Поисковые машины и запросы. Поисковые машины

14.03.2019

В термодинамике рассматривается перемещение частиц макроскопического тела относительно друг друга . При совершении работы меняется объем тела. Скорость самого тела остается равной нулю, но скорости

Рис. 1. A’ = p∆V

молекул тела меняются! Поэтому меняется и температура тела. Причина в том, что при столкновении с движущимся поршнем (сжатие газа) кинетическая энергия молекул изменяется — поршень отдает часть своей механической энергии. При столкновении с удаляющимся поршнем (расширение) скорости молекул уменьшаются, газ охлаждается. При совершении работы в термодинамике меняется состояние макроскопических тел: их объем и температура.

Газ, находящийся в сосуде под поршнем, действует на поршень с силой F’ = pS , где p - давление газа, S - площадь поршня. Если при этом поршень перемещается, то газ совершает работу. Предположим, что газ расширяется при постоянном давлении p. Тогда сила F’ , с которой газ действует на поршень, также постоянна. Пусть поршень переместился на расстояние ∆x (рис.1). Работа газа равна: A’ = F’ ∆x = pS∆x = p∆V . – работа газа при изобарном расширении. Если V 1 и V 2 - начальный и конечный объём газа, то для работы газа имеем: A’ = p(V2 − V1) . При расширении работа газа положительна. При сжатии — отрицательна. Таким образом: A’ = pΔV — работа газа. A= — pΔV — работа внешних сил.

В изобарном процессе площадь под графиком в координатах p,V численно равна работе (рис. 2). Внешняя работа над системой равна работе системы, но с противоположным знаком А = — А’ .

В изохорном процессе объем не меняется, следовательно, в изохорном процессе работа не совершается! A=0

Любое тело (газ, жидкость или твердое) обладает энергией, даже если тело не имеет скорости и находится на Земле. Эта энергия называется внутренней , обусловлена она хаотическим (тепловым) движением и взаимодействием частиц, из которых состоит тело. Внутренняя энергия состоит из кинетической и потенциальной энергии частиц поступательного и колебательного движений микрочастиц системы. Внутренняя энергия одноатомного идеального газа определяется по формуле: Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существует два способа изменения внутренней энергии : теплопередача и совершение механической работы (например, нагревание при трении или при сжатии, охлаждение при расширении).
Теплопередача - это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым телам. Теплопередача бывает трех видов: теплопроводность (непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излучение (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче является количество теплоты (Q ).
Эти способы количественно объединены в закон сохранения энергии , который для тепловых процессов читается так: изменение внутренней энергии замкнутой системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой. , где ΔU - изменение внутренней энергии, Q - количество теплоты, переданное системе, А - работа внешних сил. Если система сама совершает работу, то ее условно обозначают А’ . Тогда закон сохранения энергии для тепловых процессов, который называется первым законом термодинамики , можно записать так: (количество теплоты, переданное системе, идет на совершение системой работы и изменение ее внутренней энергии) .
Рассмотрим применение первого закона термодинамики к изопроцессам, происходящим с идеальным газом.

В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение I закона термодинамики примет вид: Q = А’ , т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.

В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: Q = ΔU +А’

При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е. А = 0 . Уравнение I закона имеет вид Q = ΔU (переданное количество теплоты идет на увеличение внутренней энергии газа).

Адиабатным называют процесс , протекающий без теплообмена с окружающими телами. Пример теплоизолированного сосуда - термос. При адиабатном процессе Q = 0 , следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается, А’= — Δ U . Если заставить газ совершить достаточно большую работу, то охладить его можно очень сильно. Именно на этом основаны методы сжижения газов. И наоборот, в процессе адиабатного сжатия будет А’ < 0 , поэтому ∆U > 0 : газ нагревается. Адиабатное нагревание воздуха используется в дизельных двигателях для воспламенения топлива

Практически все реальные процессы происходят с теплообменом: адиабатические процессы — это редкое исключение.

