Схема совместного применения симметричного и асимметричного шифрования. Криптографические алгоритмы, применяемые для обеспечения информационной безопасности при взаимодействии в интернет

08.04.2019

Это отличное введение в принципы криптографии.

Если вас серьезно интересует криптография, я настоятельно рекомендую Handbook of Applied Cryptography как удивительную справочную работу. Сначало будет слишком много, но это бесплатно, так что теперь возьмите копию:) и когда вы закончите с AC, прочитайте HAC. (На самом деле, издание в твердом переплете очень хорошо сделано и гораздо легче читать, чем несколько сотен страниц бумаги с лазерной печатью, подумайте о покупке, если вам нравится внешний вид PDF файлов.)

Симметричное шифрование работает, смешивая секретный ввод с секретным ключом таким образом, что он (а) быстро (b) не может выводить вход или ключ из вывода. Детали микширования значительно различаются, но есть блок-шифры и потоковые шифры ; блочные шифры работают, просматривая входные данные в 8 или 16 или 32 байтовых блоках за раз, и рассеивая вход и ключ в этих блоках. Различные режимы необходимы для шифрования большего количества данных, чем пригонки в блоках, а различные режимы работы могут или не могут распространять данные между блоками.

Симметричные шифры являются фантастическими для шифрования массовых данных, от 8 до 8 терабайт, это лучший выбор для шифрования данных.

Асимметричное шифрование работает, используя очень сложные математические проблемы с задними дверями, которые позволяют быстро решить проблему, если у вас есть небольшой кусок очень важных данных. Обычными математическими проблемами являются факторинг больших чисел и дискретные логарифмы . Асимметричные алгоритмы работают с фиксированным размером данных, обычно 1024-2048 бит для RSA и El Gamal и 384 бит для Эллиптическая кривая версий RSA или El Gamal. (Версии Elliptic Curve используют разные field , чем целые числа для их вычислений. RSA и El Gamal и подобные системы работают с любым полем, которое определяет оба операция умножения и добавления, а ECC имеет другое представление этого поля, которое волшебным образом добавляет "больше" данных. Это очень умный способ сделать известные механизмы вписываться в меньшую память, и мое введение в одно предложение может не начинайте делать это справедливо. Простота - удивительная часть.)

Асимметричное шифрование помогает решить проблему распределения ключей, но только: вместо того, чтобы требовать пары ключей O (N ^ 2) между каждой парой люди, которые хотят использовать криптографию, чтобы говорить между собой, для этого требуются ключи O (N), одна общедоступная/частная пара на человека, и все просто должны знать все остальные публичные части. Это все еще непростая задача, поскольку демонстрируется сложность x509 , но такие механизмы, как openPGP и OpenSSH имеют более простые модели и механизмы, которые хорошо работают для многих целей.

Асимметричные шифры обычно используются для передачи ключей сеанса для симметричных шифров. Даже когда передается только небольшой объем данных, криптографы обычно предпочитают отправлять фактические данные, зашифрованные с помощью симметричного шифра, и отправлять ключ, зашифрованный с помощью асимметричного шифрования. Одно огромное преимущество заключается в том, что вы можете отправить сообщение нескольким получателям, а размер сообщения будет равен O (размер сообщения + 100 * 2048 бит) - вы можете зашифровать ключ сеанса каждому из получателей индивидуально, и только передайте сообщение один раз. Большой успех.

Асимметричные шифры также используются для цифровых подписей . Хотя можно использовать симметричный шифр для аутентификации сообщения , симметричный шифр не может использоваться для предоставления

Чтобы обмениваться посланиями и скрыть содержание от третьих лиц, применяют шифрование. Оно используется там, где необходим повышенный уровень защиты. Есть две схемы шифрования: симметричная и асимметричная.

Что такое шифрование

Шифрование будет полезно тогда, когда нужно скрыть некоторую информацию от посторонних лиц и предоставить секретные данные авторизованным пользователям.

Особенностью такого вида передачи данных является использование ключа.

Есть три состояния безопасности:

  • скрытие информации от посторонних;
  • предотвращение изменений;
  • сохранение целостности информации;
  • идентификация отправителя.

Для чтения информации, кроме ключа, требуется дешифратор. Именно это обеспечивает невозможность получения данных злоумышленниками, ведь перехватив данные, но не имея ключа, прочесть их невозможно.

Бывают два вида шифрования: симметричный и асимметричный.

Главной целью шифрования является хранение информации. Это позволяет работать с некоторыми данными из ненадежных источников, передавать сообщения по незащищенным каналам. Отправка информации происходит так:

  • отправитель шифрует данные;
  • получатель расшифровывает.

Каждое преобразование реализуется с помощью алгоритмов, для решения которых используются ключи. Симметричные и асимметричные методы шифрования отличаются криптостойкостью.

Криптостойкость

Симметричные и асимметричные системы шифрования имеют такую характеристику, которая отвечает за сложность получения несанкционированного доступа.

Существует 2 основных типа криптостойкости системы шифрования.

  • Абсолютно стойкая система не может быть раскрыта, даже при наличии бесконечно больших вычислительных ресурсов. Характеризуется тем, что для каждого сообщения генерируется свой отдельный ключ. Его длина равна или больше длины сообщения.
  • Достаточно стойкие системы применяются в криптографической системе гражданского назначения. Такой алгоритм сложно расшифровать, но при наличии соответствующих ресурсов это становится возможным.
  • Сравнение криптостойкости некоторых систем шифрования

    Максимальный размер ключа RSA — 4096 бит.

    Он используется для шифрования и подписи. Криптостойкость можно описать как 2,7.1028 для ключа 1300 Бит. Схема применяется во многих стандартах, принцип шифрования RSA один из первых асимметричных алгоритмов.

    Размер ключа схемы Эль-Гамаля равен RSA — 4096 Бит. Он используется и для шифрования, и для цифровой подписи. Криптостойкость этой системы не отличается от RSA при одинаковом размере ключа.

    В методе DSA используется значительно меньшей ключ — 1024 бита. Применяется он исключительно для цифровой подписи.

    Симметричное и асимметричное шифрование

    Эти два вида шифрования отличаются количеством ключей и уровнем устойчивости к взлому.

    Если для кодирования и раскодирования используется один ключ, то это шифрование симметричное. Асимметричное шифрование подразумевает использование одного ключа для каждого алгоритма.

  • Открытым ключом шифруется некоторый код, который представляет собой определенное послание. Ключ известен обеим сторонам, он передается по незащищенному каналу, может быть перехвачен. Важнейшей задачей сохранения информации является защита ключа от перехвата.
  • Закрытый используется для расшифровывания. Известен только одной стороне. Не может быть перехвачен, так как все время находится у одного собеседника.
  • Цель шифрования определяет метод сохранения конфиденциальности. Одним из первых было симметричное, асиметричное шифрование изобретено позже для обеспечения большей надежности.

    Особенности симметричного шифрования

    Симметричная система защита имеет следующие достоинства.

  • Высокая скорость и простота реализации.
  • Для обеспечения стойкости шифра используется малая длина ключа.
  • К недостаткам относится следующее:

    • сложность управления ключами в большой сети;
    • сложность обмена ключами;
    • потребность в поиске надежного канала для передачи ключа сторонам;
    • невозможность использования для цифровой подписи, сертификатов.

    Для компенсации недостатков используется комбинированная схема, в которой с помощью асимметричного шифрования передается ключ, используемый для дешифровки. Он передается при помощи симметричного шифрования.

    Особенности асимметричного шифрования

    Применение пары открытый-закрытый ключ можно использовать как:

    • самостоятельное средство защиты информации;
    • средство распределения ключей;
    • средства аутентификации пользователей.

