Шины в компьютере виды шин. Системная шина

16.08.2019

Основной обязанностью системной шины является переда­ча информации между базовым микропроцессором и осталь­ными электронными компонентами компьютера. По этой шине осуществляется также адресация устройств и происхо­дит обмен специальными служебными сигналами. Таким об­разом, упрощенно системную шину можно представить как совокупность сигнальных линий, объединенных по их назна­чению (данные, адреса, управление). Передачей информации по шине управляет одно из подключенных к ней устройств или специально выделенный для этого узел, называемый ар­битром шины.

Системная шина IBM PC и IBM PC/XT была предназначена. Для одновременной передачи только 8 бит информации, так как используемый в компьютерах микропроцессор 18088 имел 8 линий данных. Кроме того, системная шина включала 20 адресных линий, которые ограничивали адресное пространство пределом в 1 Мбайт. Для работы с внешними устройствами в этой шине были предусмотрены также 4 линии аппаратных прерываний (IRQ) и 4 линии для требования внешними устройствами прямого доступа в память (DMA, Direct Memory Access). Для подключения плат расширения использовались специальные 62-контактные Разъемы. Заметим, что системная шина и микропроцессор синхронизиоовались от одного тактового генератора с частотой 4,77 МГц. Таким образом, теоретически скорость передачи дан­ных могла достигать более 4,5 Мбайта/с.

      1. Шина isa

В компьютерах PC/AT, использующих микропроцессор i80286, впервые стала применяться новая системная шина ISA (Industry Standard Architecture), полностью реализующая возможности упо­мянутого микропроцессора. Она отличалась наличием дополни­тельного 36-контактного разъема для соответствующих плат рас­ширения. За счет этого количество адресных линий было увели­чено на четыре, а данных - на восемь. Теперь можно было пере­давать параллельно уже 16 разрядов данных, а благодаря 24 ад­ресным линиям напрямую обращаться к 16 Мбайтам системной памяти. Количество линий аппаратных прерываний в этой шине было увеличено с 7 до 15, а каналов DMA - с 4 до 7. Надо отме­тить, что новая системная шина ISA полностью включала в себя возможности старой 8-разрядной шины, то есть все устройства, используемые в PC/XT, могли без проблем применяться и в PC/AT 286. Системные платы с шиной ISA уже допускали воз­можность синхронизации работы самой шины и микропроцессо­ра разными тактовыми частотами, что позволяло устройствам, выполненным на платах расширения, работать медленнее, чем базовый микропроцессор. Это стало особенно актуальным, когда тактовая частота процессоров превысила 10-12 МГц. Теперь сис­темная шина ISA стала работать асинхронно с процессором на частоте 8 МГц. Таким образом, максимальная скорость передачи теоретически может достигать 16 Мбайт/с.

3.1.2. Шина eisa

С появлением новых микропроцессоров, таких, как i80386 и i486, стало очевидно, что одним из вполне преодолимых препят­ствий на пути повышения производительности компьютеров с этими микропроцессорами является системная шина ISA. Дело в том, что возможности этой шины для построения высокопроиз­водительных систем следующего поколения были практически исчерпаны. Новая системная шина должна была обеспечить наи­больший возможный объем адресуемой памяти, 32-разрядную передачу данных, в том числе и в режиме DMA, улучшенную систему прерываний и арбитраж DMA, автоматическую конфи­гурацию системы и плат расширения. Такой шиной для IBM PC- совместимых компьютеров стала EISA (Extended Industry Standard Architecture). Заметим, что системные платы с шиной EISA первоначально были ориентированы на вполне конкретную область применения новой архитектуры, а именно на компьютеры, осна­щенные высокоскоростными подсистемами внешней памяти на жестких магнитных дисках с буферной кэш-памятью. Такие ком­пьютеры до сих пор используются в основном в качестве мощ­ных файл-серверов или рабочих станций.

В EISA-разъем на системной плате компьютера помимо, разу­меется, специальных EISA-плат может вставляться либо 8-, либо 16-разрядная плата расширения, предназначенная для обыкновенной PC/AT с шиной ISA. Это обеспечивается простым, но поистине гениальным конструктивным решением. EISA-разъе­мы имеют два ряда контактов, один из которых (верхний) ис­пользует сигналы шины ISA, а второй (нижний) - соответствен­но EISA. Контакты в соединителях EISA расположены так, что рядом с каждым сигнальным контактом находится контакт "Зем­ля". Благодаря этому сводится к минимуму вероятность генера­ции электромагнитных помех, а также уменьшается восприим­чивость к таким помехам.

