессор, и память. Вполне возможно, что к моменту публикации появятся ещё более новые версии, с новыми функциями и возможностями, так что не забудьте обновить BIOS своей платы, чтобы получить к ним доступ.

Разумеется, BIOS материнских плат Asus, и P7P55D Deluxe в их числе, не идеален. Имеется ряд недостатков, в основном малозначительных, после устранения которых работа с платой станет ещё удобнее. О некоторых мы упоминали сегодня, например, неплохо было бы перенести подраздел «CPU Configuration» в раздел «Ai Tweaker». О некоторых говорили в предыдущих обзорах плат Asus, к примеру, текущие значения таймингов памяти гораздо удобнее контролировать, если они расположены в столбик, каждый напротив соответствующего параметра, а не одной строкой, как сейчас. Однако обо всех этих мелких недоработках даже не хочется вспоминать. Не терпится изучить реальные, а не теоретические возможности платы по разгону процессоров. Однако прежде надо подготовиться и выяснить, как именно следует разгонять новые Intel Core i5 и Core i7, относящиеся к семейству процессоров Lynnfield.

Особенности разгона Lynnfield

Появление новых процессоров ожидалось с двоякими чувствами. С одной стороны, было очень интересно посмотреть на них в работе. Выяснить, в чём различия между возможностями Lynnfield по сравнению с процессорами более высокого класса Bloomfield и младшими Core 2 Quad. Заранее приводила в восторг обновлённая реализация технологии Турбо. Ведь Lynnfield - это первые универсальные процессоры, которые объединяют в себе преимущества многоядерных и одноядерных процессоров. При использовании современных многопоточных приложений они ведут себя как многоядерные процессоры, работая на несильно повышенной частоте, зато исполняя одновременно сразу много вычислительных потоков. Они снижают количество используемых ядер, переводя ненужные в данный момент в энергосберегающие режимы, когда многопоточность не требуется, зато при этом значительно повышают частоту работы оставшихся. С другой стороны, возникали закономерные опасения. Как же разгонять процессоры, коэффициент умножения которых может повышаться относительно номинального значения на 4-5 единиц? Если же учитывать, что в покое множитель снижается до 9, а под нагрузкой может увеличиться до 24-27, то задача по определению стабильности работы во всех промежуточных вариантах кажется почти неразрешимой.

К счастью оказалось, что разгонять новые процессоры ничуть не сложнее, чем любые другие, а отчасти даже проще. По сравнению с платформой LGA1366 нам теперь не нужно следить за частотой интегрированной в процессор части северного моста - UnCore по терминологии Intel или IMC (Integrated Memory Controller), как называет его Asus. Во-вторых, разгон теперь не требует значительного повышения напряжения на IMC. Ранее, лишь для того, чтобы обеспечить работоспособность памяти на высоких частотах, предполагалось увеличение этого напряжения до 1,5-1,6 В. На деле удавалось обойтись повышением лишь до 1,35-1,45 В, но это всё равно довольно много. Теперь же для работы памяти на высоких частотах вообще не требуется повышать напряжение на IMC, а для стабильности при увеличении базовой частоты до 200 МГц достаточно поднять его лишь до 1,2 В.

Как и для процессоров Bloomfield на платах LGA1366, для Lynnfield возможны два варианта разгона. Первый - это статический вариант реализации технологии Intel Turbo Boost или даже полноё её отключение. В обоих случаях мы имеем дело с системой, где коэффициент умножения процессора под нагрузкой постоянен. Либо он равен номинальному при отказе от технологии Турбо, либо немного повышается вне зависимости от уровня нагрузки на процессор. Второй вариант - это динамическая реализация Turbo Boost, когда изменение множителя напрямую зависит от уровня нагрузки на процессор. Чем меньше ядер занято работой, тем больше повышается коэффициент умножения и наоборот.



Понятно, что оба варианта имеют право на существование. Статический необходим той категории, которая широко использует в работе хорошо распараллеливающиеся приложения - программы, способные выполнять многопоточные вычисления, и тем самым серьёзно увеличивающие скорость расчётов. К ним относятся приложения распределённых вычислений, создания и обработки мультимедийного контента: многопоточные программы для работы с моделями, звуком, изображениями и видео. Для повседневного использования в качестве домашнего развлекательно-рабочего компьютера больше подходит динамический вариант разгона. В этом случае мы получаем максимальный выигрыш при использовании одно- или двухпоточных приложений, которых сегодня пока большинство, вместе с тем, обеспечиваем себе достаточно высокий уровень производительности в многопоточных программах.

Однако так просто всё выглядит лишь в теории. На практике нам так и не удалось найти универсальную материнскую плату LGA1366, которая одинаково хорошо реализовала бы оба варианта технологии Intel Turbo Boost. Чаще всего встречались платы только со статической реализацией, реже только с динамической. Если же попадалась плата с возможностью выбора, то опять же лишь один из вариантов оказывался предпочтительнее. Что касается плат LGA1156, то, похоже, подобной проблемы для них просто не существует. По умолчанию все платы настроены на статический вариант реализации технологии Турбо, чтобы включить динамику, следует в BIOS в разделе с процессорными настройками разрешить расширенные режимы C3-C7.