Наглядные примеры адиабатных процессов:

  1. В закрытом пробкой с продетым шлангом насоса сосуде находится капельки воды. После нагнетания в сосуд определенно количества воздуха, пробка быстро вылетает и в сосуде наблюдается туман (рис.).
  2. В закрытом подвижным поршнем цилиндре находится небольшое количество топлива. После быстрого нажатия на поршень топливо воспламеняется.

Энергия любой системы, вообще говоря, зависит не только от свойств самой системы, но также и от внешних условий. Внешние условия, в которых находится система, можно характеризовать заданием некоторых величин, называемых внешними параметрами. Одним из таких параметров, как уже отмечалось, является объем системы, Взаимодействие тел, при котором происходит изменение их внешних параметров, называется механическим взаимодействием, а процесс передачи энергии от одного тела к другому при таком взаимодействии – работой. Термин «работа» используется и для обозначения физической величины, равной энергии, переданной (или полученной) телом при совершении работы.

В механике работа определяется как произведение проекции силы на направление перемещения на величину перемещения. Работа совершается при действии на движущееся тело силы и равна изменению его кинетической энергии. В термодинамике движение тела как целого не рассматривается. Здесь работа, производимая системой (или над системой), связана со смещением ее границ, т.е. с изменением ее объема. Это имеет место, например, при расширении (или сжатии) газа, находящегося в цилиндре под поршнем. При равновесных процессах элементарная работа , совершаемая газом (или над газом) при бесконечно малом изменении объема на определится как

где dh – бесконечно малое смещение поршня (границы системы), p – давление газа. Видим, что при расширении газа () совершаемая им работа положительна (), а при сжатии ) – отрицательна ().

Таким же выражением определяется работа, совершаемая любой термодинамической системой (или над системой) при бесконечно малом изменении объема. Из формулы (5.4) следует, что если сама система совершает работу (что имеет место при расширении), то работа положительна, если же работа совершается над системой (при сжатии), то совершаемая ею работа отрицательна. Как видим, в термодинамике знаки работы противоположны знакам работы в механике.

При конечном изменении объема от V 1 до V 2 работу можно определить, проинтегрировав элементарную работу в пределах от V 1 до V 2:

(5.5)

Численное значение работы равно площади криволинейной трапеции, ограниченной кривой и прямыми и (рис. 5.1). Поскольку площадь, ограниченная осью V и кривой p (V ), различна, то будет различна и термодинамическая работа. Отсюда следует, что термодинамическая работа зависит от пути перехода системы из состояния 1 в состояние 2 и при замкнутом процессе (цикле) она не равна нулю. На этом основана работа всех тепловых двигателей (подробно об этом будет сказано в п. 5.7).

Используем эту формулу для получения работы газа при различных изопроцессах. При изохорном процессе V = const, и поэ-


Рис. 5.1

тому работа A = 0. При изобарном процессе p = const работа . При изотермическом процессе чтобы произвести интегрирование по формуле (5.5), следует в ее подынтегральной функции выразить p через V по формуле закона Клапейрона – Менделеева:

где – число молей газа. С учетом этого получим

(5.6)

Внутренняя энергия, согласно формуле (5.1), может изменяться как за счет изменения (повышения или понижения) уровней энергии системы, так и за счет перераспределения вероятностей ее различных состояний, т.е. за счет переходов системы из одних состояний в другие. Выполнение термодинамической работы связано только со смещением (или деформацией) уровней энергии системы без изменения распределения ее по состояниям, т.е. без изменения вероятностей Так, в случае системы, состоящей из невзаимодействующих частиц (как, например, в случае идеального газа), когда можно говорить об энергиях отдельных частиц , выполнение работы связано с изменением энергии отдельных частиц () при неизменном числе частиц на каждом энергетическом уровне. Схематически на примере простейшей двух уровневой системы это показано на рис. 5.2. Напри-