    Имеет такие преимущества:

    • сохранение секретного ключа в надежном месте, вместо которого по открытому каналу передается открытый;
    • ключ дешифрования известен только одной стороне;
    • в большой асимметричной системе используйте меньшее количество ключей в отличие от симметричной.

    В таких алгоритмах сложно внести какие-либо изменения. Подобная система имеет длинные ключи. Если симметричный ключ имеет размер 128 Бит, то ключ RSA — 2304 Бит. Из-за этого страдает скорость расшифровывания — она в 2-3 раза медленнее. Для расшифровки требуются большие вычислительные ресурсы.

    Существует очень много примеров симметричной и асимметричной систем шифрования.

    Симметричное шифрование — как выглядит?

    Пример симметричного шифрования и схема реализации ниже.

  • Есть два собеседника, которые планируют обменяться конфиденциальной информацией.
  • Первый собеседник генерирует ключ d, алгоритмы шифрования E и дешифрования D. Затем посылает эту информацию второму собеседнику.
  • Сообщение дешифруется ключом d.
  • Главным недостатком является невозможность установить подлинность текста. В случае перехвата ключа злоумышленник расшифрует секретную информацию.

    Существуют классические методы.

  • Простая и двойная перестановка.
  • Магический квадрат.
  • Одиночная перестановка.
  • Первый метод является одним из простейших, в схеме которого не используется ключ. Отправитель и получатель договариваются о некотором ключе, представленным в виде размера таблицы. Передаваемое сообщение записывается в столбцы таблицы, но считывается по строкам. Зная размер таблицы, получатель расшифровывает сообщение.

    Для обеспечения большей скрытности используется двойная перестановка. Таким образом происходит шифрование ранее зашифрованного текста. Для этого таблицы должны отличаться количеством строк и столбцов. Они заполняются вертикально, горизонтально, змейкой, по спирали. Этот способ не усиливает шифрование, но процесс взлома становится более длительным.

    “Магический квадрат” — более сложная структура, которая представляет собой матрицу. В клетки вписываются натуральные числа таким образом, чтобы сумма чисел по каждому столбцу, строке, диагонали была одинаковой. Каждое число соответствует букве сообщения. Полученный текст выписывается в строку, сопоставляя числа и символы.

    Примеры асимметричного шифрования

    В данном случае открытый ключ отправляется по открытому каналу и теоретически может быть перехвачен злоумышленниками.

    В отличие от симметричных, асимметричные ключи шифрования разные. Для шифровки применяется открытый ключ, для расшифровки послания — закрытый. Использование двух ключей решает проблему возможности перехвата, которая была в симметричном методе. Реализуется так.

  • Первый собеседник выбирает алгоритмы шифрования и дешифрования, пару ключей. Открытый ключ посылает второму собеседнику.
  • Второй собеседник шифрует информацию с помощью полученного ключа. Отправляет информацию первому собеседнику, который расшифровывает сообщение с помощью закрытого ключа.
  • Существует такие основные методы асинхронного шифрования.

  • Шифр Эль-Гамаля.
  • RSA

    RSA — первый криптографический алгоритм, используемый и для шифрования, и для цифровой подписи.

    Описывается так.

  • Выбирается два простых числа, например, 3 и 7.
  • Вычисляется модуль n — произведение двух чисел. Получается 21.
  • Вычисляется функция Эйлера φ=(p-1)×(q-1)=2×6=12.
  • Вычисляется любое простое число e меньше φ и простое с φ. Доступные варианты: 5, 7, 11.
  • Пара чисел e, n (5, 21) — открытый ключ. Теперь вычисляются числа d и n закрытого ключа. Число d удовлетворяет условие (d×е) mod φ=1 и равняется 17. В итоге вторая пара чисел 17 и 21 — закрытый ключ. Шифрование выполняется следующим образом: сообщение возводится в степень e, берется остаток от деления на n, при этом результат должен быть меньше числа n. Получается 10 — это будут закодированные данные. Для раскодировки e возводится в степень d, вычисляется остаток от деления на n.

    DSA

    DSA (в отличие от RSA) используется только для цифровой подписи, но не для шифрования. Заданная подпись может быть проверена публично. Есть два алгоритма для создания подписи и проверки. Шифруется именно хеш-сообщение, которое представляет текст в цифровом виде. Поэтому для избежания коллизий выбирается сложная хэш-функция. Построение цифровой подписи состоит из следующих шагов.

  • Выбор криптографической хэш-функции H(x).
  • Битность простого числа q должна равняться значению хэш-функции H(x).
  • Подбор такого простого числа p, чтобы p-1 делился без остатка на q.
  • Вычисление числа g = h (p-1)/q mod p. h должно быть произвольным числом в диапазоне от 1 до p-1.
  • Выбирается случайное число k от 0 до q.
  • Вычисляется r = (gk mod p) mod q.
  • Затем s = k-1(H(m) + xr)) mod q.
  • Если r=0 или s=0, выбирается другое число k.
  • Схема Эль-Гамаля

    Шифрование по схеме Эль-Гамаля используется для цифровых подписей. Является продолжением алгоритма Диффи-Хеллмана.

    При работе по этой схеме важно учитывать следующую особенность. Шифрование Эль-Гамаля не является алгоритмом цифровой подписи по схеме с одноименным названием. При шифровке текст преобразовывается в шифр, который длиннее исходного сообщения в 2 раза.

    Генерация ключей происходит следующим образом.

  • Выбирается случайное простое число p.
  • Число g должно быть первообразным корнем p.
  • Число x должно быть больше 1 и меньше p-1. Это будет закрытый ключ.
  • Затем вычисляется открытый ключ y по формуле g^x mod p.
  • При шифровании текста M выбирается системный ключ K. Он больше единицы и меньше p-1. Затем вычисляются числа a и b, которые являются шифротекстом, a = g^k mod p и b = y^k M mod p.

    ТЕРЕНИН Алексей Алексеевич, кандидат технических наук

    Криптографические алгоритмы, применяемые для обеспечения информационной безопасности при взаимодействии в ИНТЕРНЕТ

    Представлены краткий обзор самых распространенных алгоритмов шифрования на сегодняшний день, их описание, а также возникающие проблемы при их реализации и значимые аспекты при практическом использовании.

    Защита информации методами криптографического преобразования заключается в изменении ее составных частей (слов, букв, слогов, цифр) с помощью специальных алгоритмов либо аппаратных решений и кодов ключей, то есть в приведении ее к неявному виду. Для ознакомления с шифрованной информацией применяется обратный процесс: декодирование (дешифрование). Использование криптографии является одним из распространенных методов, значительно повышающих безопасность передачи данных в сетях ЭВМ, данных, хранящихся в удаленных устройствах памяти, а также при обмене информацией между удаленными объектами.

    Для преобразования (шифрования) обычно используются некоторый алгоритм или устройство, реализующее заданный алгоритм, который может быть известен широкому кругу лиц. Управление процессом шифрования осуществляется с помощью периодически меняющегося кода ключа, обеспечивающего каждый раз оригинальное представление информации при использовании одного и того же алгоритма или устройства. Знание ключа позволяет просто и надежно расшифровать текст. Однако без знания ключа эта процедура может быть практически невыполнима даже при известном алгоритме шифрования.

    Даже простое преобразование информации является весьма эффективным средством, дающим возможность скрыть ее смысл от большинства неквалифицированных нарушителей.

    Краткий исторический обзор развития шифрования

    Появление криптографии восходит к египетским иероглифам. Еще с древнейших времен, когда процветали Египет и Персия, для важнейших государственных и военных поручений использовались посыльные, которые несли текст послания либо на пергаменте, либо у себя в голове, чтобы передать его на словах, последний способ был более предпочтителен. Уже тогда появлялись более или менее успешные способы защиты передаваемой информации от посягательств перехватчиков. Приведем известную легенду из Древнего мира. Некий царь, попав в плен, сделал татуировку на голове раба – сообщение союзникам. Когда отросли волосы, раб перебрался к адресатам сообщения и царь был освобожден. Прообраз нынешней стеганографии.