Шина EISA позволяет адресовать 4-Гбайтное адресное про­странство, доступное микропроцессорам 180386/486. Однако дос­туп к этому пространству могут иметь не только центральный процессор, но и платы управляющих устройств типа bus master - главного абонента (то есть устройства, способные управлять пе­редачей данных по шине), а также устройства, имеющие возможность организовать режим DMA. Стандарт EISA поддерживает многопроцессорную архитектуру для "интеллектуальных" устройств (плат), оснащенных собственными микропроцессорами. Поэтому данные, например, от контроллеров жестких дисков, графических контроллеров и контроллеров сети могут обрабаты­ваться независимо, не загружая при этом основной процессор. Теоретически максимальная скорость передачи по шине

EISA в так называемом пакетном режиме (burst mode) может достигать 33 Мбайт/с. В обычном (стандартном) режиме она не превосхо­дит, разумеется, известных значений для ISA.

На шине EISA предусматривается метод централизованного Управления, организованный через специальное устройство - системный арбитр. Таким образом поддерживается использова­ло ведущих устройств на шине, однако возможно также предоставление шины запрашивающим устройствам по циклическому принципу.

Как и для шины ISA, в системе EISA имеется 7 каналов DMA. выполнение DMA-функций полностью совместимо с аналогичными операциями на ISA-шине, хотя они могут происходить и несколько быстрее. Контроллеры DMA имеют возможность под­держивать 8-, 16- и 32-разрядные режимы передачи данных. В общем случае возможно выполнение одного из четырех циклов обмена между устройством DMA и памятью системы. Это ISA-совместимые циклы, использующие для передачи данных 8 так­тов шины; циклы типа А, исполняемые за б тактов шины; циклы типа В, выполняемые за 4 такта шины, и циклы типа С (или burst DMA), в которых передача данных происходит за один такт шины. Типы циклов А, В и С поддерживаются 8-, 16- и 32-разрядными устройствами, причем возможно автоматическое изменение раз­мера (ширины) данных при передаче в не соответствующую раз­меру память. Большинство ISA-совместимых устройств, исполь­зующих DMA, могут работать почти в 2 раза быстрее, если они будут запрограммированы на применение циклов А или В, а не стандартных (и сравнительно медленных) ISA-циклов. Такая про­изводительность достигается только путем улучшения арбитража шины, а не в ущерб совместимости с ISA. Приоритеты DMA в системе могут быть либо "вращающимися" (переменными), либо жестко установленными. Линии прерывания шины ISA, по которым запросы прерывания передаются в виде перепадов уровней напряжения (фронтов сигналов), сильно подвержены импульсным помехам. Поэтому в дополнение к привычным сигналам прерываний на шине ISA, активным только по своему фронту, в системе EISA предусмот­рены также сигналы прерываний, активные по уровню. Причем для каждого прерывания выбор той или иной схемы активности может быть запрограммирован заранее. Собственно прерывания, активные по фронту, сохранены в EISA только для совместимо­сти со "старыми" адаптерами ISA, обслуживание запросов на пре­рывание которых производит схема, чувствительная к фронту сиг­нала. Понятно, что прерывания, активные по уровню, менее под­вержены шумам и помехам, нежели обычные. К тому же (теоре­тически) по одной и той же физической линии можно передавать бесконечно большое число уровней прерывания. Таким образом, одна линия прерывания может использоваться для нескольких запросов.

Для компьютеров с шиной EISA предусмотрено автоматическое конфигурирование системы. Каждый изготовитель плат расширения для компьютеров с шиной EISA поставляет вместе этими платами и специальные файлы конфигурации. Информация из этих файлов используется на этапе подготовки системы

работе, которая заключается в разделении ресурсов компьютера между отдельными платами. Для "старых" плат адаптеров пользователь должен сам подобрать правильное положение DIP-перекдючателей (рис. 25) и перемычек, однако сервисная программа на EISA-компьютерах позволяет отображать установленные положе­ния соответствующих переключателей на экране монитора и дает некоторые рекомендации по правильной их установке. Помимо этого в архитектуре EISA предусматривается выделение опреде­ленных групп адресов ввода-вывода для конкретных слотов шины - каждому разъему расширения отводится адресный диа­пазон 4 Кбайта, что также позволяет избежать конфликтов между отдельными платами EISA.