Рис. 5.2

мер, при сжатии газа поршнем поршень, перемещаясь, сообщает одинаковую энергию всем сталкивающимся с ним молекулам, которые передают энергию молекулам следующего слоя и т.д. В результате возрастает энергия каждой частицы на одну и ту же величину. В качестве другого простейшего примера зависимости уровней энергии системы от ее внешнего параметра можно привести выражение для энергии микрочастицы в одномерной бесконечно глубокой потенциальной яме

где m – масса частицы, l – размер области движения частицы, n – целое число, исключая нуль. Внешним параметром в данном случае является ширина ямы . При изменении ширины ямы на уровни энергии смещаются на При увеличении ширины ямы уровни энергии сдвигаются вниз , а при уменьшении – вверх

В отличие от механической работы, которая равна изменению кинетической энергии тела, термодинамическая работа равна изменению его внутренней энергии.

Следует отметить также, что термодинамическая работа, как и работа механическая, совершается при протекании процесса изменения состояния, поэтому она зависит от вида процесса, и функцией состояния не является.

6.3. Работа в термодинамике

Ранее, в параграфе 6.1 мы говорили о равновесных состояниях термодинамической системы; в этих состояниях параметры системы одинаковы во всём её объёме. Приступая к рассмотрению работы в термодинамических системах, следует ожидать, что её совершение связано с изменением объёма системы. И тогда возникает вопрос, о каких же процессах идёт речь, если рассмотрению подлежат равновесные состояния? Ответ состоит в следующем: если процесс идёт медленно, то значения параметров состояния во всём объёме можно считать одинаковыми. Понятие «медленно» здесь следует уточнить. Прежде всего, оно связано с понятием «время релаксации» – временем, в течение которого устанавливается равновесие в системе. Нас сейчас интересует время выравнивания давления в системе (время релаксации), когда термодинамической системой совершается работа, связанная с изменением объёма; для однородного газа это время составляет ~ 10–16с.Очевидно, время релаксации достаточно незначительно по сравнению со временем протекания процессов в реальных термодинамических системах (или по сравнению со временем измерения). Естественно, мы вправе считать, что реальный процесс есть последовательность равновесных состояний и поэтому имеем право изобразить его линией на графике V , P (рис. 6.1.). Разумеется, по осям координатной системы могут откладываться объём и температура или давление и температура. Поскольку в алгебре, и не только, при построении графиков первой координатной осью читается и записывается х , а затем – у , т. е.«х , у », есть надежда, что читатель, прочитывая «оси координатной системы V , Р », предполагает – по оси х откладывается объём V , а по оси у – давление газа Р .

Ознакомимся с видом линий, отображающих графически простейшие процессы в системе координат, по осям которой отложены параметры состояния V , P (возможны иные координатные оси). Выбор координатной системы обусловлен тем, что площадь, ограниченная кривой процесса и двумя крайними координатами для начального и конечного значений объёма, равна работе сжатия или расширения. На рис. 6.2 приведены графики изопроцессов, проведённые из одного и того же начального состояния. Кривая адиабатического процесса (адиабата) идёт круче, чем для изотермического процесса (изотерма). Это обстоятельство можно объяснить на основании уравнения Клапейрона для состояния газов:


(2)

Выражая из уравнения состояния Р 1 и Р 2 , разность давлений при расширении газа от объёма V 1 до объёма V 2 запишется:

. (3)

Здесь, как и в уравнении (2),
.

При адиабатическом расширении работа над внешними телами совершается только за счёт внутренней энергии газа, вследствие чего внутренняя энергия, а вместе с ней и температура газа уменьшаются; т. е. в конце адиабатического процесса расширения (рис. 6.2) Т 2 < Т 1 (найдите обоснование); при изотермическом же процессе Т 2  Т 1 . Поэтому в формуле (3) разность давлений
при адиабатическом расширении будет больше, чем при изотермическом (проверьте, проведя преобразования).