    Древние греки применяли круглые палочки одинакового диаметра, на которые наматывались полоски пергамента. Надпись производилась продольно по длине палочки. Сложить текст в читаемый можно было, только обладая палочкой такого же диаметра.

    В Древнем Риме уже начинает явно формироваться наука криптография, переводимая с латыни, как тайнопись. Появляется шифр Цезаря, когда каждая буква заменяется на букву, отстоящую на три по алфавиту.

    В средневековой интриганской Европе и Средней Азии, происходит бурное развитие криптографии, и криптоанализа – методов вскрытия шифрованных текстов. Первой систематической работой по криптографии считают книгу архитектора Леона Баттисти Альберти (1404 - 1472). Одним из первых криптоаналитиков был Франсуа Виет (1540 - 1603), при дворе короля Франции Генриха IV. В то же время при дворе папы римского служили советники из семейства Аддженти, которых также можно назвать криптоаналитиками. Весь период до середины XVII в. насыщен работами по криптографии и криптоанализу.

    В XIX и в первой половине XX в. для тайной дипломатической переписки многими странами, в том числе и Россией, применяются методы шифрования, ключи для которых составлялись из отрывков определенных текстов обычных книг (шифровальные книги).

    С начала ХХ в. - с Первой мировой войны - начинают применяться специальные шифровальные машины.

    Широко известна немецкая машина Enigma, код которой был раскрыт англичанами. Чтобы не выдавать факта раскрытия немецкого шифра, английское правительство пошло на большие жертвы среди мирного населения, не предупредив жителей двух крупных городов о готовящихся бомбардировках. Но это помогло затем получить существенный перевес в северных морских сражениях с Германией, когда уничтожались непобедимые немецкие подводные лодки и крейсеры.

    После Второй мировой войны криптографией занялись вычислительные машины. Долгое время это был удел мощнейших для своего времени суперкомпьютеров.

    Публикации по этой теме были строго засекреченными и использование научных исследований в данной области являлись внутригосударственной прерогативой. Общедоступной была только хрестоматийная работа Фон-Неймана 40-х гг., описывающая, кроме принципов построения вычислительных систем, еще некоторые возможные злоумышленные методы воздействия для нарушения “легального” вычислительного процесса, а также классическая работа Шеннона, заложившая основы компьютерной криптографии.

    С 70-х гг. появляются открытые публикации: Хэффи-Дилман в 1976 г. В 1970 г. существовало засекреченное изобретение Джеймса Эллиса (Великобритания) в области криптографии. Наиболее известный алгоритм асимметричной криптографии – RSA, разработанный Рональдом Ривестом, Эдди Шамиром и Леном Эдлеманом в 1977 г. Алгоритм RSA имеет большое значение, т.к. может использоваться как для шифрования с открытым ключом, так и для создания электронной цифровой подписи.

    Это был революционный период в развитии криптографической науки. Появились новейшие методы секретного распространения ключевой информации в открытых вычислительных системах, а также родилась несимметричная криптография.

    Но и после этого долгое время прерогатива использования криптографии в защите данных была у государственных служб и крупных корпораций. Вычислительная техника того времени, обладающая мощностью, необходимой для криптографических преобразований была очень дорогостоящей.

    В то время появляются основные государственные стандарты криптографических алгоритмов (США и некоторые европейские страны), использование которых предписывалось при работе с информацией, отнесенной к государственной тайне.

    Завеса секретности вокруг этих технологий привела даже к тому, что в США криптографические алгоритмы были приравнены к вооружению, был введен запрет на вывоз шифровальных аппаратных и программных средств. Затем были введены экспортные ограничения на длину используемого ключа в алгоритмах шифрования за пределами США, что позволяло американским спецслужбам производить дешифрацию сообщений на имеющихся вычислительных мощностях без знания укороченного ключа. С 1 марта 2001 г. экспортные ограничения были сняты. Из-за событий, произошедших 11 сентября того же года, наблюдается ужесточение государственного контроля. Правительство США рассматривает варианты обратного введения экспортного контроля над средствами шифрования.

    Вернемся в 70-е гг. С того времени ни научные изыскания, ни развитие вычислительных средств не останавливались. Вычислительные мощности суперкомпьютеров возрастают в несколько раз каждые несколько лет. Появляется персональный компьютер. Мощность персонального компьютера приблизительно равна мощности суперкомпьютера десятилетней давности. Сейчас персональные компьютеры стали еще мощнее.

    С 80-х гг. у простых пользователей появляется возможность использовать криптографические средства на своих компьютерах, чему яростно препятствуют государственные органы, становится сложнее осуществлять наблюдение за деятельностью граждан страны, в том числе и за преступными элементами.

    Выход в свет программы PGP (Pretty Good Privacy) Фила Циммерманна (версия 1.0 вышла в 1991 г.) и предоставление ее в открытое и бесплатное использование дали большие возможности рядовым компьютерным пользователям. Фила Циммерманна даже объявили врагом государства, он был приговорен к лишению свободы.

    Постоянно возрастающие вычислительные мощности заставляли использовать все более сложные алгоритмы криптопреобразования или увеличивать длину ключей, используемых при шифровании.

    Стандарты на криптографические алгоритмы устаревали, становились ненадежными. Информация, закрытая на некотором ключе, уже не могла храниться конфиденциально достаточно долго - столько, сколько полагалось по государственным нормам. Например, хранение информации в полном секрете в зашифрованном виде в течение 5 лет означало, что противник, обладая самыми мощными вычислительными средствами, постоянно перебирая возможные ключи, за этот срок с достаточно большой вероятностью не подобрал бы нужный ключ для расшифрования хранимой информации.

    Стали проводиться конкурсы на вскрытие некоторой информации, зашифрованной по алгоритму одного из стандартов. Победителю назначался солидный денежный приз, а также всемирная слава в информационном сообществе. Объединяя обыкновенные компьютеры в вычислительной сети для параллельной работы над решением данной задачи, пользователи собирались в группы и подбирали ключ сообща.

    Длина ключа 48 бит означает, что необходимо сделать 2 48 переборов. Увеличение длины ключа, например, всего на 16 бит, означает, что перебрать необходимо в 2 16 раз больше.

    Но даже такой размер ключа позволял решить проблему вскрытия шифра объединенным группам за дни и даже за часы параллельной работы. В дальнейшем потребовался переход на ключи, которые в несколько раз длиннее упомянутых. Но и это была только временная мера, и недавно были приняты новые стандарты на алгоритмы криптопреобразований (AES в США).

    В настоящее время в прессе появилось множество публикаций, посвященных этой проблеме. Издаются многочисленные книги, как переводные, так и российских авторов. Задачу защиты информации от раскрытия и модификации позволяет решать криптография. Математический аппарат современной криптографии по сложности превосходит тот, который используется для разработки ядерного оружия и космических систем.

    Современная криптография делится на симметричную и асимметричную. Симметричная – на потоковый шифр, блочный и составной. Асимметричная криптография более ресурсоемкая, а в симметричной существует проблема эффективного распределения ключей. Современные системы безопасного обмена основаны на применении смешанной криптографии. В начале сеанса обмена стороны пересылают друг другу посредством асимметричной криптографии секретные сеансовые ключи, которые используются далее для симметричного шифрования пересылаемых данных. Система асимметричной криптографии позволяет распределять ключи в симметричных системах шифрования.

    В правительственных и военных телекоммуникационных системах используется исключительно симметричное шифрование (чаще всего с использованием одноразовых ключей). Это обусловлено тем, что строго математически не доказана стойкость систем с открытыми ключами, но не доказано и обратное.