Заметим, что компьютеры, использующие системные платы с шиной EISA, достаточно дорогие. К тому же шина по-прежнему тактируется частотой около 8-10 МГц, а скорость передачи уве­личивается в основном благодаря увеличению разрядности шины данных.

Знать строение компьютера обычному пользователю совершенно не обязательно. Но если вы хотите считать себя продвинутым пользователем, который без труда справляется с любой поставленной компьютерной задачей, да к тому же собирается в ближайшем будущем самостоятельно собрать свой первый системный блок, то подобные знания просто необходимы.

Функционирование компьютера невозможно без наличия в нем хотя бы одной из перечисленных ниже систем:

  1. Процессора.
  2. Видеоплаты.
  3. Оперативного запоминающего устройства.

Но даже все эти компоненты в совокупности не смогут функционировать. Для этого необходимо организовать между ними связь, посредством которой осуществлялись бы логические и вычислительные операции. Подобные системы связи организуют системные шины компьютера. Поэтому можно сказать, что это еще один незаменимый компонент системного блока.

Системная шина

Системная шина - это совокупность путей передачи данных, которые обеспечивают взаимосвязанную работу между остальными элементами компьютера: процессором, видеоадаптером, жесткими дисками и другими компонентами. Данное устройство состоит из нескольких уровней:

  • механического;
  • электрического или физического;
  • логического и уровня управления.

Первостепенное деление системных шин

Деление шин основывается на нескольких факторах. Первенствующим показателем является месторасположение. Согласно этому показателю шины бывают:

  1. Внутренними, которые обеспечивают взаимосвязь внутренних компонентов системного блока, таких как процессор, ОЗУ, материнская плата. Такая системная шина называется еще локальной, так как служит для связи местных устройств.
  2. Внешними, которые служат для подключения наружных устройств (адаптеров, флеш-накопителей) к материнской плате.

В самом общем случае системной шиной можно назвать любое устройство, которое служит для объединения в одну систему нескольких устройств. Даже сетевые подключения, например, сеть Интернет, в некотором роде является системной шиной.

Самая важная система связи

Вся деятельность, которую мы осуществляем посредством компьютера - создание разнообразных документов, воспроизведение музыки, запуск компьютерных игр - была бы невозможна без процессора. В свою очередь, микропроцессор не смог бы выполнять свою работу, если бы не имел каналов связи с другими важными элементами, такими как ОЗУ, ПЗУ, таймеры и разъема ввода-вывода информации. Именно для обеспечения этой функции в компьютере имеется системная шина процессора.

Быстродействие компьютера

Для функционирования микропроцессора в состав системы каналов связи входит сразу несколько шин. Это шины:


Количество представленных типов системных каналов связи процессора может быть от одного и более. Причем считается, что чем больше шин установлено, тем больше общая производительность компьютера.

Важным показателем, который также затрагивает производительность ПК, является пропускная способность системной шины. Она определяет скорость передачи информации между локальными системами электронно-вычислительной машины. Рассчитать ее довольно просто. Необходимо лишь найти произведение между тактовой частотой и количеством информации, то есть байт, которая передается за один такт. Так, для давно устаревшей шины ISA пропускная способность составит 16 Мбайт/с, для современной шины PCI Express это значение будет находиться на отметке в 533 Мбайт/с.

Виды компьютерных шин

История компьютерной техники насчитывает уже не одно десятилетие. Совместно с развитием новых компонентов разрабатывались и новые типы системных шин. Самым первым таким каналом связи была система ISA. Этот компонент компьютера обеспечивает передачу данных на довольно медленной скорости, но ее достаточно для одновременного функционирования клавиатуры, монитора и некоторых других компонентов.

Несмотря на то что она была изобретена более полувека назад, данная системная шина активно применялась и в настоящее время, уверенно конкурируя с более современными представителями. Это смогло осуществиться благодаря выпуску большого количества расширений, которые увеличивали ее функционал. Лишь в последние годы процессоры стали выпускаться без использования ISA.

Современные системные шины

Шина VESA стала новым словом в области компьютерной техники. Разработанная специально для непосредственного подключения внешних устройств к самому процессору, она и по сей день обладает высокими показателями скорости передачи информации и обеспечивает высокую производительность процессора.

Но подобная система каналов связи не в состоянии обеспечить надлежащее функционирование микропроцессора. Поэтому она внедряется в систему совместно с ISA и выступает в роли еще одного расширения.

