Чем отличаются позиционные. Разница между позиционной и непозиционной системой счисления

29.01.2019

1. Для чего используются системы счисления? 2. Чем отличаются позиционные системы счисления от непозиционных? 3. Каково основание десятичной системы счисления, двоичной, восьмеричной и шестнадцатеричной? 4. Какие цифры входят в алфавит десятичной системы счисления, двоичной, восьмеричной и шестнадцатеричной? 5. Во сколько раз в позиционных системах счисления различаются одинаковые цифры, соседних разрядов числа? 7. Может ли в качестве цифры использоваться символ буквы? Назовите Римские цифры. Д/з


ВОПРОВЫ ТЕСТА: Какие цифры входят в алфавит восьмеричной системы счисления Какие числа записаны римскими цифрами: МСХIХ За единицу количества информации принимается: Какие цифры входят в алфавит двоичной системы счисления Укажите самое большое число: , 100 2, Двоичное число соответствует десятичному числу Чем отличаются позиционные системы счисления от непозиционных? Для чего используются системы счисления может ли число 48А1 записано в системе счисления десятичной, восьмеричной, шестнадцатеричной Где правильно записаны числа в соответствующих системах счисления: 1А0В 16, Д/з


Какие числа записаны римскими цифрами: а) MCMXCIX; б) CMLXXXVIII; в) MCXLVII?MCMXCIXCMLXXXVIIIMCXLVII? Запишите в развернутой форме числа: А 8 = ; А 2 =101001; А 16 = ; А 8 = А 2 =101001А 16 = А 10 = 143,511; А 8 =0,134512;А 10 = 143,511А 8 =0, А 16 = 1В3,5С2. Д/з


Двоичная система счисления является стандартом при конструировании компьютеров, т.к. наиболее просто технически создать электронные схемы, работающие в двух устойчивых состояниях (0 и 1); просто выполняются арифметические действия; для выполнения логических операций можно применить алгебру логики. Двоичная СС используется для организации машинных операций по преобразованию информации, десятичная – для ввода и вывода информации, восьмеричная и шестнадцатеричная – для составления программ на языке машинных кодов для более короткой и удобной записи двоичных кодов.


Арифметические операции во всех позиционных СС выполняются по одним и тем же правилам. Важно помнить алфавит СС: 2-я – 0, 1; 8-я – 0 – 7; 16-я – 0 – 9, A – F. При переполнении разряда, когда величина числа становится равной или большей основания, производится перенос в старший разряд при сложении и заём из старшего разряда при вычитании. Величина переноса в следующий разряд при сложении и заём из старшего разряда при вычитании определяется величиной основания системы счисления: в 2-й СС – основанием 2, в 8-й – 8, в 16-й – 16.


При выполнении арифметических операций можно пользоваться таблицей представления чисел в различных СС. Представление чисел в различных системах счисления. N 10 N2N2 N8N8 N A (10) B (11) C (12) D (13) E (14) F (15)


0 + 0= = = = 10 Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам. Двоичная система счисления. Сложение.Сложение. В его основе лежит таблица сложения одноразрядных двоичных чисел:












Числа и 10 2: а) сложить; б) вычесть; в) умножить; г) разделить; Д/з


Числа и 10 2: а) сложить (1100); б) вычесть (1000); в) умножить (10100); г) разделить (101) ; Д/з



Вариант 1 Вычислить: = = = = Вариант 2 Вычислить: = = = =






()+ ()+(10-1) 1999 MCMXCIX


() I=10 X=10 C=100 M=1000 V=5 L=50 D=500 CMLXXXVIII


(50-10) I=10 X=10 C=100 M=1000 V=5 L=50 D=500 MCXLVII


А 8 =

Системы счисления классифицируются на 2 основные разновидности - позиционные и непозиционные. В чем заключается специфика тех и других?

Что представляет собой позиционная система счисления?

Рассматриваемая система счисления характеризуется тем, что цифры в ней в зависимости от своей позиции относительно начала числа (при его прочтении слева направо) будут иметь разную силу. Чем правее расположена цифра - тем она слабее. Например, в числе 143 самая сильная цифра - 1, поскольку обозначает сотню, далее по силе - 4, поскольку она обозначает десяток, третья по силе цифра - 3, так как она соответствует единичному числу.