    Шифрование информации не следует принимать как панацею от всех информационных угроз. Его следует воспринимать как одну из обязательных мер защиты информации в составе комплексной системы обеспечения информационной безопасности. Применение шифрования следует сочетать с законодательными, организационными и другими мерами защиты.

    Симметричные алгоритмы шифрования

    Алгоритмы шифрования предназначены для решения задачи обеспечения конфиденциальности информации. В настоящее время для закрытия информации интенсивно используются криптографические методы. С древнейших времен наиболее эффективной формой защиты было и остается шифрование.

    Шифрование определяется как взаимообратное преобразование незащищенной (открытой) информации в зашифрованную (закрытую) форму – шифртекст , в которой она не представлена полностью доступной для злоумышленника. При шифровании используются ключи, наличие которых означает возможность зашифрования и/или расшифрования информации. Важно отметить, что сам метод шифрования не требуется держать в секрете, т. к. знание только его не позволит расшифровать шифртекст.

    Современные криптосистемы можно однозначно разделить по способу использования ключей на криптосистемы с секретным ключом (симметричные) и с открытым ключом (асимметричные). Если для зашифрования и расшифрования используется один и тот же ключ, такая криптосистема называется симметричной.

    К симметричным криптосистемам относятся DES , AES, ГОСТ 28147-89 и т.д. Новым направлением в криптографии стало изобретение асимметричных криптосистем с открытым ключом, таких, как RSA, DSA или Эль-Гамаль .

    В асимметричных криптосистемах для зашифрования и расшифрования применяют различные, практически не выводимые друг из друга ключи, один из которых (ключ расшифрования) делается секретным, а другой (ключ зашифрования) - открытым. Этим достигается возможность передавать секретные сообщения по незащищенному каналу без предварительной передачи секретного ключа. Именно криптография с открытым ключом разорвала порочный круг симметричных шифров, когда для организации обмена секретной информацией надо было сначала произвести распределение секретных ключей.

    Детально криптосистемы с открытым ключом будут рассмотрены далее, а сейчас вернемся к симметричным криптосистемам (КС).

    Важнейшей составной частью КС являются шифры или процедуры взаимообратного преобразования открытого текста M в шифртекст M":

    M’ = E(M),
    M = D(M’),

    где E - функция зашифрования и D - функция расшифрования.

    Общепринятым подходом в криптографии считается такое построение шифра, при котором его секретность определяется только секретностью ключа K S (правило Керкоффа). Таким образом, шифр должен быть устойчивым к взлому, даже если потенциальному криптоаналитику известен весь алгоритм шифрования, кроме значения используемого ключа, и он располагает полным текстом перехваченной шифрограммы.

    Практика показала, что чем больше известен алгоритм, чем больше людей работало с ним, тем более проверенным, а значит, и надежным он становится. Так, публично известные алгоритмы сейчас выдерживают борьбу со временем, а вот засекреченные государственные шифры обнаруживают в себе множество ошибок и недочетов, т. к. всего учесть невозможно.

    Общепринятая схема построения симметричных криптосистем представляет собой циклические перестановки и подстановки битов в блоке фиксированной длины, алгоритм которых определяется секретным ключом.


    Алгоритм шифрования считается стойким, если, имея закрытые данные, и зная секретный ключ, невозможно получить информацию об открытых данных. Строго доказана невозможность построения абсолютно стойкого шифра, за исключением случая, когда размер секретного ключа равен (или больше) размеру шифруемых данных . Этот случай трудно реализуем на практике, т.к. реально применяемые и доступные на рынке средства криптографической защиты используют шифры, для которых задача восстановления открытого текста по закрытому является трудно вычислимой, то есть требует настолько больших ресурсов, что атака становится экономически нецелесообразной.

    Среди симметричных шифров наиболее известны и часто используемы следующие (размер блока в битах обозначен как b, число циклов- r, а длина ключа - l):

    DES - государственный стандарт США (b = 64, r = 16, l = 56). В настоящее время доказана недостаточная стойкость DES против атаки методом простого перебора .
    Triple DES и DESX (b = 64, r = 16, l = 168;112) - последовательное применение алгоритма DES с разными ключами, что обеспечивает значительную устойчивость к взлому .
    IDEA - (b = 64, r = 8, l = 128) . Активные исследования его стойкости выявили в нем ряд слабых ключей, однако вероятность их использования пренебрежимо мала.
    RC5 - параметризованный шифр с переменными размером блока (b I ), количеством циклов (r Ј 255) и числом битов ключа (l Ј 2040) . Исследования его стойкости показали, что при b = 64 он недоступен для дифференциального криптоанализа при r і 12 и для линейного криптоанализа при r і 7.
    ГОСТ 28147-89 - российский стандарт шифрования данных (b = 64, r = 32, l = 256). Для ГОСТа было найдено множество слабых ключей, значительно снижающих его эффективную стойкость в простых режимах шифрования . Оценка криптостойкости ГОСТа затруднена также тем фактом, что важнейшая часть алгоритма - узлы замены или S-боксы в терминологии шифра DES - не описана в стандарте и законы ее генерации остаются неизвестными. В то же время доказано, что высока вероятность получения слабых узлов замены, упрощающих криптоанализ данного шифра.
    Blowfish - это 64-битовый блочный шифр, разработанный Шнайером (Schneier) в 1993 г., реализуется посредством перестановок и замен, зависимых от ключа. Все операции основаны на операциях XOR и прибавлениях к 32-битовым словам (XORs and additions on 32-bit words). Ключ имеет переменную длину (максимально 448 бит) и используется для генерации нескольких подключевых массивов (subkey arrays). Шифр был создан специально для 32-битовых машин и существенно быстрее DES .

    Сейчас в США принят новый стандарт шифрования AES. Был проведен конкурс среди алгоритмов шифрования, в котором победил и лег в основу AES – Rijndael. Rijndael представляет собой итеративный блочный шифр, имеющий переменную длину блоков и различные длины ключей. Более подробное описание этого алгоритма и итогов проведения конкурса дано в .

    В мире разработано, опубликовано и исследовано достаточно большое число симметричных алгоритмов (табл. 1), из которых лишь DES и его модификация Triple DES были достаточно проверены временем. В таблицу не включены малоизвестные и слабоизученные алгоритмы, такие, как Safer, и т.д.

    Таблица 1. Обзор симметричных методов шифрования

    Длина ключа, бит

    Размер блока, бит

    Затраты на подбор ключа, MIPS x лет

    Примечание

    DES Разработан в 1977 г. фирмой IBM по заказу правительства США. За 20 лет не найдено способа взломать шифр, кроме полного перебора в среднем 25% всех ключей, но при современных возможностях он позволяет достичь успеха
    Triple DES Трехкратное повторение алгоритма DES с разными ключами. Эффективная длина ключа 112 бит.
    IDEA Разработан в 1992 г. Lai и Massey. Не взломан до настоящего времени
    ГОСТ 28147-89

    нет данных

    Является Государственным стандартом в России
    RC5

    10 3 и выше

    40-битовый ключ был взломан перебором в 1997 г. за 3,5 ч, 48-битовый ключ - за 313 ч
    Blowfish

    нет данных

    Разработан Шнайером (Schneier) в 1993 г.
    Это шифр Файстела (Feistel) был создан специально для 32-битовых машин и существенно быстрее DES
    AES (Rijndael) Длина ключа и длина блока могут быть 128, 192 или 256 бит, независимо друг от друга Предложен криптоаналитиками Joan Daemen и Vincent Rijmen.
    Алгоритм не имеет известных слабостей в защите (по данным NIST).