Перед началом любого разгона следует предпринять ряд подготовительных действий. Прежде всего, очень желательно в BIOS для всех значимых параметров ликвидировать установленные по умолчанию значения «Auto». Никто не знает, на каком именно этапе разгона плата вдруг решит повысить напряжения, изменить частоту работы памяти или её тайминги, что может негативно сказаться на работоспособности системы. Поэтому с самого начала снижаем частоту работы памяти, она будет увеличиваться с ростом базовой частоты, а окончательное значение мы выясним позже, после того, как определимся с разгоном процессора. Основные тайминги тоже лучше заранее зафиксировать на гарантированно рабочих значениях, к примеру, 8-8-8-22 или 9-9-9-24. Для напряжений устанавливаем их номинальные значения, за исключением напряжения IMC, его можно сразу повысить до 1,2-1,25 В, потом уменьшим, если такое увеличение не понадобится, и напряжения на памяти, которое следует поднять не более чем до 1,65 В. Что касается напряжения на процессоре, то его можно тоже оставить штатным, если вы предпочитаете получить в итоге более быструю, но всё же достаточно экономичную систему. Не забудьте включить технологию противодействия падению напряжения на процессоре под нагрузкой «Load-Line Calibration». Либо можно сразу увеличить напряжение, но величина повышения во многом зависит от эффективности используемой системы охлаждения процессора.

В качестве первого этапа можно убедиться, что материнская плата в состоянии обеспечить стабильную работу при высоких значениях базовой частоты. Вообще-то никаких проблем с этой стороны не ожидается, все имеющиеся у нас сегодня платы LGA1156 спокойно работали вплоть до увеличения базовой частоты до 210 МГц. Однако лучше заранее в этом убедиться, чтобы потом не гадать, почему процессор больше не разгоняется, а затем выяснить, что проблема вовсе не в нём, а в плате. Для проверки уменьшаем коэффициент умножения процессора до 12-14, чтобы при максимальном разгоне его частота не сильно отличалась от номинальной. Повышаем базовую частоту до 200-210 МГц. Лишний раз проверяем, действительно ли частота памяти при этом находится в рамках допустимого для используемых модулей. После чего проводим проверку с помощью любой тестовой программы. Если вы затрудняетесь с выбором, то можно порекомендовать Prime95. Уже на этом этапе можно уменьшить напряжение IMC, если это окажется возможным. Раз уж даже при таком увеличении базовой частоты достаточно более низкого напряжения, то при меньших значениях и подавно.

Разгон при статической реализации технологии Turbo Boost

Далее рассмотрим алгоритм действий при статическом варианте реализации технологии Intel Turbo Boost или при полном отказе от неё. Если вы разгоняете без повышения напряжения на процессоре, то можно ожидать, что итоговая частота окажется где-то в районе 3,5-3,7 ГГц. Это лишь примерный ориентир, полученный при разгоне всего двух экземпляров процессоров, так что более точные данные станут известны позже, когда накопится статистика, но в любом случае только вы можете выяснить окончательный результат именно для вашего экземпляра процессора. Для надёжности сначала можно убедиться, что используемая вами система охлаждения процессора способна справиться с разгоном. Очень высокую нагрузку на процессор обеспечивает тестовый пакет Intel Linpack, для удобства можно воспользоваться оболочкой LinX для него. После чего, используя в качестве теста утилиту Prime95, мы повышаем базовую частоту, если система проходит проверку, или снижаем, если при выбранном значении появляются ошибки. После нескольких попыток вы найдёте предел стабильной работы своего процессора.



Для достижения более высоких результатов нужно повышать напряжение на процессоре и тут на первый план выходит температура. Чем больше вы увеличите напряжение, тем более высокого разгона можно добиться, но слишком высокое напряжение повысит температуру до недопустимых значений и только ограничит разгон. Наша задача - найти оптимальное соотношение напряжения и температуры процессора.

Извечный вопрос - какова максимально допустимая температура процессора? Как это ни странно, но на него отвечаете лично вы. Кто-то старается удержать температуру в пределах 60 градусов, а для кого-то и 95 не предел. Одно могу сказать совершенно точно - очень нежелательно, чтобы температура ядер достигала 90 градусов. Более того, разгон с превышением 90 градусов бессмысленный и нецелесообразный. К примеру, на платах Asus по достижению температуры процессора 93-94 градуса включаются защитные технологии и частота начинает снижаться. Наступило лето и температура повысилась, пришла зима и начали сильно топить, забился пылью процессорный радиатор - любое, даже малозаметное изменение в условиях работы может привести к нестабильности и ошибкам. Зачем, спрашивается, мы разгоняем процессоры? Чтобы похвастаться рекордным снимком экрана или чтобы получить повышенную производительность в любых условиях и при любой нагрузке?