Систем счисления, считающихся позиционными, в мире используется довольно много. В числе самых распространенных - двоичная (применяется в программировании), десятичная (более всего распространена в повседневной жизни), восьмеричная и шестнадцатеричная (в основном они применяются в инженерном деле).

Что представляет собой непозиционная система счисления?

Соответствующая система счисления характеризуется тем, что цифры в ней не всегда делятся по силе в зависимости от позиции относительно начала числа. Разность в их силе, в принципе, возможна, но не всегда является правилом.

Например, римское число XX (двадцать) состоит из двух одинаковых по силе цифр X, каждая из которых обозначает десять. В свою очередь, в числе XV (пятнадцать) первая цифра сильнее, поскольку соответствует десятичному основанию, а вторая - единичному числу пять.

Кроме того, в непозиционной системе счисления, в которой используются римские цифры, число, расположенное левее, может быть более слабым. Например, римская цифра IV, то есть 4, состоит из более слабой, расположенной левее I(единицы) и более сильной, расположенной правее V (пять). Цифра 4 образуется, таким образом, посредством вычитания более слабой цифры из более сильной.

Сравнение

Главное отличие позиционной системы счисления от непозиционной заключается в том, что в первой в структуре числа, состоящего более чем из одной цифры, все цифры отличаются по силе (в общем случае сильнее те, что расположены левее). Во второй системе счисления данная закономерность наблюдается только в некоторых случаях. Вполне возможно, что в структуре числа будут присутствовать цифры с одинаковой силой. При этом если сила цифр разная, необязательно, что более сильные будут располагаться левее, может наблюдаться и обратная ситуация.

Определив,в чем разница между позиционной и непозиционной системой счисления, зафиксируем выводы в таблице.

В вопросах организации обработки информации с помощью ЭВМ важное место занимают системы счисления, формы представления данных и специальное кодирование чисел.

Совокупность приемов наименования и записи чисел называется счислением . Под системой счисления понимается способ представления любого числа с помощью ограниченного алфавита символов, называемых цифрами.

Все системы счисления можно разделить на два класса: позиционные и непозиционные .

В непозиционных системах счисления каждое число обозначается соответствующей совокупностью символов. В непозиционных системах счисления значение символа не зависит от того места, которое он занимает в числе. Примером непозиционной системы счисления является римская система счисления . В этой системе используется 7 символов, которые соответствуют следующим величинам:

I (1), V(5), X(10), l(50), c(100), d(500), m(1000).

В римской нумерации явственно сказываются следы пятиричной системы счисления. В языке же римлян (латинском) никаких следов пятиричной системы нет. Значит, эти цифры были заимствованы римлянами у другого народа (предположительно у этрусков).

Все целые числа (до 5000) записываются с помощью повторения вышеприведенных цифр. При этом, если большая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед большей (в этом случае она не может повторяться), то меньшая вычитается из большей. Подряд одна и та же цифра ставится не более трех раз. Например, III(3), LIX(59), DLV(555), MCMXCVIII (1998).

Недостатком непозиционных систем счисления является отсутствие формальных правил записи чисел и арифметических действий над ними. В вычислительной технике непозиционные системы не применяются.

В древнем Вавилоне примерно за 40 веков до нашего времени создалась поместная (позиционная) нумерация, т.е. такой способ изображения чисел, при котором одна и та же цифра может обозначать разные числа, смотря по месту, занимаемому этой цифрой. Наша теперешняя нумерация – тоже поместная, однако в вавилонской поместной нумерации ту роль, которую играет у нас число 10, играло число 60, и потому эту нумерацию называют шестидесятиричной.

Шестидесятиричная запись целых чисел не получила распространения за пределами ассиро-вавилонского царства, но шестидесятиричные дроби проникли далеко за эти пределы: в страны Среднего Востока, Средней Азии, в Северную Африку и Западную Европу. Они широко применялись, особенно в астрономии, вплоть до изобретения десятичных дробей. Следы шестидесятиричных дробей сохраняются и поныне в делении углового и дугового градуса (а также часа) на 60 минут и минуты на 60 секунд.

Позиционные системы счисления обладают большими преимуществами в наглядности представления чисел и в простоте выполнения арифметических операций. В позиционной системе счисления значение числа определяется не только набором входящих в него цифр, но и их местом (позицией) в последовательности цифр, изображающих это число. Примером позиционной системой счисления является десятичная система. Помимо десятичной существуют другие позиционные системы счисления, для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга символов. Число таких символов в позиционной системе счисления называется основанием системы счисления и обозначается буквой q . В десятичной системе используется десять символов (цифр): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, и основанием системы является число 10. В таблице 3.1 приведены наименования некоторых позиционных систем счисления и перечень цифр, из которых образуются в них числа.