    В настоящее время симметричные алгоритмы с длиной ключа более 100 бит (Triple DES и IDEA и т.д.) не являются невскрываемыми. Отечественный алгоритм ГОСТ по сравнению с ними отличается повышенной сложностью как при генерации узлов замены, так и при генерации ключей. Также для алгоритма ГОСТ существует большая вероятность генерации нестойкого ключа, что в некоторых режимах шифрования снижает его эффективную длину ключа с 2 256 до 2 62 .

    Triple DES является более проверенным, чем IDEA алгоритмом и обеспечивает приемлемую скорость работы. Алгоритм Triple DES представляет собой трехкратное применение алгоритма DES к одним данным, но с разными ключами.

    В Россию DES проник и достаточно широко практически используется как неотъемлемая деталь различных программных и аппаратных средств, из которых наиболее широко известны система S.W.I.F.T., секретные модули VISA и EUROPAY, секретные модули банкоматов и торговых терминалов и, наконец, смарт-карты. Особенно напряженные дискуссии вокруг алгоритмов шифрования данных вызваны именно смарт-картами. При этом есть серьезные основания считать, что надежность отечественных криптосистем конверсионного происхождения будет превосходить зарубежные аналоги .

    Однако российское законодательство, впрочем, как и законодательства многих других стран, разрешает лишь использование национальных стандартов шифрования.

    Алгоритм ГОСТ 28147-89 построен по тому же принципу, что и DES, это классический блочный шифр с секретным ключом, однако отличается от DES большей длиной ключа, большим количеством раундов и более простой схемой построения самих раундов. В табл. 2 приведены его основные параметры, для удобства - в сравнении с параметрами DES .

    Таблица 2. Сравнение параметров шифров DES и ГОСТ

    Если секретной информацией требуется обмениваться лицам, доверяющим друг другу, т.е. входящим в одну организацию, можно применять средства симметричной криптографии. Конечно, при этом обе (или более) стороны должны уже обладать ключами шифрования для взаимодействия.

    Если кратко описать сценарий обмена информации, то он заключается в следующем:

    • создается или используется уже существующий файл, содержащий секретную информацию;
    • файл зашифровывается на известном обеим сторонам ключе, определенном алгоритмом шифрования;
    • зашифрованный файл передается абоненту, носитель информации не так важен, это могут быть дискета, электронная почта, сообщение в сети или связь по модему, очень удобно, для снижения риска, также хранить все файлы, содержащие секретную информацию в зашифрованном виде. Тогда, если, компьютер, ноутбук командированного сотрудника, или жесткий диск попадет в руки злоумышленника, файлы, закрытые ключом, будут недоступны для прямого прочтения. Сейчас в мире используются системы, которые автоматически шифруют всю информацию, хранящуюся в ноутбуке, в них также предусмотрен режим входа по принуждению, если сотрудника заставляют загрузить ноутбук, то, введя специальный пароль, вместо обычного, можно уничтожить всю информацию, естественно, предусмотрен режим восстановления после данного действия. Жесткий диск можно просто демонтировать из компьютера, его не так сложно вынести из охраняемой территории (по сравнению с целым компьютером);
    • на приемной стороне законный получатель, обладая ключом, открывает зашифрованные файлы для дальнейшего использования.

    Множество современных методов защитных преобразований можно классифицировать на четыре большие группы: перестановки, замены (подстановки), аддитивные и комбинированные методы. Методы перестановки и подстановки обычно характеризуются короткой длиной ключа, а надежность их защиты определяется сложностью алгоритмов преобразования. Для аддитивных методов характерны простые алгоритмы преобразования, а их криптостойкость основана на увеличении длины ключа.

    Вскрытие шифра

    Существует способ вскрытия шифра, основанный на переборе всех вариантов ключа. Критерием правильности варианта служит наличие в тексте “вероятного слова”.

    Перебирается множество всех возможных ключей, шифрованный текст расшифровывается на каждом ключе. В получившемся “псевдооткрытом” тексте ищется вероятное слово. Если такого слова нет, текущий текст бракуется, осуществляется переход к следующему ключу. Если такое слово найдено, на экран выводится вариант ключа. Затем перебор ключей продолжается до тех пор, пока не исчерпается все множество вариантов. Возможно обнаружение нескольких ключей, при которых в “псевдооткрытых текстах” имеется вероятное слово.

    После завершения перебора необходимо расшифровать текст на найденных ключах. “Псевдооткрытый текст” выводится на экран для визуального контроля. Если оператор признает текст открытым, то работа по вскрытию заканчивается. Иначе данный вариант ключа бракуется и осуществляется переход к следующему ключу.

    Бороться с методом полного перебора позволяет увеличение длины используемого ключа шифрования. Причем, увеличение его длины всего на 8 бит увеличивает число вариантов перебора в 2 8 раз, соответственно на 64 бита – в 2 64 раз.

    Среди проблем, присущих использованию криптографических алгоритмов шифрования, необходимо выделить проблему распределения ключей. Перед тем как взаимодействующие стороны смогут посылать друг другу зашифрованные сообщения, они должны обменяться ключами шифрования по некоторому секретному каналу. Кроме этого, в системе информационного обмена необходимо поддерживать в актуальном состоянии огромное количество ключей.

    Алгоритмы криптографического шифрования не позволяют установить целостность полученного сообщения (т.е. убедиться в том, что при передаче сообщение не было модифицировано). Авторство может быть подтверждено только обладанием определенного ключа, таким образом, любой, кто станет обладателем чужого ключа, сможет выдавать свои сообщения за сообщения, посланные от другого пользователя.

    Проблему распределения секретных ключей по общедоступному каналу связи позволяет разрешить алгоритм Диффи-Хелмана. Но данный алгоритм относится к асимметричным криптографическим алгоритмам. В них используются два ключа: открытый и закрытый.

    Бурное развитие асимметричные криптоалгоритмы получили в 70-е гг. прошлого столетия. Подобные алгоритмы способны также решить проблемы подтверждения авторства, подлинности, позволяя организовать обмен шифрованной информацией между сторонами, недоверяющими друг другу. Кроме этого, использование асимметричных алгоритмов снижает на порядок количество ключей, которые должны быть распределены между взаимодействующими сторонами. Системы асимметричного шифрования включают общедоступную базу данных открытых ключей, которые могут распределяться по открытым каналам связи и их раскрытие никоим образом не приведет к компрометации системы, поэтому они и называются открытыми.

    Асимметричные алгоритмы шифрования

    Криптосистемы с открытым ключом строятся, как правило, на основе сложной математической задачи вычисления функции, обратной заданной. Такие функции называются однонаправленными, т.е. их обращение представляет собой практически неразрешимую задачу. Суть метода шифрования в том, что вычисление функции от зашифрованного сообщения в прямом направлении проходит с использованием открытого ключа принимающего абонента, а при расшифровке (вычислении обратной функции) применяется его секретный ключ. Как и следовало ожидать, математических задач, удовлетворяющих перечисленным требованиям, известно немного, и лишь на некоторых из них были построены используемые на практике шифры. Рассмотрим ряд наиболее известных криптосистем с открытым ключом.

    • RSA . Используется задача факторизации (вычисления простых сомножителей) большого целого числа. Построен на основе перемножения двух простых чисел большой разрядности . Широко применяется в криптографических протоколах закрытия информации и аутентификации.
    • Эль-Гамаль (El-Gamal) . Основан на задаче дискретного логарифмирования в конечном поле . Используется в стандартах электронной цифровой подписи (ЭЦП) DSS , ГОСТ Р34.10-94 и т.д.
    • Эллиптические кривые (elliptic curve) . Основан на задаче дискретного логарифмирования на эллиптических кривых в конечном поле.