Для контроля частоты процессора полезно использовать утилиту i7Turbo. Она покажет, не снижается ли коэффициент умножения процессора при полной нагрузке. Нет смысла разгонять процессор, если он не в состоянии стабильно работать под максимальной нагрузкой и начинает снижать частоту. Поэтому 90 градусов - это максимальный предел температуры ядер процессора, от которого всё же желательно держаться подальше. Чем ниже температура, тем лучше. Таким образом, при разгоне мы можем искать не максимальную частоту процессора, а максимальное напряжение, при котором температура будет удерживаться в приемлемых рамках. Максимальную частоту мы получим как следствие увеличения напряжения.


Не важно, выясняли ли вы предел стабильной работы процессора без повышения на нём напряжения или нет. Если выясняли, то оставляете найденное значение, если нет, то примерно задаёте базовую частоту, при которой итоговая частота процессора будет находиться в пределах 3,5-3,7 ГГц, после чего увеличиваете напряжение. Для начала, допустим, до 1,27-1,3 В. Тут же запускаем LinX и смотрим, как далеко температура от опасных 90 градусов или от другой приемлемой для вас границы. Температуру ядер можно контролировать с помощью любой способной на это программы: RealTemp, CoreTemp, HWMonitor, SpeedFan, Everest. Если температура слишком велика, то снижаем напряжение, если достаточно низка, то повышаем, но нужно помнить, что впоследствии при увеличении частоты температура тоже будет расти, хотя и не так сильно, как при изменении напряжения.


Нашли примерное значение напряжения, при котором температура находится в допустимых рамках? Теперь повторяем уже знакомые действия - увеличиваем базовую частоту, если система проходит проверку, или снижаем, при появлении ошибок. Таким образом, мы находим максимальную частоту процессора, которую можно получить при заданном напряжении, величина которого, в свою очередь, не даёт нам выйти за границу допустимой температуры. После этого обычно можно на несколько шагов снизить напряжение на процессоре без потери стабильности работы, зато это ещё больше уменьшит максимальную температуру. Осталось подобрать оптимальную для полученной базовой частоты частоту работы памяти и её тайминги. Поздравляю! Мы только что разогнали систему. В полученном безопасном с точки зрения напряжений и температур режиме она сможет годами радовать вас заметно более высокой относительно номинала производительностью.

Схематично алгоритм наших действий можно представить в виде следующей последовательности:



задаём такое значение базовой частоты, при котором итоговая частота процессора будет находиться в пределах 3,5-3,7 ГГц;
примерно определяем напряжение, при котором температура не будет выходить за рамки допустимого даже при полной загрузке процессора или фиксируем его на номинальном значении;
ещё больше увеличиваем базовую частоту, если система проходит проверку, или снижаем, если при выбранном значении появляются ошибки;

окончательно определяем напряжение, необходимое для стабильной работы процессора;

Разгон при динамической реализации технологии Turbo Boost

Поначалу кажется, что при динамическом варианте реализации технологии Intel Turbo Boost подобрать оптимальные параметры разгона намного сложнее, чем при статическом. На самом же деле, всё оказалось довольно легко. Просто помимо опасной температуры при полной загрузке процессора, нам следует учитывать ограничение по частоте, когда загружено лишь одно ядро и частота процессора максимальна. Мы только что нашли предел разгона процессора, когда его коэффициент умножения находится в пределах 20-24, в зависимости от модели. Очевидно, что не получится взять и просто включить динамический вариант, когда множитель может повышаться до 24-27. Таким образом, нам заранее нужно уменьшить базовую частоту. Ориентироваться можно примерно на 4,1-4,3 ГГц при максимальном множителе процессора. Найденное напряжение можно пока оставить. Поскольку частота работы процессора при полной нагрузке будет ниже, нам, возможно, даже удастся его немного повысить. Если же вы сразу начали эксперименты с динамикой, то предварительно, как и при статическом варианте технологии Turbo Boost, следует определить максимальное напряжение, при котором температура ядер при полной нагрузке будет находиться в допустимых пределах.

Далее мы повторяем уже знакомую процедуру - тестируем стабильность работы разогнанной системы. Отличия лишь в том, что теперь тесты проводятся уже не при полной загрузке процессора, а лишь когда загружено только одно ядро одним-двумя потоками вычислений, чтобы коэффициент умножения процессора был увеличен до максимального. Если система проходит проверку - повышаем базовую частоту, если нет, то снижаем её или увеличиваем напряжение. Только не забывайте, что максимальное энергопотребление и тепловыделение мы получаем при загрузке всех ядер процессора. Так что после повышения напряжения убедитесь, что температура всё ещё остаётся в допустимых пределах.