Осознав, что мы имеем дело с равновесными процессами и ознакомившись с их графическим отображением в системе координат (V ,P ), перейдём к поиску аналитического выражения внешней работы, совершаемой термодинамической системой.

Абота, совершаемая системой, может быть вычислена в зависимости от значения внешних сил, действующих на систему, и от величины деформации системы – изменения её формы и размеров. Если внешние силы приложены по поверхности в виде, например, внешнего давления, сжимающего систему, то расчёт внешней работы может быть произведён в зависимости от изменения объёма системы. Для иллюстрации рассмотрим процесс расширения газа, заключённого в цилиндре с поршнем (рис. 6.3). Допустим, что внешнее давление на всех участках по поверхности цилиндра одно и то же. Если при расширении системы поршень сместился на расстояниеdl , то элементарная работа, совершённая системой, запишется:dA F ds p S dl p dV ; здесьS – площадь поршня, аS dl dV – изменение объёма системы (рис. 6.3). При расширении системы внешнее давление не всегда остаётся постоянным, поэтому работа, совершаемая
системой при изменении её объёма отV 1 доV 2 , должна рассчитываться как сумма элементарных работ, т. е. путём интегрирования:
. Из уравнения работы следует, параметры начального (p 1 ,V 1) и конечного (p 2 ,V 2) состояний системы не определяют величину совершаемой внешней работы; необходимо знать ещё и функциюр (V ), раскрывающую изменение давления в процессе перехода системы из одного состояния в другое.

В заключение следует заметить, теплообмен между системой и окружающей средой зависит не только от параметров начального и конечного состояний системы, но и от той последовательности промежуточных состояний, через которые проходит система. Это следует из первого закона термодинамики:Q U 2 –U 1 A , гдеU 1 иU 2 определяются только заданием параметров начального и конечного состояний, а внешняя работаA зависит, кроме того, ещё и от самого процесса перехода. Вследствие этого теплотаQ , полученная или отданная системой при переходе из одного состояния в другое, не может быть выражена в зависимости только от температуры её начального и конечного состояний.

Завершая экскурс в раздел «Термодинамика. Первое начало термодинамики», перечислим его ключевые понятия: термодинамическая система, термодинамические параметры, равновесное состояние, равновесный процесс, обратимый процесс, внутренняя энергия системы, первое начало термодинамики, работа термодинамической системы, адиабатический процесс.

Механическая работа

Размерность Единицы измерения СИ СГС Примечания Размерность Известные учёные См. также: Портал:Физика

Мeханическая работа - это физическая величина - скалярная количественная мера действия силы (равнодействующей сил) на тело или сил на систему тел. Зависит от численной величины и направления силы (сил), и от перемещения тела (системы тел).

Используемые обозначения

Работа обычно обозначается буквой A (от нем. A rbeit - работа, труд) или буквой W (от англ. w ork - работа, труд).

Определение

Работа силы, приложенной к материальной точке

Суммарная работа по перемещению одной материальной точки, совершаемая несколькими силами, приложенными к этой точке, определяется как работа равнодействующей этих сил (их векторной суммой). Поэтому дальше будем говорить об одной силе, приложенной к материальной точке.

При прямолинейном движении материальной точки и постоянном значении приложенной к ней силы работа (этой силы) равна произведению проекции вектора силы на направление движения и длины вектора перемещения, совершённого точкой:

A = F s s = F s c o s (F , s) = F → ⋅ s → {\displaystyle A=F_{s}s=Fs\ \mathrm {cos} (F,s)={\vec {F}}\cdot {\vec {s}}}

Здесь точкой обозначено скалярное произведение, s → {\displaystyle {\vec {s}}} - вектор перемещения; подразумевается, что действующая сила F → {\displaystyle {\vec {F}}} постоянна в течение времени, за которое вычисляется работа.