Вот и вся краткая справочная информация, которая должна пролить свет на один из важнейших компонентов современных компьютеров. Следует сказать, что здесь представлена лишь малейшая частичка информации о компьютерных шинах. Полным их изучением занимаются в специальных заведениях на протяжении нескольких лет. Подобная детальная информация необходима непосредственно для разработки новых моделей микропроцессоров или для модернизации уже существующих. Шина PCI является ближайшим конкурентом предыдущего представителя каналов передачи данных. Эта системная шина была разработана компанией Intel специально для производства процессоров собственной торговой марки. Данное устройство способно обеспечить еще большую скорость передачи данных и при этом не нуждается в дополнительных элементах, как в предыдущем примере.

Системная шина предназначена для реализации связи процессора с внешними устройствами в компьютере при помощи специальных устройств управления - адаптеров или контроллеров. Все последние присоединены к системной шине при помощи типовых разъемов. Шины принято делить на три категории по функциональному назначению: адресные, информационные и управляющие, которые различаются разрядностью, то есть численностью данных, проходящих через них. Тип используемого устройства во многом определяется скоростью работы компьютера.

Системная шина может работать в следующих основных стандартах: MCA, ISA, VESA, EISA, PCI. Долгое время шина ISA считалась определенным стандартом в области персональных компьютеров. Ее разработали на базе восьмиразрядной системной шины XT и IBM PC. В ней было предусмотрено восемь линий прерываний для сопряжения с внешними устройствами, а также четыре линии для доступа к памяти напрямую.

Работа системной шины и микропроцессора осуществлялась на частоте 4,77 МГц. А скорость могла составлять примерно 4,5 Мбайт за секунду. В следующем поколении компьютеров уже использовалась шестнадцатиразрядная шина, которая благодаря 24-адресным линиям разрешала осуществлять прямое обращение к оперативной памяти, в то время ее объем составлял 16 Мбайт.

В этой шине уже было использовано шестнадцать аппаратных прерываний вместо восьми, а численность каналов для прямого доступа к информации составляла уже восемь, а не четыре. Теперь шина работает асинхронно с микропроцессором на частоте 6 МГц, а это стало причиной увеличения скорости передачи до 16 Мбайт за секунду. Теперь она уже предоставляла возможность для работы с низкоскоростными устройствами, но не могли обеспечить эффективного функционирования современных устройств. Это повлияло новых видов системных шин.

В 1987 году была разработана системная шина МСА, которая стала первой с высокой производительностью. Она отличалась тем, что ее скорость работы была 10 МГц, а сама шина уже стала 32-разрядной, что увеличило скорость передачи до 20 Мбайт в секунду. Однако из-за несовместимости шин между собой отсутствовала возможность использования контроллеров, предназначенных для шины ISA, из-за чего архитектура не нашла обширного применения.

Системная шина EISA была разработана в 1989 году, она стала расширенной версией ISA. Ее разъемы позволяли вставить не только собственные контроллеры, а и таковые для ISA. Она работала с частотой 8-10 МГц, при этом ее разрядность составляет 32, что позволяет направлять до 4 Гбайт, достигая скорости обмена информацией 33 Мбайт в секунду. Недостатком этой шины является малая скорость обмена информацией при обработке графики, изображений, а также относительно высокая цена контроллеров.

Была разработана для нового процессора Pentium, но может быть использована и на прочих платформах. Она позволяет подключить к себе до десяти различных устройств. В этой шине используется 32 или 64 разряда, а скорость передачи составляла 132 и 264 Мбайт в секунду.

Сейчас системные платы соединяются с прочими устройствами посредством шины AGP, позволяющей графической карте пользоваться оперативной памятью персонального компьютера. Она оказалась способной справиться с современной графикой, которая должна перемещаться по монитору с высокой скоростью, с чем сложно справиться PCI. При использовании PCI оказывалось нецелесообразно наращивать память на видеоадаптере из-за ограниченности скорости работы и пропускной способности шины. Частота системной шины AGP позволяет осуществлять обмен информацией между видеопамятью и оперативной памятью напрямую, чего нельзя добиться при использовании других стандартов этих устройств.


Изучив эту тему, вы узнаете:

Какова структурная схема компьютера;
- что такое принцип программного управления;
- в чем состоит назначение системной шины;
- что означает принцип открытой архитектуры, используемый при построении компьютера.