Суммарно алгоритм наших действий примерно следующий:

На подготовительном этапе снижаем частоту памяти, фиксируем тайминги и напряжения;
находим максимальную базовую частоту, на которой способна работать плата, и одновременно определяем необходимое для этого напряжение IMC;
задаём такое значение базовой частоты, при котором максимальная частота процессора будет находиться в пределах 4,0-4,2 ГГц или 3,8-4,0 ГГц, если напряжение повышаться не будет;
примерно определяем напряжение, при котором температура не будет выходить за рамки допустимого при полной загрузке процессора или фиксируем его на номинальном значении;
ещё больше увеличиваем базовую частоту, если система проходит проверку при загрузке одного ядра, или снижаем, если при выбранном значении появляются ошибки;
можно повысить напряжение, если при полной загрузке ядер температура всё ещё находится в заданных рамках; нужно уменьшить его, если температура слишком высока, после чего повторяем предыдущий шаг;
окончательно определяем напряжение, необходимое для стабильной работы процессора при загрузке одного ядра;
подбираем оптимальную для полученной базовой частоты частоту работы памяти и её тайминги;
радуемся полученным результатам.

Конфигурация тестовой системы

Все эксперименты проводились на тестовой системе, включающей следующий набор компонентов:

Материнская плата - Asus P7P55D Deluxe, rev. 1.06G (LGA1156, Intel P55 Express, версия BIOS 0504);
Процессоры:

Intel Core i5-750 (2,66 ГГц, базовая частота 133 МГц, кэш L3 8 МБ, Lynnfield, напряжение питания 1,225 В);
Intel Core i7-860 (2,8 ГГц, базовая частота 133 МГц, кэш L3 8 МБ, Lynnfield, напряжение питания 1,16875 В);

Память - 2 x 2048 Мбайт DDR3 Corsair Dominator GT CM3X2G2000C8GT, (2000 МГц, 9-9-9-24-2T, напряжение питания 1,65 В);
Видеокарта -ATI Radeon HD 4890 (RV790, 55 нм, 900/3600 МГц, 256-битная GDDR5 1024 МБ);
Дисковая подсистема - два Western Digital VelociRaptor WD3000HLFS (300 ГБ, SATA II, 10 000 об./мин, 16 МБ);
Оптические накопители - DVD±RW Sony NEC Optiarc AD-7173A;
Система охлаждения - Scythe Zipang 2 (120-мм вентилятор Crown AGE12025F12J, PWM, максимум 2200 оборотов в минуту);
Термопаста - Zalman CSL 850;
Блок питания - OCZ GameXStream OCZGXS700 (700 Вт) с вентилятором Zalman ZM-F3;
Корпус - Antec Skeleton .

В качестве операционной системы использовалась Microsoft Windows 7 Ultimate (Microsoft Windows, Version 6.1, Build 7600), комплект драйверов для набора микросхем Intel Chipset Software Installation Utility 9.1.1.1019, драйвер видеокарты - ATI Catalyst 9.8.

Конкретные примеры разгона

Алгоритмы, блок-схемы - всё это звучит современно и очень заманчиво, однако нередко за деревьями не видно леса, из последовательности отдельных действий не складывается общая картина. Поэтому мы решили рассказать о разгоне процессоров Lynnfield чуть более подробно, чем обычно. Возможно, конкретные примеры окажутся нагляднее схематичного руководства, помогут понять суть и принципы разгона.

Итак, в нашем распоряжении имеется процессор Intel Core i7-860. Его номинальная частота работы 2,8 ГГц, то есть при штатной базовой частоте 133 МГц коэффициент умножения равен 21. На самом же деле, мы практически не видели, чтобы процессор работал на своей номинальной частоте. По умолчанию включена статическая реализация технологии Turbo Boost и при любом уровне нагрузки множитель процессора повышается до 22, что в итоге даёт частоту работы 2,93 ГГц. Если включить динамический вариант, то такой же коэффициент умножения мы увидим при загрузке четырёх или трёх ядер. Когда нагрузка приходится лишь на два ядра, процессор работает на частоте 3,33 ГГц с множителем 25, а при нагрузке лишь на одно ядро коэффициент умножения увеличивается до 26 и частота становится максимальной - 3,46 ГГц.

Предварительно было определено, что материнская плата Asus P7P55D Deluxe работает при увеличении базовой частоты до 210 МГц, для чего нужно увеличить напряжение IMC до 1,2 В. На памяти было установлено напряжение 1,65 В, частота не снижалась, был оставлен множитель x10, поскольку номинальная частота Corsair Dominator GT CM3X2G2000C8GT составляет 2000 МГц, а в принципе память способна на большее. Тайминги были заданы на уровне 8-8-8-22-1T. Все остальные напряжения были зафиксированы на своих штатных значениях, а напряжение на процессоре увеличено на 0,13125 В при включенной защите от падения напряжения «Load-Line Calibration». Такое «некруглое» значение легко объяснимо - номинальное напряжение нашего экземпляра процессора составляет 1,16875 В, и в сумме мы получим уже вполне «круглые» 1,3 В.