В общем случае, когда сила не постоянна, а движение не прямолинейно, работа вычисляется как криволинейный интеграл второго рода по траектории точки:

A = ∫ F → ⋅ d s → . {\displaystyle A=\int {\vec {F}}\cdot {\vec {ds}}.}

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из последовательных перемещений d s → , {\displaystyle {\vec {ds}},} если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат, интеграл определяется следующим образом:

A = ∫ r → 0 r → 1 F → (r →) ⋅ d r → {\displaystyle A=\int \limits _{{\vec {r}}_{0}}^{{\vec {r}}_{1}}{\vec {F}}\left({\vec {r}}\right)\cdot {\vec {dr}}} ,

где r → 0 {\displaystyle {\vec {r}}_{0}} и r → 1 {\displaystyle {\vec {r}}_{1}} - радиус-векторы начального и конечного положения тела соответственно.

  • Следствие. Если направление приложенной силы ортогонально перемещению тела, или перемещение равно нулю, то работа (этой силы) равна нулю.

Работа сил, приложенных к системе материальных точек

Работа сил по перемещению системы материальных точек определяется как сумма работ этих сил по перемещению каждой точки (работы, совершённые над каждой точкой системы, суммируются в работу этих сил над системой).

Даже если тело не является системой дискретных точек, его можно разбить (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых можно считать материальной точкой и вычислить работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл.

  • Эти определения могут быть использованы как для вычисления работы конкретной силы или класса сил, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.

Кинетическая энергия

Кинетическая энергия вводится в механике в прямой связи с понятием работы.

Схема рассуждений такова: 1) попробуем записать работу, совершаемую всеми силами, действующими на материальную точку и, пользуясь вторым законом Ньютона (позволяющим выразить силу через ускорение), попытаться выразить ответ только через кинематические величины, 2) убедившись, что это удалось, и что этот ответ зависит только от начального и конечного состояния движения, введём новую физическую величину, через которую эта работа будет просто выражаться (это и будет кинетическая энергия).

Если A t o t a l {\displaystyle A_{total}} - полная работа, совершённая над частицей, определяемая как сумма работ, совершенных приложенными к частице силами, то она выражается как:

A t o t a l = Δ (m v 2 2) = Δ E k , {\displaystyle A_{total}=\Delta \left({\frac {mv^{2}}{2}}\right)=\Delta E_{k},}

где E k {\displaystyle E_{k}} называется кинетической энергией. Для материальной точки кинетическая энергия определяется как половина произведения массы этой точки на квадрат её скорости и выражается как:

E k = 1 2 m v 2 . {\displaystyle E_{k}={\frac {1}{2}}mv^{2}.}

Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Потенциальная энергия

Сила называется потенциальной, если существует скалярная функция координат, известная как потенциальная энергия и обозначаемая E p {\displaystyle E_{p}} , такая что

F → = − ∇ E p . {\displaystyle {\vec {F}}=-\nabla E_{p}.}

Если все силы, действующие на частицу консервативны, и E p {\displaystyle E_{p}} является полной потенциальной энергией, полученной суммированием потенциальных энергий соответствующих каждой силе, тогда:

F → ⋅ Δ s → = − ∇ → E p ⋅ Δ s → = − Δ E p ⇒ − Δ E p = Δ E k ⇒ Δ (E k + E p) = 0 {\displaystyle {\vec {F}}\cdot \Delta {\vec {s}}=-{\vec {\nabla }}E_{p}\cdot \Delta {\vec {s}}=-\Delta E_{p}\Rightarrow -\Delta E_{p}=\Delta E_{k}\Rightarrow \Delta (E_{k}+E_{p})=0} .

Этот результат известен как закон сохранения механической энергии и утверждает, что полная механическая энергия в замкнутой системе, в которой действуют консервативные силы,

∑ E = E k + E p {\displaystyle \sum E=E_{k}+E_{p}}

является постоянной во времени. Этот закон широко используется при решении задач классической механики.