Структурная схема компьютера

В предыдущих темах вы познакомились с назначением и характеристиками основных устройств компьютера. Очевидно, что все эти устройства не могут работать по отдельности, а только в составе всего компьютера. Поэтому для понимания того, как компьютер обрабатывает информацию, нёобходимо рассмотреть структуру компьютера и основные принципы взаимодействия его устройств.

В соответствии с назначением компьютера как инструмента обработки информации взаимодействие входящих в него устройств должно быть организовано таким образом, чтобы обеспечить основные этапы обработки данных.

Для пояснения сказанного рассмотрим приведенную на рисунке 21.1 структурную схему обработки информации компьютером, на которой в верхнем ряду указаны уже знакомые вам по разделу 1 основные этапы этого процесса. Выполнение каждого из этих этапов определяется наличием в структуре компьютера соответствующих устройств. Очевидно, что ввод и вывод информации осуществляется с помощью устройств ввода (клавиатура, мышь и др.) и вывода (монитор, принтер и др.). Для хранения информации используются внутренняя и внешняя память на различных носителях (магнитные или оптические диски, магнитные ленты и пр.).

Рис. 21.1. Структурная схема компьютера

Темные стрелки обозначают обмен информацией между различными устройствами компьютера. Пунктирные линии со стрелками символизцруют управляющие сигналы, которые поступают от процессора. Светлые пустые стрелки отображают потоки входной и выходной информации соответственно.

Компьютер представляет собой систему взаимосвязанных компонентов. Конструктивно все основные компоненты компьютера объединены в системном блоке, который является важнейшей частью персонального компьютера.

Системный блок и системная плата

Внутри системного блока располагаются следующие устройства:

♦ микропроцессор;
♦ внутренняя память компьютера;
♦ дисководы - устройства внешней памяти;
♦ системная шина;
♦ электронные схемы, обеспечивающие связь различных компонентов компьютера;
♦ электромеханическая часть компьютера, включающая блок питания, системы вентиляции, индикации и защиты. 

Компоновка компьютера IBM 286

Компоновка современного ПК

Все перечисленные устройства, входящие в состав системного блока, помещены в корпус, причем существуют различные типы корпусов. Тип корпуса системного блока зависит от вида персонального компьютера и определяет размер, размещение и количество устанавливаемых компонентов системного блока. Для стационарных персональных компьютеров наиболее распространенными корпусами являются горизонтальные или настольные (desktop) либо в виде башни (tower). В портативных компьютерах системный блок объединен с монитором и выполнен в стандарте booksize, то есть размером с книгу.

Технической (аппаратной) основой персонального компьютера является системная, или материнская, плата.

Системная плата является главной платой в системном блоке компьютера. На ней расположены важнейшие микросхемы - процессор и память. Системная плата связывает в единое целое различные устройства, обеспечивает условия работы и связь основных компонентов персонального компьютера. Процессор обеспечивает не только преобразование информации, но и управление работой всех остальных устройств компьютера.

В основе работы компьютера лежит так называемый принцип программного управления. В соответствии с ним команды программы и данные хранятся в закодированном виде в оперативной памяти. При работе компьютера команды, которые необходимо выполнить, и данные, которые им требуются, вчитываются по очереди из памяти и поступают в процессор, где они расшифровываются, а затем выполняются. Результаты выполнения различных команд, в свою очередь, могут быть записаны в память или переданы на различные устройства вывода. Скорость выполнения процессором операций по обработке информации является решающим фактором, определяющим его производительность. Дело в том, что любая информация (числа, текст, рисунки, музыка и т. д.) хранится и обрабатывается на компьютере только в цифровой форме. Поэтому ее обработка сводится к выполнению процессором различных арифметических и логических операций, предусмотренных его системой команд.

Системная шина

Для обеспечения информационного обмена между различными устройствами компьютера в нем должна быть предусмотрена ка- кая-то магистраль для перемещения потоков информации. Поясним эту мысль небольшим примером.

Вы знаете, что жизнь большого города - это постоянные потоки людей и транспортных средств, двигающихся в различных направлениях. Часто скорость транспортного или людского потока зависит не от скорости машины, велосипеда или пешехода, а от пропускной способности транспортной сети города, от его подземных и наземных магистралей.

В компьютере происходит движение не транспортных, а информационных потоков по соответствующей информационной магистрали. Роль такой информационной магистрали, связывающей друг с другом все устройства компьютера, выполняет системная шина, расположенная внутри системного блока. Упрощенно системную шину можно представить как группу кабелей и электрических (токопроводящих) линий на системной плате.