Таблица 3.1.

Основание

Система счисления

Символы

Двоичная

Троичная

Восьмиричная

0, 1, 2, 3, 4, 5, 6, 7

Десятичная

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Шестнадцатиричная

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Особое место среди позиционных систем счисления занимают системы со степенными весами разрядов, в которых веса смежных позиций цифр (разрядов) отличаются по величине в постоянное количество раз, равное основанию q системы счисления.

В общем случае в такой позиционной системе счисления с основанием q любое число X может быть представлено в виде полинома разложения (суммы произведений коэффициентов на степени основания системы счисления):

здесь q – основание системы счисления;
– запись числа в системе счисления по основаниюq ; – целые числа, меньшиеq ; n – число разрядов в целой части числа; m – число разрядов в дробной части числа.

Таким образом, значение каждого знака в числе зависит от позиции, которую занимает символ в записи числа. Именно поэтому такие системы счисления называют позиционными. Например,

В информатике применяют позиционные системы счисления с недесятичным основанием: двоичную, восьмиричную и шестнадцатиричную, т.е. системы счисления с основанием
, гдеk = 1, 3, 4.

В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем – это простота и легкость выполнения арифметических операций над числами, записанными в этих системах.

Вычислительные машины в принципе могут быть построены в любой системе счисления. Но столь привычная для нас десятичная система окажется крайне неудобной. Если в механических вычислительных устройствах, использующих десятичную систему, достаточно просто применить элемент со множеством состояний (колесо с десятью зубьями), то в электронных машинах надо было бы иметь 10 различных потенциалов в цепях.

Наиболее удобной для построения ЭВМ оказалась двоичная система счисления, т.е. система счисления, в которой используются только две цифры: 0 и 1, т.к. с технической точки зрения создать устройство с двумя состояниями проще, также упрощается различение этих состояний.

Для представления этих состояний в цифровых системах достаточно иметь электронные схемы, которые могут принимать два состояния, четко различающиеся значением какой-либо электрической величины – потенциала или тока. Одному из значений этой величины соответствует цифра 0, другому – 1. Относительная простота создания электронных схем с двумя электрическими состояниями и привела к тому, что двоичное представление чисел доминирует в современной цифровой технике. При этом 0 обычно представляется низким уровнем потенциала, а 1 – высоким уровнем. Такой способ представления называется положительной логикой.

На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержавшая бóльшее число предметов, объединялась в понятии «много». Предметы при счете сопоставлялись обычно с пальцами рук и ног. По мере развития цивилизации потребность человека в счете стала необходимой. Первоначально натуральные числа изображались с помощью некоторого количества черточек или палочек, затем для их изображения стали использовать буквы или специальные знаки. В древнем Новгороде использовалась славянская система, где применялись буквы славянского алфавита; при изображении чисел над ними ставился знак ~ (титло).

Древние римляне пользовались нумерацией, сохраняющейся до настоящего времени под именем «римской нумерации», в которой числа изображаются буквами латинского алфавита. Сейчас ею пользуются для обозначения юбилейных дат, нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т.д. В позднейшем своем виде римские цифры выглядят так:

I = 1; V = 5; X = 10; L = 50; С = 100; D = 500; M = 1000.

О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. В римской нумерации явственно сказываются следы пятеричной системы счисления. Все целые числа (до 5000) записываются с помощью повторения вышеприведенных цифр. При этом, если бóльшая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед бóльшей (в этом случае она не может повторяться), то меньшая вычитается из бóльшей). Например, VI = 6, т.е. 5 + 1, IV = 4, т.е. 5 – 1, XL = 40, т е. 50 – 10, LX = 60, т.е. 50 + 10. Подряд одна и та же цифра ставится не более трех раз: LXX = 70; LXXX = 80; число 90 записывается ХС (а не LXXXX).

Первые 12 чисел записываются в римских цифрах так:

I, II, III, IV, V, VI, VII, VIII. IX, X, XI, XII.

Другие же числа записываются, например, как:

XXVIII = 28; ХХХIХ = 39; CCCXCVII = 397; MDCCCXVIII = 1818.