Работа в термодинамике

Основная статья: Термодинамическая работа

В термодинамике работа, совершенная газом при расширении, рассчитывается как интеграл давления по объёму:

A 1 → 2 = ∫ V 1 V 2 P d V . {\displaystyle A_{1\rightarrow 2}=\int \limits _{V_{1}}^{V_{2}}PdV.}

Работа, совершенная над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объема, но и к любому процессу (изображаемому любой кривой в плоскости PV ), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула прямо связана с механической работой. Действительно, попробуем написать механическую работу при расширении сосуда, учитывая, что сила давления газа будет направлена перпендикулярно каждой элементарной площадке, равна произведению давления P на площадь dS площадки, и тогда работа, совершаемая газом для смещения h одной такой элементарной площадки будет

D A = P d S h . {\displaystyle dA=PdSh.}

Видно, что это и есть произведение давления на приращение объема вблизи данной элементарной площадкой. А просуммировав по всем dS получим конечный результат, где будет уже полное приращение объема, как и в главной формуле параграфа.

Работа силы в теоретической механике

Рассмотрим несколько детальнее, чем это было сделано выше, построение определения энергии как риманова интеграла.

Пусть материальная точка M {\displaystyle M} движется по непрерывно дифференцируемой кривой G = { r = r (s) } {\displaystyle G=\{r=r(s)\}} , где s - переменная длина дуги, 0 ≤ s ≤ S {\displaystyle 0\leq s\leq S} и на неё действует сила F (s) {\displaystyle F(s)} , направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под F (s) {\displaystyle F(s)} проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее). Величина F (ξ i) △ s i , △ s i = s i − s i − 1 , i = 1 , 2 , . . . , i τ {\displaystyle F(\xi _{i})\triangle s_{i},\triangle s_{i}=s_{i}-s_{i-1},i=1,2,...,i_{\tau }} , называется элементарной работой силы F {\displaystyle F} на участке G i {\displaystyle G_{i}} и принимается за приближенное значение работы, которую производит сила F {\displaystyle F} , воздействующая на материальную точку, когда последняя проходит кривую G i {\displaystyle G_{i}} . Сумма всех элементарных работ ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle \sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} является интегральной суммой Римана функции F (s) {\displaystyle F(s)} .

В соответствии с определением интеграла Римана, можем дать определение работе:

Предел, к которому стремится сумма ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle \sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} всех элементарных работ, когда мелкость | τ | \tau разбиения τ {\displaystyle \tau } стремится к нулю, называется работой силы F {\displaystyle F} вдоль кривой G {\displaystyle G} .

Таким образом, если обозначить эту работу буквой W {\displaystyle W} , то, в силу данного определения,

W = lim | τ | → 0 ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle W=\lim _\sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} ,

следовательно,

W = ∫ 0 s F (s) d s {\displaystyle W=\int \limits _{0}^{s}F(s)ds} (1).

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра t {\displaystyle t} (например, времени) и если величина пройденного пути s = s (t) {\displaystyle s=s(t)} , a ≤ t ≤ b {\displaystyle a\leq t\leq b} является непрерывно дифференцируемой функцией, то из формулы (1) получим

W = ∫ a b F [ s (t) ] s ′ (t) d t . {\displaystyle W=\int \limits _{a}^{b}Fs"(t)dt.}

Размерность и единицы

Единицей измерения работы в Международной системе единиц (СИ) является джоуль, в СГС - эрг

1 Дж = 1 кг·м²/с² = 1 Н·м 1 эрг = 1 г·см²/с² = 1 дин·см 1 эрг = 10−7 Дж

Дайте пож. определение-Работа в термодинамике и Адиабатический процесс.

Cветлана

В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела относительно друг друга. При совершении работы меняется объем тела, а его скорость остается раной нулю. Но скорости молекул тела меняются! Поэтому меняется температура тела. Причина в том, что при столкновении с движущимся поршнем (сжатие газа) кинетическая энергия молекул изменяется - поршень отдает часть своей механической энергии. При столкновении с удаляющимся поршнем (расширение) скорости молекул уменьшаются, газ охлаждается. При совершении работы в термодинамике меняется состояние макроскопических тел: их объем и температура.
Адиабатический процесс - термодинамический процесс в макроскопической системе, при котором система не получает и не отдаёт тепловой энергии. Линия, изображающая адиабатный процесс на какой-либо термодинамической диаграмме, называется адиабатой.