Все основные блоки персонального компьютера подсоединены к системной шине (рисунок 21.2). Основной ее функцией является обеспечение взаимодействия между процессором и остальными электронными компонентами компьютера. По этой шине осуществляется передача данных, адресов памяти и управляющей информации.

Рис. 21.2. Назначение системной шины

От типа системной шины, так же как и от типа процессора, зависит скорость обработки информации персональным компьютером. К основным характеристикам системной шины относятся разрядность и производительность канала связи.

Разрядность шины определяет количество бит информации, передаваемых одновременно от одного устройства к другому.

Системные шины первых персональных компьютеров могли передавать только 8 бит информации, используя для этого 8 линий данных в виде 8 параллельных проводников. Дальнейшее развитие компьютеров привело к созданию 16-битной системной шины, а затем ее разрядность увеличилась до 32 и далее до 64 бит. Увеличение разрядности шины данных привело к повышению скорости обмена информацией, а увеличение разрядности адресной шины обеспечило больший объем оперативной памяти.

Производительность шины определяется объемом информации, который можно передать по ней за одну секунду.

Подобно транспортным магистралям, пропускная способность которых зависит от количества полос движения на дороге, производительность системной шины во многом определяется ее разрядностью. Чем выше разрядность шины, тем больше бит информации одновременно может передаваться по ней, например из процессора в память. Это приводит к более быстрому обмену данными и освобождению процессора для решения других задач.

Однако системная шина как основная информационная магистраль не может обеспечить достаточную производительность для внешних устройств. Для решения этой проблемы в компьютере стали использовать локальные шины, которые связывают микропроцессор с различными устройствами памяти, ввода и вывода. Назначение локальных шин сходно с назначением окружных или кольцевых дорог вокруг большого города, которые разгружают основные магистрали.

Порты

Связь компьютера с различными устройствами ввода и вывода осуществляется через порты. Для некоторых устройств предусмотрено внешнее подключение к портам через разъемы, которые обычно тоже называют портами. Эти разъемы расположены на тыльной стороне системного блока. Дисководы гибких, жестких и лазерных дисков устанавливаются и подключаются внутри системного блока. Различают проводные (последовательные и параллельные, USB, Fire Wire ) и беспроводные (инфракрасные, Bluetooth ) порты. 

Параллельные порты

Этот тип портов используется для подсоединения внешних устройств, которым необходимо передавать большой объем информации на близкое расстояние. Через параллельный порт обычно передается одновременно 8 бит данных по 8 параллельным проводникам. К параллельному порту подключаются принтер, сканер. Число параллельных портов у компьютера не превышает трех, и они имеют соответственно логические имена LPT1, LPT2, LPT3 (от англ. Line PrinTer - линия принтера).


Последовательные порты

Данный тип портов используется для подключения к системному блоку мыши, модемов и многих других устройств. Через такой порт идет последовательный поток данных по 1 биту. Это можно сопоставить с тем, как происходит движение транспорта по дороге с одной полосой. Последовательная передача данных используется на больших расстояниях. Поэтому последовательные порты часто называют коммуникационными. Количество коммуникационных портов не превышает четырех, и им присвоены имена от СОМ1 до COM4 (англ. COMmunication port - коммуникационный порт).

USB-порт

USB-порт (англ. Universal Serial Bus) в настоящее время является наиболее распространенным средством подключения к компьютеру среднескоростных и низкоскоростных периферийных устройств. USB-порт использует последовательный способ обмена данными. Наибольшее распространение получил высокоскоростной порт типа USB 2.0. Если в компьютере не хватает USB-портов, то этот недостаток можно устранить приобретением USB-концентратора, имеющего несколько таких портов.

Благодаря встроенным линиям питания USB часто позволяет применять устройства без собственного блока питания.

FireWire-порт

FireWire (IEEE 1394) - долсловно - огненный провод (произносится "файр вайр") - это последовательный порт, поддерживающий скорость передачи данных в 400 Мбит/сек. Этот порт служит для подключения к компьютеру видео устройств, таких как, например, видеомагнитофон, а также других устройств, требующих быстрой передачи большого объема информации, например, внешних жестких дисков.

Порты FireWire поддерживают технологию Plug and Play и "горячего подключения".

Порты FireWire бывают двух типов. В большинстве настольных компьютерах используются 6-контактные порты, а в ноутбуках - 4-контактные.