Для начала выясним возможности платы и процессора при статической реализации технологии Turbo Boost, когда его коэффициент умножения повышается лишь до x22. В качестве стартовой была выбрана базовая частота 175 МГц, что в итоге даёт частоту процессора 3,85 ГГц. Это гораздо выше, чем рекомендованные методикой 3,5-3,7 ГГц, но в начале статьи упоминалось, что тесты новых процессоров проводились и на плате Gigabyte GA-P55-UD3. Так что всё это мы уже проходили и примерно знали возможности нашего экземпляра процессора.

Запускаем утилиту LinX, восемь вычислительных потоков которой всего за три цикла поднимают температуру ядер до 90 градусов - это слишком много. Останавливаем проверку, добавляем на процессор уже не 0,13125 В, а лишь 0,125 В и вновь запускаем тест. Опять достигаем 90 градусов, лишь к десятому циклу, но это всё равно много. Теперь добавляем только 0,11875 В, но одновременно повышаем базовую частоту до 177 МГц. Тест пройден, но опять при росте температуры до 90. Снижаем добавляемое напряжение до 0,1125 В и на этот раз проверка завершается при 87 градусах. Уже лучше, а нельзя ли при том же напряжении повысить базовую частоту до 179 МГц? Нельзя, утилита начинает выдавать ошибки, возвращаемся к частоте 177 МГц. Может быть тогда получится ещё больше уменьшить напряжение? Не получится, опять появляются ошибки в тестах. Вот мы и определили максимально возможное напряжение на процессоре и максимально доступную частоту при этом напряжении.

На завершающем этапе оптимизируем остальные параметры работы системы. Повышаем частоту работы памяти, для верности ещё раз запускаем утилиту LinX, а потом часовое тестирование утилитой Prime95 в режиме Blend. Таким образом, добавив на процессор 0,1125 В, мы разогнали его до частоты 3,9 ГГц. Память тоже не подвела, согласившись работать на частоте 2124 МГц с таймингами 8-8-8-22-1T. Материнская плата Asus P7P55D Deluxe чуть завышает базовую частоту, поэтому реальные цифры оказались даже немного выше.



Неплохой результат, как мне кажется. Прирост частоты относительно номинала составил 1,1 ГГц. При этом мы сохранили работу энергосберегающих технологий, в состоянии покоя коэффициент умножения процессора и подаваемое на него напряжение будут снижаться.



Теперь попробуем разогнать процессор, используя все преимущества динамической реализации технологии Турбо. Очевидно, что мы не можем просто так взять и перейти к динамике, при базовой частоте 177 МГц с множителем 26 частота процессора возрастёт до 4,6 ГГц, а в наших условиях стабильная работа на такой частоте выглядит невероятной. Поэтому снижаем базовую частоту до 161 МГц, зато напряжение опять повышаем до 1,3 В, добавляя 0,13125 В к номинальному. Проверка показывает, что при максимальной нагрузке утилитой LinX температура остаётся в пределах допустимого, поэтому переходим к тестам лишь одним-двумя потоками, когда коэффициент умножения процессора увеличивается до максимального x26.

Предварительные тесты пройдены успешно, повышаем базовую частоту сразу до 165 МГц, но встречаем ошибки. Добавляем на процессор 0,14, потом 0,15 В, но ошибки не исчезают, поэтому снижаем частоту до 163 МГц. К сожалению, и на этой частоте не удалось добиться стабильности, поэтому возвращаемся к 161 МГц. После ряда тестов выясняем, что для надёжной работы с множителем 26 на процессор надо добавить 0,1375 В. Вновь запускаем LinX при максимальной нагрузке - температура ядер едва переваливает за 80 градусов, с этой точки зрения напряжение вполне приемлемое. Теперь повышаем частоту работы памяти, снижаем тайминги и запускаем часовое тестирование в Prime95 при полной нагрузке процессора в восемь потоков. Проверка пройдена успешно при максимальной температуре 77 градусов. Затем повторяем проверку лишь при одном вычислительном потоке - ошибок нет, температура 60 градусов.

В результате при максимальной нагрузке на процессор он будет работать с коэффициентом умножения 22 на частоте 3,55 ГГц.



В тех случаях, когда загружено лишь одно ядро, его частота будет увеличиваться до максимальных 4,2 ГГц.



В покое множитель и напряжение снижаются, благодаря работе энергосберегающих технологий.



Сразу хотел бы ответить на несколько возможных вопросов. Достаточно ли проверки с помощью двух утилит для утверждений о стабильности работы разогнанной системы?

Программа LinX отлично разогревает процессор, а утилита Prime95 в режиме Blend тестирует не только его, но и память, но 100-процентной гарантии они, конечно, не дают. Однако наш опыт показывает, что успешное прохождение проверки в этих двух приложениях, позволит системе выдержать тесты и в любых других программах. К тому же мы получили только предварительные итоги разгона. Вскоре мы сменим систему охлаждения процессора, и результаты изменятся, если не разгон, то температура. У нас на очереди ещё много материнских плат и много тестов в самых различных приложениях. При необходимости мы сможем скорректировать полученные данные, как в сторону увеличения, так и уменьшения.

Не слишком ли высока максимальная температура разогнанного процессора 87 градусов?