Олег гольцов

работа А=p(v1-v2)
где
p - давление создаваемое поршнем= f/s
где f-сила действующая на поршень
s - площадь поршня
примечание p=const
v1 и v2 - начальные и конечные обьемы.

При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.

Пусть в цилиндре с подвижным поршнем находится газ при температуре T 1 (рис. 1). Будем медленно нагревать газ до температуры T 2 . Газ будет изобарически расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl . Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = pS тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле

\(~A = F \Delta l = pS \Delta l = p \Delta V, \qquad (1)\)

где ΔV - изменение объема газа. Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.

Сила давления газа выполняет работу только в процессе изменения объема газа .

При расширении (ΔV > 0) газа совершается положительная работа (А > 0); при сжатии (ΔV < 0) газа совершается отрицательная работа (А < 0), положительную работу совершают внешние силы А’ = -А > 0.

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

\(~pV_1 = \frac mM RT_1 ; pV_2 = \frac mM RT_2 \Rightarrow\) \(~p(V_2 - V_1) = \frac mM R(T_2 - T_1) .\)

Следовательно, при изобарном процессе

\(~A = \frac mM R \Delta T .\)

Если m = М (1 моль идеального газа), то при ΔΤ = 1 К получим R = A . Отсюда вытекает физический смысл универсальной газовой постоянной: она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

На графике p = f (V ) при изобарном процессе работа равна площади заштрихованного на рисунке 2, а прямоугольника.

Если процесс не изобарный (рис. 2, б), то кривую p = f (V ) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет

\(~A = \lim_{\Delta V \to 0} \sum^n_{i=1} p_i \Delta V_i\), или \(~A = \int p(V) dV,\)

т.е. будет равна площади заштрихованной фигуры. При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке 2, в.

Определить работу, используя последнюю формулу, можно только в том случае, если известно, как изменяется давление газа при изменении его объема, т.е. известен вид функции p (V ).

Таким образом, газ при расширении совершает работу. Приборы и агрегаты, действия которых основаны на свойстве газа в процессе расширения совершать работу, называются пневматическими . На этом принципе действуют пневматические молотки, механизмы для закрывания и открывания дверей на транспорте и др.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 155-156.

Если бесконечно малое расширение системы за счет подвода к ней теплоты, происходит во внешней среде, находящейся повсюду под одним и тем же давлением Р, то увеличение объема системы V на бесконечно малую величину dV сопровождается работой:

которую совершает система над окружающей средой и называемой работой изменения объема (механическая работа ).

При изменении объема тела от значения объема до значения работа, совершаемая системой, будет равняться:

Из формулы (*) следует, что и всегда имеют одинаковые знаки:

Если , то и , т.е. при расширении работа тела положительна, при этом тело само совершает работу;

Если же , то и , т. е. при сжатии работа тела отрицательна: это означает, что не тело совершает работу, а на его сжатие затрачивается работа извне.

Теперь, рассмотрим работу, которая производится системой над каким- либо внешним объектом. Пусть рассматриваемое тело представляет собой газ, находящийся в цилиндре под поршнем. Поршень сверху нагружен грузом.


В результате подвода теплоты к газу произошло его расширение от объема до объема . При этом поршень с грузом переместился с высоты на высоту .

В результате расширения телом совершена работа:

а потенциальная энергия груза увеличилась на величину:

Разность между работой расширения и приращением потенциальной энергии представляет собой полезную внешнюю работу (располагаемую или техническую работу) которая произведена телом над внешним объектом:

В термодинамике широко используют -диаграмму. Поскольку состояние термодинамической системы определяется двумя параметрами, то на -диаграмме оно изображается точкой. На рисунке точка 1 соответствует начальному состоянию системы, точка 2 -конечному, а линия 1-2 соответствует процессу расширения рабочего тела от до .