Инфракрасный порт беспроводного подключения

Передача данных осуществляется по оптическому каналу в инфракрасном диапазоне. Аналогично работают пульты дистанционного управления бытовой техникой - телевизорами, видеомагнитофонами и пр. Радиус действия инфракрасного порта составляет несколько метров, при этом необходимо обеспечить прямую видимость между приемником и передатчиком.

Инфракрасный порт обычно используется для соединения с мобильным телефоном, обладающим таким же портом. Это позволяет реализовать доступ в Интернет с использованием мобильного телефона, что наиболее важно для портативных ноутбуков в нестационарных условиях.

Модуль Bluetooth беспроводного подключения

Один адаптер Bluetooth позволяет осуществить беспроводное подключение порядка 100 устройств, находящихся на расстоянии до 10 м. При этом к компьютеру, оснащенному таким адаптером, можно подключать разнотипные беспроводные устройства: мобильные телефоны, принтеры, мыши, клавиатуры и пр. Передача данных осуществляется по радиоканалу в частотном диапазоне 2,2-2,4 ГГц. Главное достоинство - устойчивая связь независимо от взаиморасположения приемника и передатчика. Если в компьютере нет встроенного модуля Bluetooth, то его можно приобрести отдельно и подключить по USB-порту.

Прочие компоненты системной платы

Системная плата, кроме перечисленных выше важнейших компонентов компьютера, содержит дополнительные микросхемы, переключатели и перемычки. Все эти устройства необходимы для обеспечения взаимодействия различных устройств компьютера, установки режимов их работы. Например, на системной плате могут быть установлены микросхемы, которые требуют различного напряжения питания. Параметры работы устройств задаются переключателями на системной плате.

В любом системном блоке находятся обязательные узлы, обеспечивающие работу компьютера, - блок питания, системные часы, аккумулятор, сигнальные индикаторы передней стороны системного блока.

Системные часы определяют скорость выполнения компьютером операций, которая связана с тактовой частотой, измеряемой в мегагерцах (1 МГц равен 1 млн тактов в секунду).

Системные часы определяют ритм работы всего компьютера, синхронизируют работу большинства компонентов его системной платы.

Платы и слоты расширения обеспечивают реализацию так называемого принципа открытой архитектуры построения современного персонального компьютера. Слотом называется разъем, куда вставляется плата. Наличие слотов расширения на системной плате позволяет рассматривать персональный компьютер как устройство, которое можно модифицировать. Расширение возможностей компьютера осуществляется путем установки в слоте платы расширения. К разъему этой платы с помощью кабеля присоединяется некоторое устройство, расположенное вне системного блока.

Вместо термина «плата расширения» часто используют названия «карта», «адаптер». К наиболее распространенным платам расширения относятся видеокарты, звуковые карты и внутренние модемы. 

Представление об открытой архитектуре компьютера

Технология производства компьютеров быстро развивается, что обеспечивает непрерывный рост их производительности, объема памяти и как результат - возможностей решать все более сложные задачи. Стремительно совершенствуются одни устройства, создаются другие, принципиально новые. При столь бурном развитии технологии необходимо предусмотреть такой принцип построения компьютера, который позволял бы использовать уже имеющиеся в нем устройства (блоки), а также без изменения конструкции заменять их на новые, более совершенные. Как города строятся по законам архитектуры, так и устройство компьютера должно развиваться по определенным законам. Главный принцип построения современного персонального компьютера - это принцип открытой архитектуры: каждый новый блок должен быть программно и аппаратно совместим с ранее созданными. Это означает, что современный персональный компьютер упрощенно можно представить как знакомый всем детский конструктор из кубиков. В компьютере столь же легко можно заменять старые кубики (блоки) на новые, где бы они ни располагались, в результате чего работа компьютера не только не нарушается, но становится более производительной. Именно принцип открытой архитектуры позволяет не выбрасывать, а модернизировать ранее купленный компьютер, легко заменяя в нем устаревшие блоки на более совершенные и удобные, а также приобретать и устанавливать новые блоки и узлы. При этом места для их установки (разъемы) во всех компьютерах являются стандартными и не требуют никаких изменений в самой конструкции компьютера.

Принцип открытой архитектуры - правила построения компьютера, в соответствии с которыми каждый новый узел (блок) должен быть совместим со старым и легко устанавливаться в том же месте в компьютере.

Контрольные вопросы

1. Какие основные блоки образуют структуру компьютера и как они связаны с этапами обработки информации?

2. Какова роль процессора персонального компьютера в обработке информации?