    Обратные задачи разложения на множители и дискретного логарифмирования решаются методами, близкими к полному перебору, и при большой разрядности чисел являются трудновычислимыми.
    Криптосистемы с открытым ключом используются в основном в трех направлениях:

    • закрытие информации;
    • аутентификация с использованием ЭЦП;
    • защищенное от перехвата распределение открытых ключей (криптосистема Диффи – Хеллмана (Diffie – Hellman)) .

    Более подробно преимущества и недостатки асимметричных криптосистем рассмотрены в .

    Хэш-функции

    Протоколы защиты целостности и аутентичности при формировании имитовставок и ЭЦП используют криптографические «сжимающие» хэш-функции, позволяющие получить из блока данных произвольной длины значение с фиксированным количеством бит .
    В целях уменьшения объема ЭЦП и снижения времени на ее формирование и проверку она применяется к хэш-значениям, которые обычно значительно короче исходных сообщений. К криптографическим хэш-функциям предъявляется ряд требований, направленных на затруднение подделки ЭЦП путем нахождения такой модификации блока данных, при которой значение хэш-функции и, следовательно, ЭЦП остаются неизменными.
    Наиболее широкое распространение получили следующие хэш-функции, построенные на системе циклически повторяемых перестановок и подстановок (в скобках указана длина вырабатываемого хэш-значения в битах):

    • MD5 (128);
    • SHA-1 (160);
    • ГОСТ (256).

    Таблица 1. Перечень и параметры хэш-функций

    Хэш-функция

    Длина значения, бит

    Размер блока, бит

    Производительность, Мб/с

    Примечание

    нет данных

    Разработана Роном Ривестом в 1989 г.
    Обнаружены коллизии в упрощенной функции компрессии

    Разработана Роном Ривестом в 1990 г.
    Обнаружены коллизии

    Разработана Роном Ривестом в 1991 г.
    Обнаружены коллизии в функции компрессии

    Разработана в 1995 г. в Европейском проекте RIPE

    Разработана в 1995 г. в NIST

    ГОСТ России

    В табл. 1 не приведены редко используемые и экзотические хэш-функции, а также хэш-функции, построенные на симметричных блочных шифрах по схемам Мейера – Матиаса (Meyer – Matyas) и Девиса – Прайса (Davies – Price) .
    Подробнее упомянутые хэш-функции описаны в .
    Хотя средства криптографической защиты с «открытым ключом» или асимметричные криптосистемы особенно широко используются начиная с конца 70-х гг. , они обладают очень серьезным недостатком – крайне низким быстродействием. В связи с этим на практике обычно используется комбинированная схема криптографической защиты . При установлении соединения и аутентификации сторон используется криптография с «открытым ключом», затем генерируется сеансовый ключ для симметричного шифрования, на котором закрывается весь трафик между абонентами. Сеансовый ключ также распространяется с использованием открытого ключа.



    Рис. 2. Схема алгоритма асимметричной криптосистемы

    Таблица 2. Асимметричные криптосистемы

    Название метода

    Метод взлома
    (мат. проблема)

    Криптостойкость, MIPS

    Примечание

    2,7 1028 для ключа 1300 бит

    Разработан в 1977 г. Роном Ривестом, Ади Шамиром и Леонардом Эйдельманом.
    Включен во многие стандарты

    факторизация больших простых чисел

    El-Gamal
    (Эль-Гамаль)

    нахождение дискретного логарифма в конечном поле

    при одинаковой длине ключа криптостойкость равная RSA

    Разработан Эль-Гамалем. Используется в алгоритме цифровой подписи DSA-стандарта DSS

    Эллиптические уравнения

    решение эллиптических уравнений

    криптостойкость и скорость работы выше, чем у RSA

    Современное направление. Разрабатывается многими ведущими математиками

    Метод RSA в настоящее время является стандартом де-факто в системах информационной безопасности и рекомендован CCITT (Consultative Committee in International Telegraphy and Telephony – Международным консультативным комитетом в области телеграфии и телефонии, МККТТ) в стандарте X.509 . RSA используется во многих международных стандартах (S-HTTP, PEM, S-MIME, S/WAN, STT, SSL, PCT, SWIFT, ANSI X.9.31 и т.д.) , в системах обслуживания кредитных карточек, в операционных системах для защиты сетевых протоколов.
    Для методов RSA и Эль-Гамаля проведено огромное количество научных исследований, изучено большое количество методов их криптоанализа, защиты от атак, детально рассчитана криптостойкость в зависимости от длины ключа и других параметров. Оба метода обладают одинаковой криптостойкостью (при одинаковой длине ключа) и примерно одинаковой скоростью работы. Учитывая, что метод эллиптических уравнений (elliptic curve) проходит стадию апробации и не был подвергнут до настоящего времени такому большому количеству попыток взлома, как методы RSA и Эль-Гамаля, использование в системах шифрования двух последних выглядит предпочтительнее.
    Подробное описание данных алгоритмов приведено в .

    Электронная цифровая подпись

    Если информацией обмениваются стороны, не доверяющие друг другу или заинтересованные в проведении действий, направленных друг против друга (банк и клиент, магазин и покупатель), необходимо применять асимметричные методы шифрования, а также метод ЭЦП.
    Необходимо обеспечить не только конфиденциальность, но и целостность сообщения (невозможность подменить сообщение или что-то в нем изменить), а также авторство. Кроме этого, необходимо не допустить возможности отказа автора послания от факта отправления подписанного сообщения.
    Электронная подпись документа позволяет установить его подлинность. Кроме того, криптографические средства обеспечивают защиту от следующих злоумышленных действий:

    • отказ (ренегатство) – абонент А заявляет, что не посылал сообщения Б, хотя на самом деле посылал;
    • модификация (переделка) – абонент Б изменяет документ и утверждает, что данный документ (измененный) получил от абонента А;
    • подмена – абонент Б формирует документ (новый) и заявляет, что получил его от абонента А;
    • активный перехват – нарушитель (подключившийся к сети) перехватывает документы (файлы) и изменяет их;
    • «маскарад» – абонент В посылает документ от имени абонента А;
    • повтор – абонент В повторяет ранее переданный документ, который абонент А послал абоненту Б.

    Все перечисленный виды злоумышленных действий наносят существенный ущерб. Кроме того, возможность злоумышленных действий подрывает доверие к компьютерной технологии . Проблему аутентификации можно решить на основе криптографического подхода, разработав специальные алгоритмы и программы.
    При выборе алгоритма и технологии аутентификации необходимо предусмотреть надежную защиту от всех вышеперечисленных видов злоумышленных действий (угроз). Однако в рамках классической (одноключевой) криптографии тяжело защититься от всех приведенных видов угроз, поскольку имеется принципиальная возможность злоумышленных действий одной из сторон, владеющей секретным ключом.
    Никто не может помешать абоненту, например, сгенерировать любой документ, зашифровать его на имеющемся ключе, общем для клиента и банка, потом заявить, что он получил этот документ от законного передатчика.
    Эффективным является использование схем, основанных на двухключевой криптографии . В этом случае каждый передающий абонент имеет свой секретный ключ подписи, а у всех абонентов есть несекретные открытые ключи передающих абонентов.
    Эти открытые ключи можно трактовать как набор проверочных соотношений, позволяющих судить об истинности подписи передающего абонента, но не позволяющих восстановить секретный ключ подписи. Передающий абонент несет единоличную ответственность за свой секретный ключ. Никто, кроме него, не в состоянии сгенерировать корректную подпись. Секретный ключ передающего абонента можно рассматривать как личную печать, и владелец должен всячески ограничивать доступ к нему посторонних лиц. .
    Для практического воплощения идеи открытого шифрования требовалось найти конкретные и конструктивные ответы на следующие вопросы:

    • как «замешивать» индивидуальный ключ пользователя с содержимым документа, чтобы они стали неразделимы?
    • как проверить, что содержание подписываемого документа и индивидуальный ключ пользователя подлинны, не зная заранее ни того, ни другого?
    • как обеспечить возможность многократного использования автором одного и того же индивидуального ключа для цифровой подписи большого количества электронных документов?
    • как гарантировать невозможность восстановления индивидуального ключа пользователя по любому количеству подписанных с его помощью электронных документов?
    • как гарантировать подлинность проверки цифровой подписи и содержимого электронного документа?
    • как обеспечить юридическую полноправность электронного документа с цифровыми подписями, существующего без бумажного дубликата или другого заменителя?