Достаточно высока. Однако не стоит забывать, что получена она во время проверки с помощью специализированной утилиты LinX, создающей экстремально высокую нагрузку на процессор. При работе обычных программ вряд ли удастся даже приблизиться к этому значению.

Если программа LinX создаёт нереально высокую нагрузку, то зачем при разгоне ориентироваться на полученную при её использовании температуру?

Совершенно верно, для определения максимально допустимого напряжения вы можете применять любую другую самую «тяжёлую» программу, из числа тех, что используете постоянно или время от времени. Скорее всего, максимальная температура будет ниже, чем при использовании LinX, и процессор можно будет гнать дальше. Однако этот путь годится только для вас, но не для меня. Я не могу знать, какие именно задачи будет решать ваш компьютер, поэтому обеспечиваю некоторый запас надёжности, максимально нагружая систему. Следуя приведённым методикам, вы почти наверняка получите разогнанный компьютер, стабильно работающий при любой нагрузке, но это всего лишь рекомендации. Вы вправе действовать по собственному усмотрению, но и на свой же страх и риск.

В тестах участвовал и процессор Intel Core i5-750. Его номинальная частота 2,66 ГГц, напряжение питания 1,225 В. Не будем утомлять вас описанием процедуры его разгона, которая проходила по той же методике, что и для процессора Intel Core i7-860. При статической реализации технологии Турбо и повышении напряжения на 0,1125 В процессор удалось разогнать до 4 ГГц.



При динамическом варианте процессор при полной загрузке смог заработать на частоте 3,73 ГГц при добавлении 0,1375 В. У процессора Intel Core i5-750 отсутствует повышающий множитель для памяти x12, максимальным является x10, поэтому увеличить частоту памяти невозможно, но получилось снизить тайминги.



При однопоточной нагрузке частота процессора будет повышаться до 4,26 ГГц.



Только сейчас, систематизируя полученные данные для статьи, заметил, что оба процессора потребовали совершенно одинакового повышения напряжения для разгона. При статической реализации технологии Турбо напряжение понадобилось повысить на 0,1125 В, при динамической на 0,1375 В. Интересное совпадение, потом посмотрим, сохранится ли оно на других материнских платах, а пока давайте подытожим наши знания о способностях Asus P7P55D Deluxe к разгону.

Измерение производительности

Материнская плата Asus P7P55D Deluxe пока первая из ожидаемого длинного списка плат LGA1156, которая полностью прошла проверку в нашей Лаборатории. У неё ещё нет соперниц для сравнения, поэтому давайте посмотрим, какой прирост производительности мы получаем при разгоне процессора Intel Core i7-860. При работе в номинальном режиме плата самостоятельно устанавливала все параметры, вручную была включена лишь динамическая реализация технологии Турбо. Для начала сравним с разгоном, когда коэффициент умножения тоже динамически меняется.



Цифры весьма впечатляют. Если не считать тех случаев, когда скорость ограничена видеокартой, то прирост составляет 20–30 %. А теперь посмотрим на прирост производительности по сравнению с разгоном при статической реализации технологии Турбо.



На этот раз в отдельных случаях прирост скорости достигает уже 40 %. И, наконец, сравниваем производительность между разгоном при динамической и статической реализации технологии Турбо.



Полученные данные серьёзно обескураживают. Если нас лимитирует видеокарта, то скорости примерно равны, а почти во всех остальных случаях мы наблюдаем 5–10 процентное отставание динамики от статики. И хотя в среднем отставание составляет лишь примерно 4,5 %, это ничуть не успокаивает, мы же ожидали превосходства динамического режима! Формально ничего удивительного в этом нет. Наш набор тестовых приложений предназначен для сравнения материнских плат, а не процессоров. Причём специально подбирались в основном многопоточные программы, способные использовать возможности многоядерных процессоров. О каком же равенстве может идти речь в таком случае, когда при динамическом варианте процессор работает на частоте 3,55 ГГц, а при статическом на 3,9 ГГц? Естественно, что статика выигрывает. Единственным однопоточным приложением, которое мы когда-то добавили в набор тестовых программ, чтобы оценить возможный прирост от динамической реализации технологии Турбо, является SuperPI. И именно здесь мы видим закономерное преимущество динамического варианта.

Начался лихорадочный поиск современных однопоточных приложений, которые смогли бы убедительно продемонстрировать превосходство динамики над статикой. К своему удивлению, ничего подобного мы не нашли. Конечно, можно провести тесты в Cinebench или Fritz при использовании лишь одного потока и получить желаемый результат, но он совершенно нежизнеспособен, не имеет никакого отношения к реальности. Вряд ли кто-то станет отказываться от многопоточности в ущерб производительности, лишь для того, чтобы повысилась частота процессора. Нам важна лишь максимальная скорость и безразличен способ, которым она достигается, увеличением частоты или количеством одновременно исполняемых потоков вычислений. Если второй вариант намного быстрее, то никто не станет прибегать к первому. Напрашивается парадоксальный, на первый взгляд, вывод - статическая реализация технологии Турбо при разгоне заметно производительнее, чем динамическая.