Механическая работа графически изображается на плоскости площадью, заключенной между кривой процесса и осью объемов.


Располагаемая работа графически изображается на плоскости площадью, заключенной между кривой процесса и осью давлений.

Работа зависит от характера термодинамического процесса.

Первый закон термодинамики .

Первый закон термодинамики представляет собой закон сохранения и превращения энергии.

Для термодинамических процессов закон устанавливает взаимосвязь между теплотой, работой и изменением внутренней энергии термодинамической системы.

Формулировка первого закона термодинамики :

Теплота, подведенная к системе, расходуется на изменение энергии системы и совершение механической работы.

Для 1кг вещества уравнение первого закона термодинамики имеет вид:



Первый закон термодинамики может быть записан также в другой форме.

Учитывая то, что энтальпия равна:

а ее изменение:

Выразим из выражения изменение внутренней энергии:

и подставим ее в уравнение первого закона термодинамики

До сих пор мы рассматривали только системы, вещество в которых не перемещалось в пространстве. Однако следует отметить, что первый закон термодинамики имеет общий характер и справедлив для любых термодинамических систем- и неподвижных и движущихся.

Предположим, что рабочее тело подается в тепломеханический агрегат (например, лопатки турбины). Рабочее тело совершает техническую работу, например, приводя в движение ротор турбины, а затем удаляется через выхлопной патрубок.

Запишем первый закон термодинамики для неподвижной системы:

Работа расширения совершается рабочим телом на поверхностях, ограничивающих выделенный движущийся объем, т. е. на стенках агрегата. Часть стенок агрегата неподвижна, и работа расширения на них равна нулю. Другая часть стенок специально делается подвижной (рабочие лопатки в турбине), и рабочее тело совершает на них техническую работу .

При входе рабочего в агрегат и выходе его из агрегата затрачивается так называемая работа вытеснения :

Часть работы расширения () затрачивается на увеличение кинетической энергии рабочего тела в потоке, равное .

Таким образом:

Подставив данное выражение механической работы в уравнение первого закона термодинамики, получим:

Поскольку энтальпия равна:

Окончательный вид первого закона термодинамики для движущегося потока будет иметь вид:

Теплота, подведенная к потоку рабочего тела, расходуется на увеличение энтальпии рабочего тела, производство технической работы и увеличение кинетической энергии потока.

Второй закон термодинамики .

Первый закон термодинамики утверждает, что теплота может превращаться в работу, а работа в теплоту. Работа может быть полностью превращена в теплоту, например, путем трения, однако теплоту полностью превратить в работу в периодически повторяющемся (непрерывном) процессе нельзя.

Первый закон термодинамики “позволяет” создать тепловой двигатель полностью превращающий подведенную теплоту в работу L, т.е.:

Второй закон накладывает более жесткие ограничения и утверждает, что работа должна быть меньше подведенной теплоты () на величину отведенной теплоты , т.е.:


Вечный двигатель можно осуществить, если теплоту передать от холодного источника к горячему. Но для этого теплота самопроизвольно должна перейти от холодного тела к горячему, что невозможно.

Теплота сама собой может переходить только от более нагретых тел к холодным. Переход теплоты от холодных тел к нагретым сам собой не происходит. Для этого нужно затратить дополнительную энергию.

Таким образом, для полного анализа явления и процессов необходимо иметь кроме первого закона термодинамики еще дополнительную закономерность. Этим законом является второй закон термодинамики . Он устанавливает, возможен или невозможен тот или иной процесс, в каком направлении протекает процесс, когда достигается термодинамическое равновесие и при каких условиях можно получить максимальную работу. Одна из формулировок второго закона термодинамики :

Для существования теплового двигателя необходимы 2 источника -горячий источник и холодный источник (окружающая среда).