    Для ответа на все эти вопросы потребовалось около 20 лет с того момента, как эта идея была впервые сформулирована в 1976 г. в статье Уитфилда Диффи и Мартина Хеллмана. Сейчас уже можно определенно сказать, что все эти вопросы решены: есть полный арсенал технических средств авторизации электронных документов, называемых цифровой подписью. Современные принципы построения системы цифровой подписи просты и изящны:

    • методы вычисления и проверки цифровых подписей всех пользователей системы одинаковы и основываются на широко известных математических задачах;
    • методы вычисления ключей проверки цифровых подписей и индивидуальных ключей генерации цифровых подписей также одинаковы для всех и хорошо известны;
    • индивидуальные ключи генерации цифровых подписей выбираются самими пользователями по случайному закону из большого множества всех возможных ключей;
    • при конкретном алгоритме цифровой подписи его стойкость может быть оценена без привлечения какой-либо «закрытой» информации на основе только известных математических результатов и разумных допущений о вычислительных мощностях потенциального взломщика.

    Средства криптографической защиты обеспечивают подлинность и аутентичность информации, кроме решения проблемы сохранения ее конфиденциальности. Данные функции выполняет технология цифровой подписи .
    Схема работы цифровой подписи изображена на рис. 3.



    Рис. 3. Алгоритм электронной цифровой подписи

    На вход алгоритма поступает файл, необязательно текстовый, основное требование, предъявляемое к входным параметрам ЭЦП, – фиксированная длина, для этого используется хэш-функция.
    Теоретически применение различных средств шифрования сулит радужные перспективы всем компаниям, использующим в своей деятельности Интернет, но тут возникает новая проблема – найти компромисс с государством и его законами, данная проблема подробно освещена в .
    В соответствии с Федеральным законом «Об электронной цифровой подписи» № 1-Ф3 от 10 января 2002 г. электронная цифровая подпись в электронном документе признается равнозначной собственноручной подписи в документе на бумажном носителе. Также обеспечивается правовое регулирование для организации электронного документооборота, распределения открытых и закрытых ключей, построения центров сертификации, определяются ответственности сторон.
    Принятие данного закона, хотя в нем есть некоторые неопределенности, позволил регламентировать использование асимметричных средств шифрования, в данном случае ЭЦП, для защиты данных в Интернете.

    Литература

    1. Shannon C.E. Communication Theory of Secrecy Systems. Bell Systems Technical Journal 28, 1949, p. 656 - 715.
    2. Federal Information Processing Standards Publication 46-2. Data Encryption Standard (DES). NIST, US Department of Commerce, Washington D.C, 1993.
    3. ГОСТ 28147-89. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования.
    4. Bruce Schneier, Applied Cryptography: Protocols, Algorithms and Source Code in C. John Willey & Sons, 1994.
    5. Nechvatal James. Public-Key Cryptography. NIST, Gaithersburg, 1990.
    6. Weiner M. Efficient DES key search: Technical Report TR-244, School of Computer Science, Carleton University, 1994.
    7. Odlyzko A.M. The Future of Integer Factorization. Cryptobytes, RSA Laboratories.- vol. 1, N 2, 1995, p. 5 - 12.
    8. Rogaway P. The security of DESX. Cryptobytes, RSA Laboratories, vol. 2, N 2, 1996, p. 8 - 11.
    9. Kaliski B., Robshaw M. Multiple encryption: weighing security and perfomance. // Dr. Dobb’s Journal, January 1996, p. 123 - 127.
    10. Rivest R.L. The RC5 Encryption Algorithm. Cryptobytes, RSA Laboratories, vol. 1, N 1, 1995, p. 9 - 11.
    11. Kaliski B., Yiqun Lisa Yin. On the Security of the RC5 Algorithm. Cryptobytes, RSA Laboratories, vol. 1, N 2, 1995, p. 12.
    12. Олейник В. Циклы в алгоритме криптографического преобразования данных ГОСТ 28147-89. http://www.dekart.ru
    13. Андрей Винокуров. Алгоритм шифрования ГОСТ 28147-89, его использование и реализация для компьютеров платформы Intel x86.
    14. Что такое Blowfish? http://www.halyava.ru/aaalexey/CryptFAQ.html.
    15. Linn J. Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication Procedures. RFC 1421, 1993.
    16. Евтушенко Владимир. Тройной DES. Новый стандарт? http://www.bgs.ru/russian/security05.html.
    17. Что такое ГОСТ28147-89? http://www.halyava.ru/aaalexey/GOST.html.
    18. Andrew Jelly. /Криптографический стандарт в новом тысячелетии/, http://www.baltics.ru/~andrew/AES_Crypto.html.
    19. Алгоритм шифрования Rijndael. http://www.stophack.ru/spec/rijndael.shtml.

    Асимметричные криптографические системы были разработаны в 1970-х годах. Принципиальное отличие асимметричной криптосистемы от криптосистемы симметричного шифрования состоит в том, что для шифрования информации и ее последующего расшифрования используются различные ключи:

      открытый ключ K: используется для шифрования информации, вычисляется из секретного ключа k;

      секретный ключ k: используется для расшифрования информации, зашифрованной с помощью парного ему открытого ключа K.

    Эти ключи различаются таким образом, что с помощью вычислений нельзя вывести секретный ключ k из открытого ключа K . Поэтому открытый ключ K может свободно передаваться по каналам связи.

    Асимметричные системы называют еще двухключевыми криптографическими системами или криптосистемами с открытым ключом.

    Обобщенная схема асимметричной криптосистемы шифрования

    Для криптографического закрытия и последующего расшифрования передаваемой информации используются открытый и секретный ключи получателя В сообщения. В качестве ключа зашифрования должен использоваться открытый ключ получателя, а в качестве ключа расшифрования – его секретный ключ.

    Секретный и открытый ключи генерируются попарно. Секретный ключ должен оставаться у его владельца; он должен быть надежно защищен от несанкционированного доступа (аналогично ключу шифрования в симметричных алгоритмах). Копия открытого ключа должна иметься у каждого абонента криптографической сети, с которым обменивается информацией владелец секретного ключа.

    Процесс шифрования и передачи сообщения

    Процесс передачи зашифрованной информации в асимметричной криптосистеме осуществляется следующим образом:

    1.Подготовительный этап.

    Абонент В генерирует пару ключей: секретный ключ k B и открытый ключ К в . Открытый ключ К в посылается абоненту А и остальным абонентам (или делается доступным, например, на разделяемом ресурсе).

    2.Использование - обмен информацией между абонентами А и В.

    Абонент А зашифровывает сообщение с помощью открытого ключа К В абонента В и отправляет шифротекст абоненту В . Абонент В расшифровывает сообщение с помощью своего секретного ключа k B . Никто другой (в том числе абонент А ) не может расшифровать данное сообщение, так как не имеет секретного ключа абонента В . Защита информации в асимметричной криптосистеме основана на секретности ключа k B получателя сообщения

    Односторонние функции

    Асимметричные алгоритмы основаны на использовании односторонних функций.

    Функция F:X→Y называется односторонней, если выполняются следующие два условия:

      существует эффективный алгоритм, вычисляющий F(x) для любого x X ;

      не существует эффективного алгоритма инвертирования функции F , т.е. алгоритма, позволяющего определить значение x по значению F(x) .