На самом же деле ничего удивительного нет, динамическая реализация технологии Турбо проявляет все свои достоинства лишь при работе процессора в номинальном режиме, но не при разгоне. Что изменяется, когда при штатном режиме работы системы мы переходим от статики к динамике? Ничего, кроме того, что в определённых случаях мы позволяем процессору повысить собственную частоту. У нас та же самая базовая частота 133 МГц, а потому точно такие же частоты всех связанных шин, таких как частота работы памяти, к примеру. Совершенно естественно, что в этом случае динамический вариант предпочтительнее, что и доказывает сравнение. Мы видим убедительное и закономерное превосходство динамического варианта при работе процессора в номинальном режиме.



А когда мы при разгоне переходим от статики к динамике, то меняется всё. Нам пришлось понизить базовую частоту, а вместе с ней снизились и все связанные частоты - уменьшение базовой частоты со 177 до 161 МГц одновременно снижает частоту памяти с 2124 до 1932 МГц. Конечно, отчасти это снижение мы компенсируем более агрессивными таймингами, но уменьшение частоты работы процессора при высокой нагрузке ничем замаскировать не получится. Да, иногда частота процессора будет повышаться до 4,2 ГГц, что выше, чем 3,9 ГГц при статической реализации технологии Турбо, но нередко она будет составлять лишь 3,55 ГГц вместо всё тех же 3,9 ГГц. Учитывая, что современных однопоточных вычислений практически не существует, в любом случае процессору нужно «отвлекаться», отвечая на запросы операционной системы и других программ, получается, что максимальную производительность при разгоне мы получаем лишь при статической реализации технологии Турбо. Можно, конечно, время от времени посчитывать число Пи для самоутверждения при использовании динамического варианта технологии Турбо при разгоне, но вряд ли это можно назвать полезным с практической точки зрения. Наверно можно найти и старые однопоточные игры, где мы тоже увидим прирост скорости, но для старых игр, как правило, и без технологии Турбо достаточно производительности современных процессоров и видеокарт. В целом получается, что при разгоне процессора динамическая реализация Турбо менее полезна, чем статическая.

Замеры энергопотребления

Измерение энергопотребления проводилось с помощью прибора Extech Power Analyzer 380803 . Прибор включается перед блоком питания компьютера, то есть измеряет потребление всей системы «от розетки», за исключением монитора, но включая потери в самом блоке питания. При замере потребления в покое система бездействует, мы дожидаемся полного прекращения послестартовой деятельности и отсутствия обращений к жёстким дискам. Нагрузка на процессор Intel Core i7-860 создаётся с помощью программы «LinX». Для большей наглядности был построен график роста энергопотребления в зависимости от роста уровня нагрузки на процессор при изменении количества вычислительных потоков утилиты «LinX».



Энергопотребление системы при работе процессора Intel Core i7-860 в номинальном режиме слабо отличается, как при статической, так и при динамической реализации технологии Турбо. Разве что можно заметить чуть более высокое потребление в покое, когда работает статика. При разгоне процессора эта разница становится ещё более явной.



Вне зависимости от варианта реализации технологии Турбо под нагрузкой энергопотребление систем довольно близко. Однако при динамической реализации в покое потребление практически равно энергопотреблению при работе процессора без разгона, а при статическом варианте намного выше. Дело в том, что, разрешая состояния C3-C7 для динамического варианта, мы тем самым позволяем процессору при отсутствии нагрузки переходить в более глубокие энергосберегающие режимы, отключать больше блоков. Поэтому разница между динамическим и статическим вариантами в покое вполне объяснима, однако я не ожидал, что она окажется столь значительной. С учётом того, что обычно более 90 % времени компьютер работает при отсутствии нагрузки, тем пользователям, кто выбирает статический разгон, следует знать, что в покое их система будет заметно более энергоёмкой.

Ещё более впечатляет сравнение энергопотребления платформ LGA1156 и LGA1366. К двум вариантам разгона процессора Intel Core i7-860 мы добавили результаты, полученные при разгоне до 3,8 ГГц процессора Intel Core i7-920 на материнской плате Gigabyte GA-EX58-UD3R.



При разгоне процессоров, впрочем, при работе платформ в номинальном режиме тоже, хотя на графике показан лишь разгон, разница простирается от 30 до 60 Вт. Причём нужно заметить, что Gigabyte GA-EX58-UD3R - это весьма экономичная плата по меркам LGA1366. У неё эффективный преобразователь питания процессора, отсутствуют дополнительные контроллеры шины PCI Express, к тому же Intel Core i7-920 разгонялся без повышения напряжения, в отличие от Intel Core i7-860. В общем, по энергопотреблению платформы LGA1156 и LGA1366 просто несравнимы.