3. Что такое принцип программного управления?

4. Каковы назначение и основные компоненты системного блока?

5. Какие виды корпусов системного блока вам известны?

6. Для чего нужна системная плата?

7. Каково назначение системной шины в персональном компьютере?

8. В чем состоит аналогия между системной шиной и транспортными магистралями?

9. Какие вы знаете характеристики системной шины?

10. Что такое порт компьютера? Какие виды портов бывают и в чем их различие?

11. Зачем нужны платы расширения?

12. Для чего необходимо иметь слоты расширения?

13. В чем состоит принцип открытой архитектуры?

14. Что вам известно из художественной литературы, научно-популярных изданий, из телевизионных передач и кинофильмов о возможностях и использовании компьютеров будущего?

СИСТЕМНАЯ ШИНА СИСТЕМНАЯ ШИНА

СИСТЕМНАЯ ШИНА (system bus), совокупность линий передачи всех видов сигналов (в том числе данных, адресов и управления) между микропроцессором (см. МИКРОПРОЦЕССОР) и остальными электронными устройствами компьютера (см. КОМПЬЮТЕР) . Часть системной шины, передающая данные, называется шиной данных, адреса - адресной шиной, управляющие сигналы - шиной управления. Важной характеристикой системной шины, влияющей на производительность персонального компьютера, является тактовая частота системной шины - FSB (Frequency System Bus).
Персональный компьютер на базе x86-совместимого микропроцессора построен по следующей схеме: микропроцессор через системную шину подключается к системному контроллеру (обычно такой контроллер называют «северным мостом» - North Bridge). Системный контроллер включает в себя контроллер оперативной памяти и контроллеры шин, к которым подключаются периферийные устройства. К северному мосту обычно подключают наиболее производительные периферийные устройства (например, видеокарты (см. ВИДЕОАДАПТЕР) ), а менее производительные устройства (микросхема BIOS, устройства с шиной PCI) подключаются к «южному мосту» (South Bridge), который соединяется с северным мостом специальной высокопроизводительной шиной. Набор из «южного» и «северного» мостов называют чипсетом (см. ЧИПСЕТ) (chipset). Системная шина работает в качестве магистрального канала между процессором и чипсетом.


Энциклопедический словарь . 2009 .

Смотреть что такое "СИСТЕМНАЯ ШИНА" в других словарях:

    системная шина - магистраль системного блока ПЭВМ — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом Синонимы магистраль системного блока ПЭВМ EN system busS bus …

    - … Википедия

    шина EISA - расширенная архитектура промышленного стандарта Системная шина ПК, расширившая возможности шины ISA с 16 ти до 32 х разрядов. Была быстро вытеснена шиной PCI. Тематики информационные технологии в целом Синонимы… … Справочник технического переводчика

    шина канала ввода-вывода (ЭВМ) - Локальная системная шина процессора, обычно используемая в качестве канала ввода вывода системной платы однопроцессорного компьютера, например, в IBM PC XT, Apple Mac II, DEC Professional 325/350/380. [Е.С.Алексеев, А.А.Мячев. Англо русский… … Справочник технического переводчика

    Разъём AGP на материнской плате (обычно коричневого или зелёного цветов). AGP (от англ. Accelerated Graphics Port, ускоренный графический порт) разработанная в 1997 году компанией системная шина для видеокарты. Появилась одновременно с чипсетами … Википедия

    шина ПЭВМ с расширенной технологией - Системная магистраль, разработанная фирмой IBM, используется в серии IBM PC XT на основе микропроцессора 8088 с 8 разрядной шиной данных. Магистраль содержит 20 разрядную шину 8 разрядную двунаправленную шину данных, 6 линий уровня прерывания,… … Справочник технического переводчика

    S 100 Универсальная интерфейсная шина спроектированная компанией MITS в 1974 году специально для Altair 8800, считающимся на сегодняшний день первым персональным компьютером. Шина S 100 была первой интерфейсной шиной для микрокомпьютерной… … Википедия

    Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16), по сравнению с обычным 32 битным разъемом шины Компьютерная шина (от англ. computer bus, bidirectional universal switch двунаправленный универсальный коммутатор) в архитектуре компьютера… … Википедия

    FSB (англ. Front side bus, переводится как «системная шина») компьютерная шина, обеспечивающая соединение между x86 совместимым центральным процессором и внешним миром. Как правило, современный персональный компьютер на базе x86 совместимого… … Википедия