    «Эффективным» называется полиномиальный алгоритм, т.е. алгоритм, который для получения результата для входа длины n тратит не более P(n) шагов, где P - некоторый полином.

    Не любая односторонняя функция не может быть использована для шифрования. Действительно, если преобразовать открытый текст t с помощью односторонней функции: c = F(t) , то расшифровать полученный текст, то есть по c восстановить t , не сможет уже никто, в том числе и законный получатель. Для использования в криптографии необходимо, чтобы задача инвертирования шифрующего преобразования (т.е. вычисления t по F(t) ) была разрешима за приемлемое время, но сделать это мог только тот, кто знает секретный ключ. Такие функции называются односторонними функциями с секретом

    Односторонняя функция с секретом - это функция F k : X Y , зависящая от параметра k K (этот параметр называется секретом), для которой выполняются следующие условия:

      при любом k K существует эффективный алгоритм, вычисляющий F k (x ) для любого x X ;

      при неизвестном k не существует эффективного алгоритма инвертирования функции F k ;

      при известном k существует эффективный алгоритм инвертирования функции F k .

    Алгоритм RSA

    В криптографической системе с открытым ключом каждый участник располагает как открытым ключом, так и закрытым ключом. В криптографической системе RSA каждый ключ состоит из пары целых чисел. Каждый участник создаёт свой открытый и закрытый ключ самостоятельно. Закрытый ключ каждый из них держит в секрете, а открытые ключи можно сообщать кому угодно или даже публиковать их.

    Взаимно простыми числами называются такие числа, которые не имеют ни одного общего делителя, кроме 1.

    Функция Эйлера (p ) от натурального p есть количество чисел, меньших p и взаимно простых с n (число 1 взаимно просто с любым числом).

      Если p - простое число, то (p ) = p - 1.

      Если p - простое, a - натуральное число, то (p a ) = p a - p a -1 .

      Если p и q взаимно простые, то (pq ) = (p ) (q )

      Генерация ключей выполняется по следующему алгоритму:

      1. Выбираются два больших простых числа p, q (на сегодняшний день обычно выбирают числа, содержащие от 200 до 400 знаков)

      2. вычисляется их произведение n , которое не может быть разложено на множители за разумное время. Данное произведение называется модулем

      3 . Вычисляется значение функции Эйлера

      φ(n) = φ(pq ) = (p − 1)(q − 1).

      4. Выбирается целое число e (1< e < (n )) , взаимно простое со значением (n ) . Обычно в качестве e берут простые числа, содержащие небольшое количество единичных бит в двоичной записи, например, простые числа Ферма 17, 257 или 65537. Число e называется открытой экспонентой

      5. Вычисляется число d , удовлетворяющее условию:

      de 1(mod (n ))

      или в другом виде:

      de=1+k (n )

      Число d называется секретной экспонентой

      6. Пара P = (e , n ) публикуется в качестве открытого ключа системы RSA.

      7. Пара S = (d , n ) называется секретным ключом RSA и держится в тайне.

    1. Шифрование сообщения

    Чтобы зашифровать данные по известному ключу P = (e,n) необходимо разбить шифруемый текст на боки, каждый из которых может быть представлен в виде числа M(i) = 0, 1, … , n-1. Далее текст шифруется как последовательность чисел M(i), преобразованных по следующей формуле:

    C(i) = M(i)emod(n)

    2. Расшифровка сообщения

    Чтобы расшифровать сообщение используя секретный ключ P=(d,n) необходимо каждое число из последовательности в зашифрованном сообщении преобразовать по формуле:

    M(i) = C(i)dmod(n)

    В результате будет получено множество чисел M(i), которое представляет собой исходный текст.

    Сегодня в экспертном сообществе наблюдается большое количество споров относительно того, что лучше: симметричное или ассимитричное шифрование. При этом многие пользователи глобальной сети принимают ту или иную точку зрения, в полной мере, не понимая значения данных терминов. Это в свою очередь приводит к ряду проблем. В частности, в разрабатываемую систему внедряются ненужные компоненты либо она остается без должного уровня защиты.

    Поэтому ниже мы расскажем, что такое симметричное и асимметричное шифрование простыми словами.

    Симметричное шифрование простыми словами

    Особенностью симметричного шифрования является наличие одного пароля. По другому его еще именуют ключом.

    Итак, алгоритм следующий. Существует некий математический алгоритм шифрования. Ему на вход подается определенный пароль и текст. На выходе мы получаем текст уже в зашифрованном виде. Для получения исходного текста необходимо использовать тот же пароль, который использовался на входе, либо иной с алгоритмом дешифрования.

    Если посмотреть на вышеописанную ситуацию под другим углом, то мы видим, что в случае передачи пароля иному лицу, безопасность системы нарушается.

    Таким образом, при использовании симметричного шифрования, стоит особое внимание уделять сохранности непосредственно самого пароля. В связи с этим, нельзя передавать пароль никому в открытом виде, он должен быть достаточно сложным, должна быть предусмотрена система оповещения заинтересованных лиц, в случае его утраты.

    Необходимо отметить, что несмотря на вышеперечисленные нюансы, симметричное шифрование распространено довольно широко, что обусловлено двумя факторами:

    • Простота понимания;
    • Отсутствие большой технической нагрузки.

    Асимметричное шифрование простыми словами

    Ассимитричное шифрование, наоборот, предусматривает использование двух паролей – открытый (публичный ключ) и закрытый (приватный). Открытый, в свою очередь, распространяется между всеми заинтересованными лицами. Закрытый известен только тому, кто принимает информацию и серверу. Таким образом, в некоторой степени, мы наблюдаем равноценность двух ключей.

    Важным является то, что алгоритмы, применяемые в ассиметричном шифровании, предоставляют возможность свободного распространения ключей в рамках сети, так как без второго пароля нельзя будет получить доступ к данным.

    Этот принцип лежит в основе протокола SSL, позволяющего установить безопасное соединение с пользователями посредством того, что приватный ключ находится на серверной стороне.

    Хранить пароли также проще при асимметричном шифровании из-за того, что отсутствует необходимость передачи секретного ключа кому-либо. Его не нужно никому передавать.

    Вместе с тем, данный вид шифрования намного более требовательный к ресурсным мощностям компьютера. В том числе, существуют ограничения непосредственно на процесс создания ключей. В связи с этим, в большинстве своем ассиметричное шифрование зачастую используется только в целях аутентификации и идентификации пользователей системы либо в целях генерации цифровых подписей, зашифрованных приватным ключом. Понятно, что такую подпись может проверить каждый путем использования публичного пароля.

    Различия симметричного и асимметричного шифрования

    Основное отличие между рассматриваемыми видами шифрования является в самом подходе. Поэтому в данном случае, как уже отмечалось выше, нельзя утверждать, что одно лучше другого, не учитывая особенностей использования.

    Так, симметричное шифрование наиболее подходит для передачи больших объемов информации. При аналогичном использовании, ассиметричный алгоритм намного медленнее.

    Асимметричное шифрование позволяет устанавливать безопасное соединения без особых усилий пользователей. Симметричное шифрование, наоборот, требует от пользователя использования пароля для получения данных.

    Модифицировать симметричные алгоритмы легче, так как они конструируются на базе нескольких блоков с математическими функциями преобразования. Ассиметричные, в свою очередь, строятся на математических задачах.

    Генерировать пароли в симметричном алгоритме на много проще в отличие от ассиметричных алгоритмов.

    Выводы

    Учитывая вышеизложенное можно сделать вывод, что сферы применения алгоритмов шифрования разное. Поэтому при использовании симметричного либо асимметричного алгоритма, всегда надо учитывать условия конкретной задачи. В том числе, можно рассматривать возможность использования их гибридов.