Выполнение арифметических действий над многозначными числами в этой записи очень трудно. Тем не менее, римская нумерация преобладала в Италии до 13 в., а в других странах Западной Европы – до 16 в.

В славянской системе нумерации для записи чисел использовались все буквы алфавита, правда, с некоторым нарушением алфавитного порядка. Различные буквы означали различное количество единиц, десятков и сотен. Например, число 231 записывалось в виде ~ СЛА (C – 200, Л – 30, А – 1).

Этим системам свойственны два недостатка, которые привели к их вытеснению другими: необходимость большого числа различных знаков, особенно для изображения больших чисел, и, что еще важнее неудобство выполнения арифметических операций.

Более удобной и общепринятой и наиболее распространенной является десятичная система счисления, которая была изобретена в Индии, заимствована там арабами и затем через некоторое время пришла в Европу. В десятичной системе счисления основанием является число 10.

Существовали системы исчисления и с другими основаниями. В Древнем Вавилоне, например, применялась шестидесятеричная система счисления. Остатки ее мы находим в сохранившемся до сих пор делении часа или градуса на 60 минут, а минуты – на 60 секунд.

Широкое распространение имела в древности и двенадцатеричная система, происхождение которой, вероятно, связано, как и десятичной системы, со счетом на пальцах: за единицу счета принимались фаланги (отдельные суставы) четырех пальцев одной руки, которые при счете перебирались большим пальцем той же руки. Остатки этой системы счисления сохранились и до наших дней и в устной речи, и в обычаях. Хорошо известно, например, название единицы второго разряда – числа 12 – «дюжина». Сохранился обычай считать многие предметы не десятками, а дюжинами, например, столовые приборы в сервизе или стулья в мебельном гарнитуре. Название единицы третьего разряда в двенадцатеричной системе – гросс – встречается теперь редко, но в торговой практике начала столетия оно еще бытовало. Например, в написанном в 1928 стихотворении Плюшкин В.В.Маяковский, высмеивая людей, скупающих все подряд, писал: «...укупил двенадцать гроссов дирижерских палочек». У ряда африканских племен и в Древнем Китае была употребительна пятеричная система счисления. В Центральной Америке (у древних ацтеков и майя) и среди населявших Западную Европу древних кельтов была распространена двадцатеричная система. Все они также связаны со счетом на пальцах.

Самой молодой системой счисления по праву можно считать двоичную. Эта система обладает рядом качеств, делающей ее очень выгодной для использования в вычислительных машинах и в современных компьютерах.

Позиционные и непозиционные системы счисления.

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами.

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе – шестидесятeричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим – десятки.

Однако наиболее употребительной оказалась индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр.

Различие между позиционой и непозиционной систем счисления легче всего понять на примере сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Бóльшая цифра соответствует бóльшему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.

Позиционные системы счисления.

Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 555 7 – число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы – это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p , как x = a n ·p n +a n – 1·p n –1 + a p 1 + a p 0, где a n ...a 0 – цифры в представлении данного числа. Так, например,

1035 10 =1·10 3 + 0·10 2 + 3·10 1 + 5·10 0 ;

1010 2 = 1·2 3 + 0·2 2 + 1·2 1 + 0·2 0 = 10.

Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины, однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.

Чтобы оперировать с числами, записанными в таких нетрадиционных системах, нужно иметь в виду, что принципиально они ничем не отличаются от привычной десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.

Почему же не используются другие системы счисления? В основном, потому, что в повседневной жизни люди привыкли пользоваться десятичной системой счисления, и не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать числами, записанными в двоичном виде, довольно просто.

Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

Перевод чисел из одной системы счисления в другую.

Наиболее часто встречающиеся системы счисления – это двоичная, шестнадцатеричная и десятичная. Как же связаны между собой представления числа в различных системах счисления? Есть различные способы перевода чисел из одной системы счисления в другую на конкретных примерах.