Послесловие

В обзоре мы затронули сразу несколько тем для обсуждения, поэтому и заключение будет чуть более обширным, чем обычно. Для начала можно сказать, что платформа LGA1156 в целом оставляет очень благоприятное впечатление, а вот процессор Intel Core i5-750 откровенно разочаровал. Мало того, что он изначально не поддерживает технологию Hyper-Threading, мало того, что у него отсутствует повышающий множитель для памяти x12, так и разгон, вопреки ожиданиям, у него оказался лишь незначительно выше, чем у процессора Intel Core i7-860. Получается, что Core i5-750 в состоянии конкурировать лишь со старыми процессорами Intel Core 2 Quad и с четырёхъядерными процессорами AMD. А вот Intel Core i7-860 - это уже полноценный, высокопроизводительный и неплохо разгоняющийся процессор. Однако тут возникает интересный вопрос - какой процессор лучше брать: Intel Core i7-860 или Intel Core i7-920? Ответ будет зависеть от того, в каких условиях планируется эксплуатировать процессоры, и какие параметры имеют для вас приоритетное значение.

Если мы говорим о производительности, а вы не сторонник разгона или вмешательства в настройки BIOS, то ваш выбор - Intel Core i7-860. Он будет быстрее в номинальном режиме за счёт более высокой собственной частоты и частоты работы памяти, к тому же не стоит забывать о более гибкой технологии Турбо. Однако процессор Intel Core i7-920 будет быстрее при разгоне. Разгоняются процессоры примерно до одинаковой частоты, но базовая частота и все связанные с ней частоты, такие, как частота памяти, при равном разгоне у Intel Core i7-920 будет выше, за счёт более низкого коэффициента умножения. Кроме того, не следует забывать, что Intel Core i7-920 работает с трёхканальной памятью, к тому же при использовании высокочастотной памяти DDR3 частота встроенного в процессор контроллера памяти будет выше, чем у Intel Core i7-860. Если говорить о сравнении цен, то на процессоры они одинаковы, но суммарная стоимость платформы для Intel Core i7-860 будет ниже, за счёт меньшего количества модулей памяти и не таких дорогих материнских плат. Что касается энергопотребления, то платформы LGA1156 и LGA1366 несравнимы, последняя гораздо прожорливее.

В целом лично мой выбор - конечно Intel Core i7-860. Лишь после знакомства с этим процессором я впервые задумался о том, что пора бы, пожалуй, перейти на четырёхъядерник. Причём, несмотря на полученные нами результаты сравнения, вам вовсе не обязательно отказываться от динамической реализации технологии Турбо при разгоне. Статический вариант в целом более производителен, тут не поспоришь, ведь при переходе к динамике нам приходится снижать разгон, зато взамен мы получаем более гибкую и экономичную систему, что тоже немаловажно. Ведь и раньше далеко не все по тем или иным причинам использовали оверклокерский потенциал процессора на все 100 %. Кто-то разгонял с использованием систем фазового перехода (фреонки), чтобы выжать максимум. Кто-то специально для разгона подбирал оптимальные компоненты системы, чтобы получить существенный прирост скорости без значительных финансовых и прочих издержек. Многие же просто немного разгоняли процессор, насколько получится, насколько позволит плата, система охлаждения и прочие компоненты компьютера. С появлением процессоров Lynnfield ничего не изменилось - кто-то выберет статический вариант, а кто-то динамический.

Вернёмся к тому, с чего мы начали эту статью - к материнской плате Asus P7P55D Deluxe. Она, не побоюсь этого слова, просто великолепна. Сама компания Asus в основном делает упор на появление новых функций, таких, например, как возможность автоматического разгона процессора «OC Tuner Utility». Я же, по понятным причинам, достаточно равнодушен к таким возможностям. На сегодняшний день ни одна утилита не в состоянии добиться таких же результатов, как при разгоне вручную, хотя нельзя не признать, что подобные технологии в состоянии оказать существенное подспорье для начинающего оверклокера. Мне больше всего нравится, что при изменении процессорного множителя и напряжения на процессоре продолжают работать технологии энергосбережения. Теперь мы ограничены только возможностями процессора и его системы охлаждения, а больше ничто не мешает нам установить оптимальный с точки зрения производительности и энергопотребления режим работы системы. Ну и конечно, не стоит забывать о характерных достоинствах материнских плат Asus - это неплохая комплектация, продуманный дизайн, качественная элементная база, множество фирменных функций и технологий, отличные способности к разгону, длительные сроки гарантийного обслуживания. Наше изучение материнских плат LGA1156 только начинается, но я не представляю, как какая-то другая плата сможет опередить Asus P7P55D Deluxe. В лучшем случае, полагаю, сопернице удастся с ней сравниться. Впервые за долгое время, я в полном восторге от материнской платы Asus и надеюсь, что и в дальнейшем компания будет только радовать своей продукцией.

">Уточнить наличие и стоимость ASUS P7P55D Deluxe

Другие материалы по данной теме


AMD против Intel: интегрированные платформы
Foxconn A7DA 3.0 - Socket AM3 плата на чипсете AMD 790GX
EVGA X58 SLI LE - лёгкое обаяние недорогой системной платы