Пусть нужно перевести число 567 из десятичной в двоичную систему. Сначала определяется максимальная степень двойки, такая, чтобы два в этой степени было меньше или равно исходному числу. В данном случае это 9, т.к. 2 9 = 512, а 2 10 = 1024, что больше начального числа. Таким образом получается число разрядов результата, оно равно 9 + 1 = 10, поэтому результат будет иметь вид 1ххххххххх , где вместо х могут стоять любые двоичные цифры. Вторая цифра результата находится так – двойка возводится в степень 9 и вычитается из исходного числа: 567 – 2 9 = 55. Остаток сравнивается с числом 2 8 = 256. Так как 55 меньше 256, то девятый разряд – нуль, т.е. результат имеет вид 10хххххххх . Рассмотрим восьмой разряд. Так как 2 7 = 128 > 55, то и он будет нулевым.

Седьмой разряд также оказывается нулевым. Искомая двоичная запись числа принимает вид 1000хххххх . 2 5 = 32 ххххх). Для остатка 55 – 32 = 23 справедливо неравенство 2 4 = 16

567 = 1·2 9 + 0·2 8 + 0·2 7 + 0·2 6 + 1·2 5 + 1·2 4 + 0·2 3 + 1·2 2 + 1·2 1 + 1·2 0

При другом способе перевода чисел используется операция деления в столбик. Если взять то же число 567 и разделить его на 2, получается частное 283 и остаток 1. Та же операция производится и с числом 283. Частное – 141, остаток – 1. Опять полученное частное делится на 2 и так до тех пор, пока частное не станет меньше делителя. Теперь, чтобы получить число в двоичной системе счисления, достаточно записать последнее частное, т.е. 1, и приписать к нему в обратном порядке все полученные в процессе деления остатки.

Результат, естественно, не изменился: 567 в двоичной системе счисления записывается как 1 000 110 111.

Эти два способа применимы при переводе числа из десятичной системы в систему с любым основанием. Например, при переводе числа 567 в систему счисления с основанием 16 число сначала разлагается по степеням основания. Искомое число состоит из трех цифр, т.к. 16 2 = 256 хх, где вместо х могут стоять любые шестнадцатеричные цифры. Остается распределить по следующим разрядам число 55 (567 – 512). 3·16 = 48

Второй способ состоит в последовательном делении в столбик, с единственным отличием в том, что делить надо не на 2, а на 16, и процесс деления заканчивается, когда частное становится строго меньше 16.

Конечно, для записи числа в шестнадцатеричной системе счисления, необходимо заменить 10 на A, 11 на B и так далее.

Операция перевода в десятичную систему выглядит гораздо проще, так как любое десятичное число можно представить в виде x = a p n + a p n –1 +... + a n –1·p 1 + a n ·p 0, где a 0 ... a n – это цифры данного числа в системе счисления с основанием p .

Например,так можно перевести число 4A3F в десятичную систему. По определению, 4A3F= 4·16 3 + A·16 2 + 3·16 + F. При замене A на 10, а F на 15, получается 4·16 3 + 10·16 2 + 3·16 + 15= 19007.

Проще всего переводить числа из двоичной системы в системы с основанием, равным степеням двойки (8 и 16), и наоборот. Для того чтобы целое двоичное число записать в системе счисления с основанием 2 n , нужно данное двоичное число разбить справа налево на группы по n -цифр в каждой; если в последней левой группе окажется меньше n разрядов, то дополнить ее нулями до нужного числа разрядов; рассмотреть каждую группу, как n -разрядное двоичное число, и заменить ее соответствующей цифрой в системе счисления с основанием 2 n .

Таблица 1. Двоично-шестнадцатеричная таблица
Таблица 1. ДВОИЧНО-ШЕСТНАДЦАТЕРИЧНАЯ ТАБЛИЦА
2-ная 0000 0001 0010 0011 0100 0101 0110 0111
16-ная 0 1 2 3 4 5 6 7
2-ная 1000 1001 1010 1011 1100 1101 1110 1111
16-ная 8 9 A B C D E F

Известный французский астроном, математик и физик Пьер Симон Лаплас (1749–1827) писал об историческом развитии систем счисления, что «Мысль выражать все числа девятью знаками, придавая им, кроме значения по форме, еще значение по месту, настолько проста, что именно из-за этой простоты трудно понять, насколько она удивительна. Как нелегко было прийти к этому методу, мы видим на примере величайших гениев греческой учености Архимеда и Аполлония, от которых эта мысль осталась скрытой.»

Сравнение десятичной системы исчисления с иными позиционными системами позволило математикам и инженерам-конструкторам раскрыть удивительные возможности современных недесятичных систем счисления, обеспечившие развитие компьютерной техники.

Анна Чугайнова